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Abstract

Semantic Textual Similarity (STS) mea-
sures the meaning similarity of sentences.
Applications include machine translation
(MT), summarization, generation, question
answering (QA), short answer grading, se-
mantic search, dialog and conversational
systems. The STS shared task is a venue
for assessing the current state-of-the-art.
The 2017 task focuses on multilingual and
cross-lingual pairs with one sub-track ex-
ploring MT quality estimation (MTQE)
data. The task obtained strong participa-
tion from 31 teams, with 17 participating in
all of the language tracks. We summarize
performance and review a selection of well
performing methods. Analysis highlights
common errors, providing insight into the
limitations of the current state-of-the-art.
To support ongoing work on semantic rep-
resentations, STS Benchmark is introduced
as a new shared training and evaluation set
based on a multi-year selection of English
STS pairs (2012-2017).

1 Introduction

Semantic Textual Similarity (STS) assesses the
degree to which two sentences are semantically
equivalent to each other. This assessment is per-
formed using an ordinal scale that ranges from
complete semantic equivalence to complete seman-
tic dissimilarity. The intermediate levels capture
specifically defined degrees of partial similarity,
such as topicality or rough equivalence, but with
differing details. The assessment is performed out-
side of any contextualizing text.

Accurately inferring the meaning similarity be-
tween sentences is a foundational natural language
understanding problem. The systems and tech-
niques explored as a part of STS have a broad

range of applications including machine transla-
tion (MT), summarization, generation, question
answering (QA), short answer grading, semantic
search, dialog and conversational systems. STS
allows for the independent evaluation of methods
for computing semantic similarity drawn from a
diverse set of domains that are otherwise only stud-
ied within a particular subfield of computational
linguistics. Existing methods from a subfield that
are found to perform well in a more general setting
as well as novel techniques created specifically for
STS improve natural language processing and lan-
guage understanding applications where knowing
the similarity in meaning between two pieces of
text is relevant to the behavior of the system.

Semantic inference tasks related to STS include
textual entailment (Bentivogli et al., 2016; Bow-
man et al., 2015; Dagan et al., 2010), semantic re-
latedness (Bentivogli et al., 2016) and paraphrase
detection (Xu et al., 2015; Ganitkevitch et al.,
2013; Dolan et al., 2004). STS differs from both
textual entailment and paraphrase detection in that
it captures a graded degree of meaning overlap
rather than making a binary classification of a par-
ticular relationship. Semantic relatedness also cap-
tures a graded semantic relationship between two
texts. However, relatedness is non-specific about
the nature of the relationship with contradictory
material still being a candidate for a high score.

To encourage and support research in this area,
the STS shared task has been held annually since
2012, providing a venue for the evaluation of state-
of-the-art algorithms and models (Agirre et al.,
2012, 2013, 2014, 2015, 2016). During this time,
diverse similarity methods and data sets1 have been

1i.a., news headlines, video and image descriptions,
glosses from lexical resources including WordNet (Miller,
1995; Fellbaum, 1998), FrameNet (Baker et al., 1998),
OntoNotes (Hovy et al., 2006), web discussion forums, pla-
giarism, MT post-editing and Q&A data sets. Data sets are
summarized on: http://ixa2.si.ehu.es/stswiki.

http://ixa2.si.ehu.es/stswiki


explored. Early methods focus on lexical seman-
tics, surface form matching and basic syntactic
similarity (Bär et al., 2012; Šarić et al., 2012a;
Jimenez et al., 2012a). Strong new similarity sig-
nals emerged during subsequent evaluations, such
as Sultan et al. (2015)’s alignment based method.
Deep learning methods have recently become com-
petitive with top performing feature engineered
systems (He et al., 2016). The best performance
tends to be obtained by ensembling traditional fea-
ture engineered signals with deep learning models
(Rychalska et al., 2016).

Significant research effort has focused on STS
over English sentence pairs.2 English STS is a
well-studied problem, with state-of-the-art systems
often achieving 70 to 80% correlation with human
judgment. To promote progress in other languages,
the 2017 task is structured to emphasizes perfor-
mance on Arabic and Spanish as well as cross-
lingual pairings of English with material in Ara-
bic, Spanish and Turkish. The primary ranking for
the task combines performance on all of these dif-
ferent language conditions except English-Turkish,
which was run as a surprise language track. Even
with the departure from prior years, the task at-
tracted 31 teams producing 84 system submissions.
17 teams produced a total of 44 system submis-
sions that scored pairs in all of the languages nec-
essary for placement under the primary ranking.
Each of these 44 submissions also took part in the
English-Turkish surprise language track.

STS data sets from varying years have been used
extensively for research on state-of-the-art models
of sentence level semantic representations. To en-
courage the use of a common evaluation set for
assessing sentence level semantic representations,
we present STS Benchmark, a publicly available
selection of the English data sets from previous
STS tasks during the period (2012-2017).

2 Task Overview

STS is the assessment of pairs of sentences accord-
ing to their degree of semantic similarity. Perform-
ing the task involves producing real-valued similar-
ity scores for pairs of sentences. No constraints are
placed on the data or tools that can be used by STS
systems, with the only exception that supervised
annotations over the test data are not allowed.

2The 2012 and 2013 STS tasks were English only. The
2014 and 2015 task included a Spanish track and 2016 had a
pilot track on cross-lingual Spanish-English STS. The English
tracks attracted the most participation and have the largest use
of the evaluation data in ongoing research.

5

The two sentences are completely equivalent, as they
mean the same thing.
The bird is bathing in the sink.
Birdie is washing itself in the water basin.

4

The two sentences are mostly equivalent, but some
unimportant details differ.
Two boys on a couch are playing video games.
Two boys are playing a video game.

3

The two sentences are roughly equivalent, but some
important information differs/missing.
John said he is considered a witness but not a suspect.
“He is not a suspect anymore.” John said.

2

The two sentences are not equivalent, but share some
details.
They flew out of the nest in groups.
They flew into the nest together.

1

The two sentences are not equivalent, but are on the
same topic.
The woman is playing the violin.
The young lady enjoys listening to the guitar.

0

The two sentences are completely dissimilar.
The black dog is running through the snow.
A race car driver is driving his car through the mud.

Table 1: Similarity scores with explanations and
English examples from Agirre et al. (2013).

track language(s) pairs source
1 Arabic (ar-ar) 250 SNLI
2 Arabic-English (ar-en) 250 SNLI
3 Spanish (es-es) 250 SNLI
4a Spanish-English (es-en) 250 SNLI
4b Spanish-English (es-en) 250 WMT QE
5 English (en-en) 250 SNLI
6 Turkish-English (tr-en) 250 SNLI

total 1750

Table 2: STS 2017 evaluation data.

Performance is measured by the Pearson corre-
lation of the model scores with human judgments.
The ordinal scale in Table 1 guides human assign-
ment, ranging from 0 for no meaning overlap to
5 for meaning equivalence. Intermediate values
reflect interpretable levels of partial overlap.

Scores are designed to be appropriate according
to a reasonable human judge. Using reasonable hu-
man interpretations of natural language semantics
was popularized by the related textual entailment
task (Dagan et al., 2010). This results in the task
being more challenging as the resulting similar-
ity scores reflect both pragmatic and world knowl-
edge. The resulting similarity scores are more in-
terpretable and useful for downstream systems.

3 Evaluation Data

The Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015) is the primary evalu-



year dataset pairs source
2012 MSRpar 1500 newswire
2012 MSRvid 1500 videos
2012 OnWN 750 glosses
2012 SMTnews 750 WMT eval.
2012 SMTeuroparl 750 WMT eval.
2013 HDL 750 newswire
2013 FNWN 189 glosses
2013 OnWN 561 glosses
2013 SMT 750 MT eval.
2014 HDL 750 newswire headlines
2014 OnWN 750 glosses
2014 Deft-forum 450 forum posts
2014 Deft-news 300 news summary
2014 Images 750 image descriptions
2014 Tweet-news 750 tweet-news pairs
2015 HDL 750 newswire headlines
2015 Images 750 image descriptions
2015 Ans.-student 750 student answers
2015 Ans.-forum 375 Q&A forum answers
2015 Belief 375 committed belief
2016 HDL 249 newswire headlines
2016 Plagiarism 230 short-answer plag.
2016 post-editing 244 MT postedits
2016 Ans.-Ans. 254 Q&A forum answers
2016 Quest.-Quest. 209 Q&A forum questions
2017 Trial 23 Mixed STS 2016

Table 3: English training data.

year dataset pairs source
2014 Trial 56
2014 Wiki 324 Spanish Wikipedia
2014 News 480 Newswire
2015 Wiki 251 Spanish Wikipedia
2015 News 500 Sewswire
2017 Trial 23 Mixed STS 2016

Table 4: Spanish training data.

ation data source with the exception that one of the
cross-lingual tracks explores data from the WMT
2014 quality estimation task (Bojar et al., 2014).3

Sentences pairs in SNLI derive from Flickr30k
image captions (Young et al., 2014) and are labeled
with entailment relations: entailment, neutral and
contradiction. Drawing from SNLI allows seman-
tic similarity models to be evaluated on the type
of data used to assess textual entailment methods.
Entailment strongly cues for semantic relatedness
(Marelli et al., 2014). We construct our own sen-
tence pairings to deter gold entailment labels from
informing test set semantic similarity scores.

Track 4b Spanish-English investigates the rela-
tionship between STS and MT quality estimation.
The WMT quality estimation data includes Span-
ish translations of English sentences from a vari-
ety of methods including RBMT, SMT, hybrid-MT

3Previous years of the STS shared task include more data
sources. This year the task draws from two data sources and
includes a diverse set of languages and language-pairs.

year dataset pairs source
2016 Trial 103 Sampled ≤ 2015 STS
2016 News 301 en-es news articles
2016 Multi-source 294 en news headlines,

short-answer plag.,
MT postedits,
Q&A forum answers,
Q&A forum questions

2017 Trial 23 Mixed STS 2016
2017 MT 1000 WMT13 Translation Task

Table 5: Spanish-English training data.

year dataset pairs source
2017 Trial 23 Mixed STS 2016
2017 MSRpar 510 newswire
2017 MSRvid 368 videos
2017 SMTeuroparl 203 WMT eval.

Table 6: Arabic training data.

and human translation. Translations are annotated
with the time required to correct them using post-
editing and Human-targeted Translation Error Rate
(HTER) (Snover et al., 2006).4 Participants are not
allowed to use gold quality estimation annotations
to inform semantic similarity scores.

3.1 Tracks

Table 2 summaries the evaluation data by track.
There are six tracks spanning four languages: Ara-
bic, English, Spanish and Turkish. The tracks are:
(1) Arabic; (2) Arabic-English; (3) Spanish; (4 a/b)
Spanish-English; (5) English; (6) Turkish-English.
Track 4 has subtracks: 4a draws from SNLI; 4b
pulls from WMT’s quality estimation task. Track
6 is a surprise language track with no annotated
training data and the identity of the language pair
announced when the evaluation data was released.

3.2 Data Preparation

This section describes the preparation of the eval-
uation data. For SNLI data, this includes the se-
lection of sentence pairs, annotation of pairs with
STS labels and the translation of the original En-
glish sentences. WMT quality estimation data is
directly annotation with STS labels.

3.3 Arabic, Spanish and Turkish Translation

Sentences from SNLI are human translated into
Arabic, Spanish and Turkish. Sentences are trans-
lated independently from their pairs. Arabic trans-
lation is provided by CMU-Qatar by native Arabic
speakers with strong English skills. The transla-

4HTER is the minimal number of edits required for cor-
rection of a translation divided by its length after correction.



year dataset pairs source
2017 Trial 23 Mixed STS 2016
2017 MSRpar 1020 newswire
2017 MSRvid 736 videos
2017 SMTeuroparl 406 WMT eval.

Table 7: Arabic-English training data.

year dataset pairs source
2017 MSRpar 1039 newswire
2017 MSRvid 749 videos
2017 SMTeuroparl 422 WMT eval.

Table 8: Arabic-English parallel data.

tors are given an English sentences and its Arabic
machine translation5 and perform post-editing to
correct errors. Spanish translation is completed
by a University of Sheffield graduate student who
is a native Spanish speaker and fluent in English.
Turkish translations are obtained from SDL.6

3.4 Embedding Space Pair Selection

We construct our own pairings of the SNLI sen-
tences to deter gold entailment labels from being
used to inform semantic similarity scores. Creating
pairs uniformly at random would result in predom-
inately low similarity scores. The word embed-
ding similarity selection heuristic from STS 2016
(Agirre et al., 2016) is used to help find interest-
ing pairs. First, sentence embeddings are com-
puted as the sum of sentence word embeddings,
v(s) =

∑
w∈s v(w).

7 Sentence pairs likely to
have some meaning overlap are identified using
cosine similarity, Eq. (1).

simv(s1, s2) =
v(s1)v(s2)

‖v(s1)‖2‖v(s2)‖2
(1)

4 Annotation

Annotation of pairs with semantic similarity labels
is performed using Crowdsourcing with the excep-
tion of Track 4b that uses a single expert annotator.

4.1 Crowdsourced Annotations

Crowdsourced annotation is performed using Ama-
zon Mechanical Turk.8 Annotation is performed

5Obtained from the Google Translate API.
6http://www.sdl.com/languagecloud/

managed-translation/
7We use 50-dimensional GloVe word embeddings (Pen-

nington et al., 2014) trained on a combination of Gigaword
5 (Parker et al., 2011) and English Wikipedia available at
http://nlp.stanford.edu/projects/glove/.

8https://www.mturk.com/

on the English sentences from SNLI. Semantic sim-
ilarity labels are then transferred to the translated
pairs for cross-lingual and non-English tracks.

The annotation instructions and template are
identical to Agirre et al. (2016). Labels are col-
lected in batches of 20 pairs with annotators paid
$1 USD per batch. Five annotations are collected
per pair. The MTurk master9 qualification is re-
quired to perform the task. Gold scores are the
mean of the five individual annotations.

4.2 Expert Annotation

English-Spanish WMT quality estimation pairs for
Track 4b are annotated for semantic similarity by a
University of Sheffield graduate student who is na-
tive speaker of Spanish and fluent in English. This
track differs significantly in label distribution and
the complexity of the annotation task. Sentences
in a pair are translations of each other and tend to
be more semantically similar. Interpreting the po-
tentially subtle meaning differences introduced by
MT errors is more challenging than assessing the
heuristically constructed pairs in other tracks. To
accurately assess semantic similarity performance
on MT quality estimation data, no attempt is made
to balance the data by similarity scores.

5 Training Data

The following summarizes the training data: Ta-
ble 3 English; Table 4 Spanish;10 Table 5 Spanish-
English; Table 6 Arabic; and Table 7 Arabic-
English. Arabic-English parallel data is supplied
by translating English training data, Table 8.

English, Spanish and English-Spanish training
data is from prior STS evaluations. Arabic and
Arabic-English training data is produced by trans-
lating a subset of the English training data and
transferring the similarity scores. For the MT qual-
ity estimation data in track 4b, Spanish sentences
are translations of their English counterparts, dif-
fering substantially from existing Spanish-English
STS data. We release one thousand new Spanish-
English STS pairs sourced from the 2013 WMT
translation task and produced by a phrase-based
Moses SMT system (Bojar et al., 2013). The data
is expert annotated and has a similar label distribu-
tion to the track 4b test data with 17% of the pairs

9A designation that statistically identifies workers who
perform high quality work across a diverse set of tasks.

10Spanish data from 2015 and 2014 uses a 5 point scale
that collapses STS labels 4 and 3, removing the distinction
between unimportant and important details.

http://www.sdl.com/languagecloud/managed-translation/
http://www.sdl.com/languagecloud/managed-translation/
http://nlp.stanford.edu/projects/glove/
https://www.mturk.com/


scoring less than 3, 23% scoring 3, 7% achieving
a score of 4 and 53% scoring 5.

5.1 Training vs. Evaluation Data Analysis

Evaluation data from SNLI tend to have sentences
that are slightly shorter than those from prior years
of the STS shared task, while the track 4b MT qual-
ity estimation data has sentences that are much
longer. The track 5 English data has an average
sentence length of 8.7 words, while the English
sentences from track 4b have an average length of
19.4. The English training data has the following
average lengths: 2012 10.8 words; 2013 8.8 words
(excludes restricted SMT data); 2014 9.1 words;
2015 11.5 words; 2016 13.8 words.

Similarity scores for the heuristically paired
SNLI sentences tend to be slightly lower than re-
cent shared task years and much lower than early
years due to differences in data selection, anno-
tation and filtering. The average similarity score
is 2.2 overall and 2.3 on the track 7 English data.
Prior English data has the following average simi-
larity scores: 2016 2.4; 2015 2.4; 2014 2.8; 2013
3.0; 2012 3.5. The average similarity score on the
MT quality estimation data from track 4b is 4.0.

6 System Evaluation

This section reports the evaluation results for the
2017 STS shared task.

6.1 Participation

The task saw strong participation with 31 teams
producing 84 submissions. Table 9 summarizes
participation by track. 17 teams provided 44 sys-
tems that participated in all tracks. Traces of the fo-
cus on English STS are seen in 12 teams participat-
ing just in track 5, English. Two teams participated
exclusively in tracks 4a and 4b, English-Spanish.
One team took part solely in track 1, Arabic.

6.2 Evaluation Metric

Systems are evaluated on a track by their Pearson
correlation with the gold labels. The overall rank-
ing averages the correlations across tracks 1-5 with
tracks 4a and 4b individually contributing.

6.3 CodaLab

As directed by the SemEval workshop organizers,
the CodaLab research platform hosts the task.11

11https://competitions.codalab.org/
competitions/16051

Track Language(s) Participants
1 Arabic 49
2 Arabic-English 45
3 Spanish 48
4a Spanish-English 53
4b Spanish-English MT 53
5 English 77
6 Turkish-English 48

Primary All except Turkish 45

Table 9: Participation by shared task track.

6.4 Baseline

The baseline is the cosine of binary sentence vec-
tors with each dimension representing whether an
individual word appears in a sentence.12 For cross-
lingual pairs, non-English sentences are translated
into English using state-of-the-art machine trans-
lation.13 The baseline achieves an average corre-
lation of 53.7 with human judgment on tracks 1-5
and would rank 23rd overall out the 44 system sub-
missions that participated in all tracks.

6.5 Rankings

Table 10 summarizes performance. ECNU is best
overall (avg r: 0.7316) and obtained first place on:
track 2, Arabic-English (r: 0.7493); track 3, Span-
ish (r: 0.8559); and track 6, Turkish-English (r:
0.7706). BIT achieved the best performance on
track 1, Arabic, (r: 0.7543). CompiLIG placed
first on track 4a, SNLI Spanish-English pairs (r:
0.8302). SEF@UHH performed best on the track
4b WMT quality estimation pairs (r: 0.3407). RTV
did best on the track 5 English data (r: 0.8547),
followed closely by DT Team (r: 0.8536).

The most challenging tracks with SNLI data
are: track 1, Arabic; track 2, Arabic-English; and
track 6, English-Turkish. Spanish-English perfor-
mance is much higher on track 4a’s SNLI data than
track 4b’s MT quality estimation data. This high-
lights the difficulty and importance of making fine
grained distinctions for certain downstream appli-
cations. Assessing semantic similarity methods for
MT quality estimation may benefit using alterna-
tives to Pearson correlation for evaluation.14

12Words obtained using ar, es and en treebank tokenizers.
13http://translate.google.com
14e.g., Reimers et al. (2016) report task specific success at

using STS labels with alternative evaluation metrics such as
normalized Cumulative Gain (nCG), normalized Discounted
Cumulative Gain (nDCG) and F1 to more accurately predict
performance on the following downstream tasks: text reuse
detection, binary classification of document relatedness and
document relatedness detection within a corpus.

https://competitions.codalab.org/competitions/16051
https://competitions.codalab.org/competitions/16051
http://translate.google.com


Track 1 Track 2 Track 3 Track 4a Track 4b Track 5 Track 6
Team Primary AR-AR AR-EN SP-SP SP-EN SP-EN-WMT EN-EN EN-TR

ECNU (Tian et al., 2017) 0.7316 0.7440 0.7493• 0.8559• 0.8131 0.3363 0.8518 0.7706•
ECNU (Tian et al., 2017) 0.7044 0.738 0.7126 0.8456 0.7495 0.3311 0.8181 0.7362
ECNU (Tian et al., 2017) 0.6940 0.7271 0.6975 0.8247 0.7649 0.2633 0.8387 0.7420
BIT (Wu et al., 2017)* 0.6789 0.7417 0.6965 0.8499 0.7828 0.1107 0.8400 0.7305
BIT (Wu et al., 2017)* 0.6703 0.7535 0.7007 0.8323 0.7813 0.0758 0.8161 0.7327
BIT (Wu et al., 2017) 0.6662 0.7543• 0.6953 0.8289 0.7761 0.0584 0.8222 0.7280
HCTI (Shao, 2017) 0.6598 0.7130 0.6836 0.8263 0.7621 0.1483 0.8113 0.6741
MITRE (Henderson et al., 2017) 0.6590 0.7294 0.6753 0.8202 0.7802 0.1598 0.8053 0.6430
MITRE (Henderson et al., 2017) 0.6587 0.7304 0.6740 0.8201 0.7799 0.1574 0.8048 0.6441
FCICU (Hassan et al., 2017) 0.6190 0.7158 0.6782 0.8484 0.6926 0.0254 0.8272 0.5452
neobility (Zhuang and Chang, 2017) 0.6171 0.6821 0.6459 0.7928 0.7169 0.0200 0.7927 0.6696
FCICU (Hassan et al., 2017) 0.6166 0.7158 0.6781 0.8489 0.6854 0.0214 0.8280 0.5390
STS-UHH (Kohail et al., 2017) 0.6058 0.6781 0.6307 0.7713 0.7201 0.0481 0.7989 0.5937
RTV 0.605 0.6713 0.5595 0.7485 0.7050 0.0761 0.8541 0.6204
HCTI (Shao, 2017) 0.5988 0.4373 0.6836 0.6709 0.7621 0.1483 0.8156 0.6741
RTV 0.5980 0.6689 0.5482 0.7424 0.6999 0.0734 0.8541 0.5989
MatrusriIndia 0.5960 0.6860 0.5464 0.7614 0.7118 0.0572 0.7744 0.6349
STS-UHH (Kohail et al., 2017) 0.5725 0.6104 0.5910 0.7204 0.6338 0.1205 0.7339 0.5972
SEF@UHH (Duma and Menzel, 2017) 0.5676 0.5790 0.5384 0.7423 0.5866 0.1802 0.7256 0.6211
SEF@UHH (Duma and Menzel, 2017) 0.5644 0.5588 0.4789 0.7456 0.5739 0.3069 0.7880 0.4990
RTV 0.5633 0.6143 0.4832 0.6863 0.6140 0.0829 0.8547• 0.6079
SEF@UHH (Duma and Menzel, 2017) 0.5528 0.5774 0.4813 0.6979 0.5660 0.3407• 0.7186 0.4878
neobility (Zhuang and Chang, 2017) 0.5195 0.1369 0.6259 0.7792 0.6930 0.0044 0.7556 0.6418
neobility (Zhuang and Chang, 2017) 0.5025 0.0369 0.6207 0.7690 0.6947 0.0147 0.7535 0.6279
MatrusriIndia 0.4975 0.5703 0.4340 0.6786 0.5563 0.0857 0.6579 0.4994
NLPProxem 0.4902 0.5193 0.5313 0.6642 0.5144 0.0996 0.6256 0.4767
UMDeep (Barrow and Peskov, 2017) 0.4792 0.4753 0.4939 0.5165 0.5615 0.1609 0.6174 0.5293
NLPProxem 0.4790 0.5506 0.4369 0.6381 0.5079 0.1414 0.6463 0.4320
UMDeep (Barrow and Peskov, 2017) 0.4773 0.4587 0.5199 0.5148 0.5232 0.1300 0.6222 0.5725
Lump (España Bonet and Barrón-Cedeño, 2017)* 0.4725 0.6052 0.1829 0.7574 0.4327 0.0116 0.7376 0.5800
Lump (España Bonet and Barrón-Cedeño, 2017)* 0.4704 0.5508 0.1357 0.7676 0.4825 0.1112 0.7269 0.5179
Lump (España Bonet and Barrón-Cedeño, 2017)* 0.4438 0.6287 0.1805 0.7380 0.4447 0.0151 0.7347 0.3652
NLPProxem 0.4070 0.5327 0.4773 0.0016 0.5506 0.1440 0.6681 0.4746
RTM (Biçici, 2017)* 0.3669 0.3365 0.1711 0.6990 0.6004 0.1455 0.5468 0.0687
UMDeep (Barrow and Peskov, 2017) 0.3521 0.3905 0.3713 0.4588 0.3482 0.0586 0.4727 0.3644
RTM (Biçici, 2017)* 0.3291 0.3365 0.0025 0.5682 0.5054 0.1368 0.6405 0.1136
RTM (Biçici, 2017)* 0.3278 0.4156 0.1332 0.4841 0.4583 0.2347 0.5632 0.0055
ResSim (Bjerva and Östling, 2017) 0.3148 0.2892 0.1045 0.6613 0.2389 0.0305 0.6906 0.1884
ResSim (Bjerva and Östling, 2017) 0.2938 0.3120 0.1288 0.6920 0.1002 0.0162 0.6877 0.1195
ResSim (Bjerva and Östling, 2017) 0.2145 0.0033 0.1098 0.5465 0.2262 0.0199 0.5057 0.0902
LIPN-IIMAS (Arroyo-Fernández and Meza Ruiz, 2017) 0.1067 0.0471 0.0769 0.1527 0.1719 0.1446 0.0738 0.0800
LIPN-IIMAS (Arroyo-Fernández and Meza Ruiz, 2017) 0.0926 0.0214 0.1292 0.0458 0.0120 0.0191 0.2038 0.2168
hjpwhu 0.0480 0.0412 0.0639 0.0617 0.0204 0.0624 0.0114 0.0753
hjpwhu 0.0294 0.0477 0.0204 0.0763 0.0046 0.0257 0.0069 0.0246
compiLIG (Ferrero et al., 2017) 0.8302• 0.1550
compiLIG (Ferrero et al., 2017) 0.7684 0.1464
compiLIG (Ferrero et al., 2017) 0.7910 0.1494
DT TEAM (Maharjan et al., 2017) 0.8536
DT TEAM (Maharjan et al., 2017) 0.8360
DT TEAM (Maharjan et al., 2017) 0.8329
FCICU (Hassan et al., 2017) 0.8217
ITNLPAiKF (Liu et al., 2017) 0.8231
ITNLPAiKF (Liu et al., 2017) 0.8231
ITNLPAiKF (Liu et al., 2017) 0.8159
L2F/INESC-ID (Fialho et al., 2017)* 0.7616 0.0191 0.0544 0.7811 0.0293
L2F/INESC-ID (Fialho et al., 2017) 0.6952
L2F/INESC-ID (Fialho et al., 2017)* 0.6385 0.1561 0.0524 0.6661 0.0356
LIM-LIG (Nagoudi et al., 2017) 0.7463
LIM-LIG (Nagoudi et al., 2017) 0.7309
LIM-LIG (Nagoudi et al., 2017) 0.5957
MatrusriIndia 0.6860 0.7614 0.7118 0.0572 0.7744 0.6349
NRC* 0.4225 0.0023
NRC 0.2808 0.1133
OkadaNaoya 0.7704
OPI-JSA (Śpiewak et al., 2017) 0.7850
OPI-JSA (Śpiewak et al., 2017) 0.7342
OPI-JSA (Śpiewak et al., 2017) 0.6796
PurdueNLP (Lee et al., 2017) 0.7928
PurdueNLP (Lee et al., 2017) 0.5535
PurdueNLP (Lee et al., 2017) 0.5311
QLUT (Meng et al., 2017)* 0.6433
QLUT (Meng et al., 2017) 0.6155
QLUT (Meng et al., 2017)* 0.4924
SIGMA 0.8047
SIGMA 0.8008
SIGMA 0.7912
SIGMA PKU 2 0.8134
SIGMA PKU 2 0.8127
SIGMA PKU 2 0.8061
STS-UHH (Kohail et al., 2017) 0.8093
UCSC-NLP 0.7729
UdL (Al-Natsheh et al., 2017) 0.8004
UdL (Al-Natsheh et al., 2017)* 0.7901
UdL (Al-Natsheh et al., 2017) 0.7805
cosine baseline 0.5370 0.6045 0.5155 0.7117 0.6220 0.0320 0.7278 0.5456

* Corrected or late submission

Table 10: STS 2017 rankings ordered by average correlation across tracks 1-5. For tracks 1-6, the top
ranking result is marked with a • symbol and results in bold have no statistically significant difference
with the best result on a track, p > 0.05 Williams’ t-test (Diedenhofen and Musch, 2015).



Results tend to decrease on cross-lingual tracks.
On SNLI data, the baseline drops by almost 10
points for Arabic-English and Spanish-English vs.
Arabic and Spanish. Many systems show smaller
decreases. ECNU’s top ranking entry does slightly
better on track 2 than track 1, Arabic-English vs.
Arabic, with only a 4 point drop from track 3 to 4b,
Spanish vs. Spanish-English.

6.6 Methods

Participating teams explore techniques ranging
from deep learning models to elaborate feature
engineered systems. Prediction signals include
surface similarity scores such as edit distance or
matching n-grams, scores derived from word align-
ments across pairs, assessment by MT evalua-
tion metrics, estimates of conceptual similarity
as well as the similarity between word and sen-
tence level embeddings. For cross-lingual and non-
English tracks, MT was widely used to convert
the two sentences being compared into the same
language.15 Below we highlight interesting and
successful methods.

ECNU (Tian et al., 2017) The best system over-
all is ECNU that uses a large feature set includ-
ing: n-gram overlap; edit distance; longest com-
mon prefix/suffix/substring; tree kernel similarity
(Moschitti, 2006); monolingual alignment (Sultan
et al., 2015); summarization and MT evaluation
metrics (BLEU, GTM-3, NIST, WER, METEOR,
ROUGE); and kernel similarity of vectors defined
by bags-of-words, bags-of-dependency-triples and
pooled word-embeddings. Models are trained with
RandomForest (RF), Gradient Boosting (GB) and
XGBoost (XGB). Deep learning similarity scores
are computed using a variety of paraphrastic sen-
tence embeddings methods: averaged word embed-
dings, projected word embeddings, a deep aver-
aging network (DAN) and LSTM (Wieting et al.,
2016). The best run ensembles all three classifier
types with the deep learning similarity scores. Two
other runs use a single classifier, either RF or GB,
and no ensembling with deep learning similarity
scores. ECNU took first place on the combined pri-

15Within the highlighted submissions, the following used a
monolingual English system fed by MT: ECNU, BIT, HCTI
and MITRE. HCTI also submitted a run using separate ar,
es and en trained models that underperformed using their en
model with MT on ar and es. CompiLIG’s model is cross-
lingual but includes a word alignment feature that depends
on MT for the cross-lingual pairs. SEF@UHH built separate
ar, es, and en models with bi-directional MT used for cross-
lingual pairs. LIM-LIG and DT Team only participated in
monolingual tracks.

mary evaluation, Arabic-English (Track 2), Span-
ish (Track 3) and Turkish-English (Track 7).

BIT (Wu et al., 2017) Second place overall is
achieved by BIT that focused on a WordNet based
information content (IC) feature. BIT developed
three systems one that exclusively made use of the
IC feature. Another ensembles this feature with
Sultan et al. (2015)’s alignment based similarity
method, while the third system ensembles the IC
feature with cosine similarity of summed word em-
beddings with an IDF derived weighting scheme.
The IC feature in isolation is able to out perform ev-
ery other system except those submitted by ECNU.
Combining the IC feature with weighted word em-
bedding similarity provides the best performance.
The BIT team took 1st place on Arabic (Track 1).

HCTI (Shao, 2017) Third place overall is ob-
tained by HCTI using a deep learning model that
is similar to a convolutional Deep Structured Se-
mantic Model (CDSSM) (Chen et al., 2015; Huang
et al., 2013). The model has twin convolutional
neural networks (CNNs) that generate sentence
level embeddings. Sentence level embeddings
are compared using cosine similarity and element
wise difference with the scores being feed to an-
other neural network to generate a similarity label.
UMDeep (Barrow and Peskov, 2017) took a simi-
lar approach but using LSTMs rather than CNNs
to generate the sentence embeddings.

MITRE (Henderson et al., 2017) Fourth place
overall is MITRE that, like ECNU, took an ambi-
tious feature engineering approach with some of
the features based on deep learning models. Fea-
tures include the cosine similarity of aligned word
embeddings, the output of the TakeLab STS sys-
tem (Šarić et al., 2012b), Summarization and MT
evaluation features (BLEU, WER, PER, ROUGE),
an RNN over similarity signals and a BiLSTM
model that represents the current state-of-the-art
for the SNLI entailment task (Chen et al., 2016).

FCICU (Hassan et al., 2017) Fifth place overall
is FCICU that computes a sense-base alignment us-
ing BabelNet (Navigli and Ponzetto, 2010). Babel-
Net synsets are multilingual allowing non-English
and cross-lingual pairs to be processed similar-
ity to English pairs. Alignment based similarity
scores are used with two runs: one that combines
the scores within a string kernel and another that
uses them with a weighted variant of Sultan et al.
(2015)’s method. Both of FCICU’s runs average



the Babelnet based scores with soft-cardinality sim-
ilarity scores (Jimenez et al., 2012b).

CompiLIG (Ferrero et al., 2017) The best
Spanish-English performance on SNLI data was
achieved by CompiLIG, which only participated in
the two Spanish-English tracks. The system makes
use of featured engineered cross-language signals
including: character n-grams, cross-lingual con-
ceptual similarity using DBNary (Serasset, 2015)
and k-best word embeddings, cross-language Mul-
tiVec word embeddings (Berard et al., 2016), and
Brychcin and Svoboda (2016)’s improvements to
Sultan et al. (2015)’s method.

LIM-LIG (Nagoudi et al., 2017) Using only
weighted word embeddings, LIM-LIG took second
place on Arabic.16 Word embeddings are trained
on 5.8B+ words and summed into sentence em-
beddings using uniform, POS and IDF weighting
schemes. Sentence similarity is computed by co-
sine. POS and IDF outperform uniform weighting.
Combining the IDF and POS weights by multipli-
cation is reported by LIM-LIG to achieve r 0.7667,
higher than all submitted track 5 systems.

DT Team (Maharjan et al., 2017) Second place
on English (Track 5)17 is DT Team using feature
engineering combined with the following deep
learning models: DSSM (Huang et al., 2013),
CDSSM (Shen et al., 2014) and skip-thoughts
(Kiros et al., 2015). The feature sets include: un-
igram overlap, summed word alignments scores,
fraction of unaligned words, difference in word
counts by type (all, adj, advert, nouns, verbs), and
min to max ratios of words by type. Select features
have a multiplicative penalty for unaligned words.
Similarity prediction uses linear SVM regression,
linear regression or gradient boosted regression.

SEF@UHH (Duma and Menzel, 2017) First
place on the challenging Spanish-English MT pairs
(Track 4b) is SEF@UHH and uses of no super-
vised training data. Similarity scores compare para-
graph vectors (Le and Mikolov, 2014) using cosine,
negation of Bray-Curtis dissimilarity or vector cor-
relation. Bray-Curtis performs well overall, while
cosine does best on the Spanish-English MT pairs.

16The approach is similar to SIF (Arora et al., 2017) but
without removal of the common principle component

17RTV took first place on track 5, English, but submitted
no system description paper.

18ECNU, BIT and LIM-LIG are scaled to the range 0-5.

Genre Train Dev Test Total
news 3299 500 500 4299
caption 2000 625 525 3250
forum 450 375 254 1079
total 5749 1500 1379 8628

Table 11: STS Benchmark annotated examples
by genres (rows) and by train, dev. test splits
(columns).

7 Analysis

Figure (1) plots model similarity scores against hu-
man semantic similarity labels for the top 5 sys-
tems from tracks 5 (English), 1 (Arabic), and 4b
(English-Spanish MT). While many systems return
scores on the same scale as the gold labels, 0-5,
others return scores from approximately 0 and 1.
Lines on the graphs illustrate perfect performance
for both a 0-5 and a 0-1 scale. Mapping the 0 to
1 scores to range from 0-5,19 we find that approx-
imately 80% of the scores from top performing
English systems are within 1.0 pt of the gold label.
Errors for Arabic are more broadly distributed, par-
ticularly for model scores between 1 and 4. The
English-Spanish MT plot shows a very weak rela-
tionship between the predicted and gold scores.

Table 12 provides examples of difficult sentence
pairs for participant systems. The examples il-
lustrate common sources of error even for well-
ranking systems such as: (i) word sense disam-
biguation “making” and “preparing” are very sim-
ilar in the context of “food”, while “picture” and
“movie” are not similar when picture is followed
by “day”; (ii) attribute importance “outside” and
“deserted” are minor details when contrasting “in
a deserted field” with “outside in the field”; (iii)
compositional meaning “A man is carrying a canoe
with a dog” has the same content words as “A dog
is carrying a man in a canoe” but carries a differ-
ent meaning; (iv) negation systems score “. . . with
goggles and a swimming cap” as nearly equivalent
to “. . . without goggles or a swimming cap”. In-
flated similarity scores for examples like “There
is a young girl” vs. “There is a young boy with
the woman” appear to be instances of (v) semantic
blending, whereby appending “with a woman” to
“boy” mistakenly brings its representation closer to
that of “girl”.

In the multilingual and cross-lingual setting, the-
ses issues are magnified by translation errors for
systems that use MT followed by the application
of a monolingual similarity model. For the track

19snew = 5× s−min(s)
max(s)−min(s)

is used to rescale scores.
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(c) Track 4b: English-Spanish MT

Figure 1: Model vs. human similarity scores for top systems.

Track 5: English-English Human DT Team ECNU BIT FCICU ITNLP-AiKF
There is a cook preparing food. 5.0 4.1 4.1 3.7 3.9 4.5
A cook is making food.
The man is in a deserted field. 4.0 3.0 3.1 3.6 3.1 2.8
The man is outside in the field.
A girl in water without goggles or a swimming cap. 3.0 4.8 4.6 4.0 4.7 0.1
A girl in water, with goggles and swimming cap.
A man is carrying a canoe with a dog. 1.8 3.2 4.7 4.9 5.0 4.6
A dog is carrying a man in a canoe.
There is a young girl. 1.0 2.6 3.3 3.9 1.9 3.1
There is a young boy with the woman.
The kids are at the theater watching a movie. 0.2 1.0 2.3 2.0 0.8 1.7
it is picture day for the boys
Track 4b: Spanish-English MT Human SEF@UHH ECNU RTM UMDeep MITRE
Give it a chance. 5.0 4.3 2.0 3.1 2.4 2.7
Darle una oportunidad.
Later, I settled on ”Mexican-American.” 4.0 3.3 0.3 2.8 3.2 4.6
Ms tarde, he asentado en ”mexicano-americana”.
The most common verbal indicators are subtle. 3.0 4.7 3.5 4.3 4.5 4.8
Los indicadores ms comunes son sutiles verbal.
And in the United States, we’re considered Mexican. 2.0 4.3 2.4 2.2 2.8 3.4
Y en los Estados Unidos, estamos considerando mexicanos.

Table 12: Difficult sentence pairs and scores assigned by top performing systems.18

Genre File Yr. Train Dev Test
news MSRpar 12 1000 250 250
news headlines 13/6 1999 250 250
news deft-news 14 300 0 0
captions MSRvid 12 1000 250 250
captions images 14/5 1000 250 250
captions track5.en-en 17 0 125 125
forum deft-forum 14 450 0 0
forum answers-forums 15 0 375 0
forum answer-answer 16 0 0 254

Table 13: STS Benchmark detailed break-up by
files and years.

4b Spanish-English MT pairs, the poor predictions
can in part be attributed to many systems using MT
to re-translate the output of another MT system.

7.1 Contrasting Cross-lingual Semantic
Similarity with MT Quality Estimation

Since MT quality estimation pairs are translations
of the same sentence, they are expected to be min-
imally on the same topic and have an STS score
≥ 1.20 The actual distribution and spread of STS

20The evaluation data for Track 4b does in fact have STS
scores that are≥ 1 for all pairs. In the 1,000 sentence training

scores is such that only 13% of the test instances
score below 3, 22% of the instances score 3, 12%
score 4 and 53% score 5. The high semantic simi-
larity scores for track 4b indicate that MT systems
are surprisingly good at preserving meaning. How-
ever, even for a human, interpreting the meaning
changes caused by translations errors can be diffi-
cult due both to disfluencies and subtle errors with
important changes in meaning.

The Pearson correlation between the gold MT
quality scores and the gold semantic similarity
scores is 0.41, which shows that translation quality
measures and semantic similarity are only moder-
ately correlated. Differences are in part explained
by translation quality scores penalizing all mis-
matches between the source segment and its trans-
lation, whereas semantic similarity focuses only
on differences in meaning. However, the difficult
interpretation work required for semantic similar-
ity annotation may increase the risk of inconsis-
tent and subjective labels. The annotations for MT
quality estimation are produced as by-product of

set for this track, one sentence that received a score of zero.



STS 2017 Participants on STS Benchmark
Name Description Dev Test
ECNU Ensemble (Tian et al., 2017) 84.7 81.0
BIT WordNet+Embeddings (Wu et al., 2017) 82.9 80.9
DT TEAM Ensemble (Maharjan et al., 2017) 83.0 79.2
HCTI CNN (Shao, 2017) 83.4 78.4
SEF@UHH Doc2Vec (Duma and Menzel, 2017) 61.6 59.2

Sentence Level Baselines
sent2vec Sentence spanning CBOW with words & bigrams (Pagliardini et al., 2017) 78.7 75.5
SIF Word embedding weighting & principle component removal (Arora et al., 2017) 80.0 72.6
InferSent Sentence embedding from a bi-directional LSTM trained on SNLI (Conneau et al., 2017) 80.1 75.8
C-PHRASE Prediction of syntactic constituent context words (Pham et al., 2015) 74.3 63.9
PV-DBOW Paragraph vectors, Doc2Vec DBOW (Le and Mikolov, 2014; Lau and Baldwin, 2016) 72.2 64.9

Averaged Word Embedding Baselines
LexVec Weighted matrix factorization of PPMI (Salle et al., 2016a,b) 68.9 55.8
FastText Skip-gram with sub-word character n-grams (Joulin et al., 2016) 65.3 53.6
Paragram Paraphrase Database (PPDB) fit word embeddings (Wieting et al., 2015) 63.0 50.1
GloVe Word co-occurrence count fit embeddings (Pennington et al., 2014) 52.4 40.6
Word2vec Skip-gram prediction of words in a context window (Mikolov et al., 2013a,b) 70.0 56.5

Table 14: STS Benchmark. Results for select participants and baseline models.

post-editing. Humans fix MT output and the edit
distance between the output and its post-edited
correction provides the quality score. This post-
editing based procedure is known to produce rela-
tively consistent estimates across annotators.

8 STS Benchmark

STS Benchmark is a careful selection of the En-
glish data sets used in SemEval and *SEM STS
shared tasks between 2012 and 2017. Tables 11
and 13 provide details on the composition of the
benchmark. The data is partitioned into a training,
development and test sets.21 The development set
can be used to design new models and tune hyper-
parameters. The test set should be used sparingly
and only after a model design and hyperparame-
ters have be optimized on the development data
and then locked against further changes. Using the
benchmark to evaluate models will enable compa-
rable assessments across different research efforts
and a means for tracking and establishing state-of-
the-art semantic similarity performance.

Table 14 shows the results of some of the best
systems from Track 5 (EN-EN)22 and compares
their performance to competitive baselines from
the literature. All baselines were run by the or-
ganizers using canonical pre-trained models made

21Similar to the STS shared task, while the training set
is provided as a convenience, researchers are encourage to
incorporate other supervised and unsupervised data sources
as long as no supervised annotations of the development or
test set are used.

22Each participant submitted the run which did best in the
development set of the STS Benchmark, which happened to
be the same as their best run in Track 5 in all cases.

available by the originator of each method,23 with
the exception of PV-DBOW that uses the model
from (Lau and Baldwin, 2016) and InferSent which
was reported independently. When multiple pre-
trained models are available for a method, we re-
port results for the one with the best dev set perfor-
mance. For each method, input sentences are pre-
processed to closely match the tokenization of the
pre-trained models.24 Default inference hyperpa-

23sent2vec: https://github.com/epfml/
sent2vec, trained model sent2vec twitter unigrams;
SIF: https://github.com/epfml/sent2vec
Wikipedia trained word frequencies enwiki vocab min200.txt,
https://nlp.stanford.edu/projects/glove/,
embeddings from glove.840B.300d.zip, first 10 princi-
ple components removed, α = 0.001, dev experiments
varied α, principle components removed and whether
GloVe or Word2Vec word embeddings were used;
C-PHRASE: http://clic.cimec.unitn.it/
composes/cphrase-vectors.html; PV-DBOW:
https://github.com/jhlau/doc2vec, A P -
N E W S trained apnews dbow.tgz; LexVec: https:
//github.com/alexandres/lexvec, embedddings
lexvec.commoncrawl.300d.W.pos.vectors.gz; FastText:
https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md, Wikipedia trained embeddings from wiki.en.vec; Para-
gram: http://ttic.uchicago.edu/˜wieting/,
embeddings trained on PPDB and tuned to WS353 from
Paragram-WS353; GloVe: https://nlp.stanford.
edu/projects/glove/, Wikipedia and Gigaword
trained 300 dim. embeddings from glove.6B.zip;
Word2vec: https://code.google.com/archive/
p/word2vec/, Google News trained embeddings from
GoogleNews-vectors-negative300.bin.gz.

24sent2vec: results shown here tokenized by tweetTok-
enize.py constrasting dev experiments used wikiTokenize.py,
both distributed with sent2vec. LexVec: numbers were con-
verted into words, all punctuation was removed, and text
is lowercased; FastText: Since, to our knowledge, the tok-
enizer and preprocessing used for the pre-trained FastText
embeddings is not publicly described. We use the follow-
ing heuristics to preprocess and tokenize sentences for Fast-

https://github.com/epfml/sent2vec
https://github.com/epfml/sent2vec
https://github.com/epfml/sent2vec
https://nlp.stanford.edu/projects/glove/
http://clic.cimec.unitn.it/composes/cphrase-vectors.html
http://clic.cimec.unitn.it/composes/cphrase-vectors.html
https://github.com/jhlau/doc2vec
https://github.com/alexandres/lexvec
https://github.com/alexandres/lexvec
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
http://ttic.uchicago.edu/~wieting/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/


rameters are used unless noted otherwise. The av-
eraged word embedding baselines compute a sen-
tence embedding by averaging word embeddings
and then using cosine to compute pairwise sen-
tence similarity scores.

While state-of-the-art baselines for obtaining
sentence embeddings perform reasonably well on
the benchmark data, even better performance is ob-
tained by task participant systems. There is still
substantial room for further improvement. To fol-
low the current state-of-the-are, visit the leader-
board on the semantic textual similarity website.25

9 Conclusion

We have presented the results of the 2017 STS
shared task. This year’s shared task differed sub-
stantially from previous iterations of STS in that
the primary emphasis of the task shifted from
English to multilingual and cross-lingual STS in-
volving four different languages: Arabic, Spanish,
English and Turkish. Even with this substantial
change relative to prior evaluations, the shared task
obtained strong participation. 31 teams produced
84 system submissions with 17 teams producing a
total of 44 system submissions that processed pairs
in all of the STS 2017 languages.

For languages that were part of prior STS eval-
uations (e.g., English and Spanish), state-of-the-
art systems are able to achieve strong correlations
with human judgment. However, we obtain weaker
correlations from participating systems for Ara-
bic, Arabic-English and Turkish-English. This
suggests further research is necessary in order to
develop robust models that can both be readily
applied to new languages and perform well even
when less supervised training data with semantic
similarity labels is available.

To provide a standard benchmark for English
semantic similarity, we present STS Benchmark,

Text: numbers are converted into words, text is lowercased,
and finally prefixed, suffixed and infixed punctuation is re-
cursively removed from each token that does not match an
entry in the model’s lexicon; Paragram: Joshua (Matt Post,
2015) pipeline to pre-process and tokenized English text; C-
PHRASE, GloVe, PV-DBOW & SIF: PTB tokenization pro-
vided by Stanford CoreNLP (Manning et al., 2014) with post-
processing based on dev OOVs; Word2vec: Similar to Fast-
Text, to our knownledge, the preprocessing for the pre-trained
Word2vec embeddings is not publicly described. We use the
following heuristics for the Word2vec experiment: All num-
bers longer than a single digit are converted into a ‘#’ (e.g.,
24→ ##) then prefixed, suffixed and infixed punctuation is
recursively removed from each token that does not match an
entry in the model’s lexicon.

25http://ixa2.si.ehu.es/stswiki/index.
php/STSbenchmark

a careful selection of the English data sets from
previous STS tasks (2012-2017). To assist in in-
terpreting the results from new models, a number
of competitive baselines and select participant sys-
tems are evaluated on the benchmark data. Ongo-
ing improvements to the current state-of-the-art is
available from an online leaderboard.
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Martyna Śpiewak, Piotr Sobecki, and Daniel Karaś.
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