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CHAPTER I

Introduction

I.1 Word Sense Disambiguation

During this long way, people kept asking me what I was still doing at uni-
versity. I always answered: wordsensedisambiguation1. I waited for a few
seconds, and then, explained further and tried to define my work. I could
say something like, “You know that words may have different meanings de-
pending on the context in which they occur, right? [while she or he was
nodding] Well, I’m trying to teach the computer to automatically choose the
meaning of a word in text. I’m “teaching” a language”. Afterward, the friend
or whoever who had asked the question kept quiet for a while, as if assim-
ilating the information, and then answered: “Uh! That could be interesting
to automatically translate from one language to another!”. This idea is the
only feedback I have ever received if there was any answer at all2.

It is well known that Machine Translation (mt) is more than lexical
choice, but these kind of ideas given by people, who is out of our work-
ing sphere, make me think that sense ambiguity in text is one of the most
natural problems around. And without doubt, one of the essential step in
Natural Language Processing (nlp) and Natural Language Understanding
(nlu). We do not have to go very far to find an example that shows this

1pronounced as a native Basque speaker.
220% of the people gave such idea, the rest is still in an assimilation process or have

just gone away.
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kind of ambiguities in text. Our life is full of jokes or puns which help to
illustrate our problem and aim. For example, if we take a piece of lyric from
the Ramones that says:

Beat on the brat
Beat on the brat
Beat on the brat with a baseball bat
...
With a brat like this always on your back
What can you do? (lose?)

Focusing on the word brat, every English speaker knows its meaning in
the text. If we look it up in a dictionary we would note that a brat can be
either a small pork sausage or a very troublesome child (more common to
be hanged on ones back). By picking up a dictionary it can be seen that a
word may has different meanings, some of which are very different. These
different meanings of polysemous words are known as senses and the process
of deciding which is being to be used in a particular context Word Sense
Disambiguation (Agirre and Edmonds, 2006, wsd).

wsd, in its broadest sense, can be considered as determining the mean-
ing of every word in context, which appears to be a largely unconscious
process in people’s minds. As a computational problem it is often described
as “AI-complete”, that is, a problem whose solution presupposes a solution
to complete nlu or common-sense reasoning (Ide and Véronis, 1998).

Computationally, wsd can be seen as a classification problem, where
word senses are the classes, the context provides the evidence, and each
occurrence of a word is assigned to one or more possible classes based on the
evidence. This means that words are assumed to have a finite and discrete set
of senses from a dictionary, a lexical knowledge base, or application-specific
sense inventories (commonly used in mt). The fixed inventory makes the
problem tractable and reduces the complexity of the problem. In terms of
evaluation also gives a way to asses and compare each of the methods at
stake. Some authors described the limitations of the fixed setting (Killgariff
and Tugwell, 2004) and argue that a more dynamic approach should be taken
in order to represent the word meaning in a corpus.

Whatever the way we choose to have a deep understanding the language,
a robust nlu interface should, in the end, be able to tell which sense, among
a list of senses, is intended in a given context.
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In the next section we will discuss the problem of word senses and try to
give a proper definition of senses for this task. In Section I.3 we will summa-
rize the practical aspects in nlp. Then in Section I.4 we will list the main
problems concerning Word Sense Disambiguation. Section I.5 is devoted to
motivate the central issue of this dissertation, and Section I.6 presents a
technique to mitigate the problems explained in the previous section. In Sec-
tion I.7 we will describe some related work on domain adaptation, and will
locate this dissertation among them. In Section I.8 we will list the contribu-
tions of the dissertation. Next, Section I.9 will present a guide to readers,
and finally, in Section I.10 we list the publications stemmed from this PhD
thesis.

I.2 What is a word sense?

Word meaning is in principle infinitely variable and context sensitive.It does
not divide up easily into distinct sub-meanings or senses. Lexicographers
frequently observe loose and overlapping word meanings, and standard or
conventional meanings which have been extended, modulated, and exploited
in a bewildering variety of ways (Killgariff, 1997). In lexical semantics, this
phenomenon is often addressed in theories that model sense extension and
semantic vagueness, but such theories are at a very early stage in explaining
the complexities of word meaning (Cruse, 1986; Tuggy, 1993; Lyons, 1995).

“Polysemy” means to have multiple meanings. It is an intrinsic property
of words (in isolation from text), whereas “ambiguity” is a property of text.
Whenever there is uncertainty as to the meaning that a speaker or writer
intends, there is ambiguity. So, polysemy indicates only potential ambiguity,
and context works to remove ambiguity.

At a coarse grain a word often has a small number of senses that are clearly
different and probably completely unrelated to each other, usually called
homographs. Such senses are just “accidentally” collected under the same
word string. As one moves to finer-grained distinctions the coarse-grained
senses break up into a complex structure of interrelated senses, involving
phenomena such as general polysemy, regular polysemy, and metaphorical
extension. Thus, most sense distinctions are not as clear as the distinction
between bank as ’financial institution’ and bank as ’river side’. For example,
bank as financial institution splits into the following cloud of related senses:
the company or institution, the building itself, the counter where money
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is exchanged, a fund or reserve of money, a money box (piggy bank), the
funds in a gambling house, the dealer in a gambling house, and a supply of
something held in reserve (blood bank) (WordNet 2.1).

Given the range of sense distinctions in examples such as these, which
represent the norm, one might start to wonder if the very idea of word sense
is suspect. Some argue that task-independent senses simply cannot be enu-
merated in a list (Killgariff, 1997). And perhaps the only tenable position is
that a word must have a different meaning in each distinct context in which
it occurs. But a strong word-in-context position ignores the intuition that
word usages seem to cluster together into coherent sets, which could be called
senses, even if the sets cannot be satisfactorily described or labeled.

In practice, the need for a sense inventory has driven wsd research. In
the common conception, a sense inventory is an exhaustive and fixed list of
the senses of every word of concern in an application. The nature of the sense
inventory depends on the application, and the nature of the disambiguation
task depends on the inventory. The three Cs of sense inventories are: clarity,
consistency, and complete coverage of the range of meaning distinctions that
matter. Sense granularity is actually a key consideration: too coarse and
some critical senses may be missed, too fine and unnecessary errors may oc-
cur. There is evidence that if senses are too fine or unclear, human annotators
also have difficulty assigning them.

The “sense inventory” has been the most contentious issue in the wsd
community, and it surfaced during the formation of Senseval, which re-
quired agreement on a common standard. Various resources have been used
(HECTOR, LDOCE, WordNet), which each has each pros and cons (these
resources will be reviewed in the following chapter). For example, HEC-
TOR (Atkins, 1993) is lexicographically sound, but lacks coverage; WordNet
is an open and very popular resource, but is too fine-grained in many cases.
Senseval eventually settled on WordNet, mainly because of its availability
and coverage. Of course, this choice sidesteps the greater debate of explicit
versus implicit wsd, which brings the challenge that entirely different kinds
of inventory would be required for applications such as mt (translation equiv-
alences) and ir (induced clusters of usages). In this dissertation we focus in
explicit wsd approach with a fixed list of senses.
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I.3 Usefulness of wsd

As Wilks and Stevenson (1996) pointed, wsd is a intermediate task (which
is not an end in itself) for many other nlp applications and tasks. Machine
translation is the original and the most obvious application for wsd. Lexical
resolution is essential for many Natural Language Understanding (nlu) tasks
such as message understanding and man-machine communication. But not
only it is useful for those aims, in some instance wsd has been shown to be
useful for nlp. Among others, we could mention the following:

• Machine Translation: Sense disambiguation is essential for lexical
choice in mt for words that have different translations for different
senses. For example, in an English-Basque translator sister could
be translate to ahizpa or arreba depending on the genre of the sib-
lings. Most mt systems does not use explicit wsd: Either use pre-
disambiguated lexicon for a give domain, hand-crafted rules are de-
vises or wsd if folded in to statistical translation model (Brown et al.,
1991). Recent work have shown that wsd is useful to improve mt
systems (Carpuat and Wu, 2005; Chan et al., 2007a).

• Information Retrieval: wsd is required to remove occurrences in
documents where the word or words are used in an inappropriate sense.
Thus, given the query “depression”, what type of documents should
retrieve the systems, economic, illness, weather systems? Early experi-
ments suggested that reliable ir would require at least %90 of accuracy
in wsd systems. More recently, wsd have been shown to improve cross-
lingual ir and document classification (Vossen et al., 2006; Stephan and
Hotho, 2004; Clough and Stevenson, 2004; Otegi et al., 2008)

• Information Extraction and text mining: Ability to sense dis-
tinction is required for intelligent and accurate analysis of text. For ex-
ample, a gathering system have to only collect those documents about
illegal drugs, rather than medical drugs. The Semantic Web community
needs automatic annotation of documents according to a reference on-
tology. Finally, Named-entity classification can be seen as wsd problem
for proper names.

• Syntactic Parsing: Sense disambiguation can help in prepositional
phrase attachment (Agirre et al., 2008), and in general restricts the
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spaces of competing parses (Alshawi and Carter, 1994).

• Lexicography: wsd and lexicographers can work in a loop. wsd
providing rough empirical groupings and statistacally significant con-
textual indicators of sense to lexicographers, who provide better sense
inventories and sense-annotated corpora.

Despite those positive results, wsd has not reached general acceptance,
for the following reasons. First, the lexicons used do not fit the domain of the
application. Second, wsd might not be accurate enough to show a significant
effect. Third, treating wsd as an explicit component means that it cannot
be properly integrated into a particular application or appropriately trained
on the domain. Research is just beginning on domain-specific wsd, as this
dissertation will show.

Nevertheless, we think that applications do require wsd in some form.
We think that the work on explicit wsd can serve to explore and highlight
the particular features that provide the best evidence for accurate disam-
biguation, be it implicit or explicit.

I.4 Main difficulties in wsd

Although the long tradition of wsd, the performance of available systems can
be seen as moderate. We will dedicate more space to Senseval and SemEval3

editions, but regarding overall disambiguation performances current systems
obtain around 60%-70% of accuracy (Snyder and Palmer, 2004; Pradhan
et al., 2007) in all-words disambiguation task using fine-grained senses such
as those found in WordNet.

The low results can be explained by the following issues:

• Sense inventory and granularity. We reviewed in Section I.2 that
the choice of “sense inventory” and the division among senses are still
open problems, and the practical definition of sense distinctions with
respect to specific applications is not well understood. In the last years
WordNet has been widely used as a the sense-inventory in wsd commu-
nity, and gives the possibility of comparing results of different research
groups and fairly assess the advances in the field. However, the sense

3http://www.senseval.org
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inventory is clearly too fine-grained for many tasks, and this makes the
disambiguation very difficult. As we will see in Section II.4.4 coarser
distinction of sense used in SemEval-2007 improved considerably the
accuracy of the systems.

• Feature modeling is too limited. Big advances have been done
in this field during the last years. Features obtained with complex
analysis of the text (morphological, syntactic, semantic, domain, etc.)
have been added to more traditional set of simple features, such as
bigrams, trigrams, and bag-of-words. Such large feature spaces tend to
have highly redundant and heterogeneous features, and it is not clear
which is the best way to profit from them. We propose to use Singular
Value Decomposition. It is also important to note that the interactivity
among ml algorithm, parameters, and features types per word should
help solve the problem (Hoste et al., 2002).

• The sparse data problem. Many current nlp systems rely on lin-
guistic knowledge acquired from text via ml methods. Statistical or
alternative models are learned, and then applied to running text. The
main problem faced by such systems is the sparse data problem: In nlp
most of the events occur rarely, even when large amounts of data are
available. This problem in specially noticeable in wsd, due to the small
amount of training examples. Only a handful of occurrences with sense
tags are available per word. For example, if we take the word chan-
nel, we see that it occurs 5 times in SemCor (Miller et al., 1993), the
only all-words sense-tagged corpus publicly available. The first sense
has four occurrences, the second a single occurrence, and the other 5
senses are not represented. For a few words, more extensive training
data exists: The Lexical Sample task of Senseval-2 (Edmonds and Cot-
ton, 2001) provides 145 occurrences for channel, but still some of the
senses are represented by only 3 or 5 occurrences. Therefore, the esti-
mation of rare occurring features is crucial to have high performance,
and smoothing techniques, such as Singular Values Decomposition, can
be useful in this process. Another possible solution to tackle sparsity
problem is the use of unlabeled data and appropriate learning tech-
niques to profit from then, as explored in this dissertation.

• Portability across domains. Specific domains pose fresh challenges
to wsd systems: different domains involve different predominant senses,
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some words tend to occur in fewer senses in specific domains, the
context of the senses might change, new senses and terms might be
involved. Some previous work (Escudero et al., 2000; Mart́ınez and
Agirre, 2000) has shown that there is a loss of performance when train-
ing on one corpora and testing on another. We propose the use of
Singular Value Decomposition to improve portability. As this problem
is one of the main topics in this dissertation, we will give further details
in the next section.

I.5 wsd across domains

A specific topical domain has its own peculiarities. In a specific domain
some words has more relevance than in other domains. These words model
the domain, and therefore, some concepts and meanings – those that belong
to the domain – are more frequent. That way, in texts which belong to the
finance domain words (and respective concepts) such as stock, company or
business are more frequent than in texts from the sports domain. In the
latter domain we can expect words like train, competition or goal. This
peculiarities affect directly the performance of wsd systems.

In terms of probabilities, we can say that the priors (relative predomi-
nance of the senses with respective to a target word) change when we are
moving on different domains – some concepts are more common in specific
domains than in others. The distribution of word senses change drastically
when we shift the domain. And so do the features, as the relevant words
change: Features that are usual in a given domain become rare when we
port the wsd system to other domain. These issues difficult the learning for
wsd systems which are trained on general domain. In other words, what
they learn in one domain is hardly applicable to different domains.

Regarding distribution of sense across domains, we can summarize the
following phenomenas:

Word sense distributions might change drastically. For example, in
the sports domain the meaning of coach is more likely to be some one to
in charge of training an athlete or a team rather than a vehicle carrying
many passengers or a bus. Score which is mainly used to mean the number
of points achieved in a game in the sports domain, but more likely means
a set of twenty numbers when we read an article from the Financial Times.
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This is one of the major problem for supervised wsd systems where the
most frequent sense in the training data sets a high bias. The priors in
three difference corpus for a handful of nouns are shown in Appendix A. In
Chapter V we will show how different sense distribution can affect negatively
the performance of the previous wsd systems.

Word sense variability decreases in domain-specific corpora. That is,
words tend to occur in less senses, where the probability of the predominant
sense is usually higher (high skew) and the use of the rest is lower, and can
disappear. The figures in Table I.1 show that in a general domain (Bnc
corpus) the average number of senses is higher than in finance and sports
domains. This fact is interesting for unsupervised systems or approaches
which try to find the predominant senses from text. Note that predominant
sense of a text might be a powerful baseline, which can be hard to beat for
the supervised system (McCarthy et al., 2004). This details will be further
explained in Chapter VII.

#sense avg. standard dev.
bnc 6.26 1.74

finance 3.87 1.87
sports 3.96 1.73

Table I.1:

New word senses might arise in domain-specific corpora. It is well
known that specialized uses of domain words might create a new senses.
For instances, cold as a noun has five possible meanings in UMLS, which is
knowledge base for biomedical purpose, whereas in WordNet (version 3.0)
has only three. For this dissertation we do not care about this phenomena,
since we have worked with a fixed sense-inventory.

Similar behavior might be expected for learning features. The words in con-
text change across domains, as well as syntax and structures of phrases.
Thus, extracted features would be different, and algorithms would generalize
differently. In other words, we say that feature distribution also changes
across domains. This is closely related to the data-sparseness problem in
wsd, and it is specially noticeable in wsd, where hand-tagged data is diffi-
cult to obtain. Although it does not only belongs to the domain-shift issue,
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it becomes more critical when domain shift is faced.

I.6 Singular Value Decomposition

for data sparseness and domain shifts

In Section I.4 we listed the main problems of wsd. The choice of the sense-
inventory was let out of the scope of this dissertation. We focused on the
rest of the listed problems: Feature modeling, data sparseness and domain
shift. Our starting point have been to create an effective feature sets to
model correctly the sense and tackle the data sparseness and domain shift
problems.

Many ml algorithms are based on vector models, where co-occurring fea-
tures are relevant in order to assign word senses (first-order association).
Due to data sparseness and domain shift first-order association might not be
enough to learn properly the classification task, and higher order association
might be used.

The use of the Singular Value Decomposition (svd) and unlabeled
data might be helpful to mitigate the data sparseness problem, and make
possible to port wsd system across domains. svd finds a condensed repre-
sentation and reduce significantly the dimensionality of the feature space (all
these details will be further explained in Chapter III). This re-representation
captures indirect, high-order associations. As Landauer and Dumais (1997)
explained, if a particular stimulus, X , (e.g., a word) has been associated
with some other stimulus, Y , by being frequently found in joint context (i.e.,
contiguity), and Y is associated with Z, then the condensation can cause X
and Z to have similar representations. However, the strength of the indirect
XZ association depends on much more than a combination of the strengths
of XY and YZ. This is because the relation between X and Z also depends,
in a well-specified manner, on the relation of each of the stimuli, X , Y , and
Z, to every other entity in the space.

It is said that svd helps to improve the similarity measure in three ways:

1. High-order co-occurrence: Dimension reduction with svd is sensi-
tive to high-order co-occurrence information. It takes into account the
indirect associations that improve the similarity measures.

2. Latent meaning: svd creates a low-dimensional linear mapping be-
tween words or features and chunks of text (whatever they are). This
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mapping captures the latent (hidden) meaning in the words and the
chunks.

3. Noise reduction: Dimension reduction removes random noise from
the input matrix (words or features by chunk of text), and we can say it
smooths the matrix. The raw matrix contains a mixture of signal and
noise. A low-dimensional linear model captures the signal and reduces
the noise.

Alternatively, there is also the preoccupation about the best way to ap-
ply ml techniques to supervised settings. The Senseval-3 exercises showed
that the more feature types one throws into the algorithm, the better are the
results (Agirre and Mart́ınez, 2004a). Still, it is not clear which is the best
way to profit from the very rich feature space. Apart from the sparsity prob-
lem already mentioned, large feature spaces tend to have highly redundant
and heterogeneous features. As a potential solution, we interpret that svd
collapses similar features (i.e. having similar distributions), and will thus be
helpful against sparsity, heterogeneity and redundancy.

As mentioned in previous sections, domain shifts intensify the sparseness
of the data, due to the fact that the context of sense occurrences are different,
making it more difficult to find overlap among train and test occurrences. For
instance, let’s assume two instances for the target word bank , one from a
training set obtained from an open domain corpus (for instance, the British
National Corpus (Leech, 1992)) and the other from a domain-specific testing
set about sports (for example from sports section of the Reuters corpus (Rose
et al., 2002)):

Train1 ⇒ Each fish is caught in the water, then carried to nearby
bank#1 of the river and delicately devoured.

Test2 ⇒ The winner sailing ship crossed the finishing line while tens of
thousands of cheering people lined the banks#?.

In the above examples, the overlap between the context of both train and
test occurrences of bank is null. It thus becomes much harder to assign the
correct sense, unless we find a method to tell us whether those occurrence
contexts are similar. A solution we consider is to calculate higher-order
correlation among the elements in the contexts, and thus make possible to
measure some kind of similarity.
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Basically our idea is twofold: use svd in order to find indirect association
and measure better similarities, and use unlabeled data in order to help
finding better feature correlation.

train1 test2 unl3 unl4 unl5
winner 0 1 0 1 0

ship 0 1 1 0 0
line 0 1 0 0 0

people 0 1 0 0 1
fish 1 0 0 0 1

water 1 0 1 0 0
river 1 0 1 0 0

investor 0 0 0 1 1
finance 0 0 0 1 0

Table I.2: Term-by-instance matrix showing that there is no any co-
occurrence between train1 and test2, but the use of unlabeled data can help
finding indirect association (unl3)

Table I.2 shows a term-by-instances matrix for the example above. Rows
represent the words occurring in different text-chunks, and columns represent
the instances or text-chunks. This matrix illustrates the example above, and
shows how train1 and test2 instances do not have context in common, but
how using unlabeled data it is possible to create indirect associations. Water
and ship are closely related, and thus they tend to occur in the same context,
as attested in the unlabeled instance unl3.

svd reduces the space and finds correlations collapsing features, thus
associating semantically related feature and collapsing such features onto
the same feature in the new representation. This way, we can calculate in
better way similarities among occurrences (text instances).

Table I.3 shows the instances represented in a reduced space obtained
applying svd to the matrix in Table I.2. svd makes explicit the relation
between some words in train1 and test2 via indirect associations created with
unlabeled data.

svd provides a principled method to alleviate sparse data problems and
domain shifts, but it does not specifically address changes in sense distribu-
tion. We will give more details and examples on the use of svd in Chapter
III.
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train1 test2 unl3 unl4 unl5
dim1 -0.70 -0.26 -0.97 -0.44 -1.62
dim2 0.35 0.65 1.00 -0.84 -0.46

Table I.3: Instances represented in the 2-dimensional reduced space. train1

and test2 are now highly correlated, as they have similar weights in the new
space.

I.7 Prior work in domain adaptation

Since the domain adaptation problem has a central role in this dissertation,
we will now focus on relevant literature. We will focus on machine learning
systems, the most active field in this area. The existing works are catego-
rized based on how the connection between the source domain and target
domain is modeled. We refer to training domain as source domain whereas
test domain, where labeled data is very little, as target domain.

Instance weighting. These models use Empirical Risk Minimization for
standard supervised learning (Vapnik, 1995) in order to derive an instance
weighting solution to domain adaptation. They assign a instance-dependent
weight to the loss function when minimizing the expected loss over the dis-
tribution of the data. In this category we can find two types of assumption
over the data distribution.

On one hand, we have the assumption that the distribution on the source
and target domains are the same in the given same class (word sense). How-
ever, the class distribution may be different. Thus, we only need to weight
the instances with the difference of the class probability in each domain. In
these terms, Zhu and Hovy (2007) use resampling techniques in active learn-
ing for word sense disambiguation, over-sampling under-represented word
senses, and under-sampling over-represented senses. Chan and Ng (2005),
also for wsd try to model the target probability distribution transforming
the source distribution, modeling directly with a logistic regression classi-
fier. They use the Expectation-Maximization (EM) algorithm to estimate
the class distribution in the target domain. In (Chan and Ng, 2006), they
perform a similar trick but applied on a Naive Bayes algorithm for wsd.

On the other hand, one can make the assumption that when the observa-
tion of the input variables (feature distribution) is the same, the conditional
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distribution of the classes (word senses) on each domain are the same. But
the marginal distribution of the features can be different in both domains.
This could be problematic when misspecified models are used, since the error
is specially minimized in dense regions of source domain distribution (train-
ing data), which have different dense region to target domain. Thus, the
induced model will no be longer optimal for the target domain. Shimodaira
(2000) proposed to re-weight the log likelihood of each training instances
using the ratio between marginal distribution of features of each domain in
maximum likelihood estimation for covariate shift.

Semi-supervised learning. Although this category is not only related
to the domain adaptation problem, these kind of methods can be readily
deployed in this problem. Using unlabeled data from the target domain
(assuming it is easy to obtain) we can apply any semi-supervised learning
algorithm to the domain adaptation problem (Zhu, 2005; Chapellea et al.,
2006). Dai et al. (2007b) proposed an EM-based algorithm for domain adap-
tation. They estimate the trade-off parameter between labeled (source) and
unlabeled (target) data using KL-divergence. Jiang and Zhai (2007a) pro-
posed to not only include weighted source domain instances but also weighted
unlabeled target domain instances in training using bootstrapping, which es-
sentially combines instance weighting with bootstrapping. In (Xing et al.,
2007), the authors try to make the domain adaptation based on graph algo-
rithms and the use of the unlabeled data from the target domain. Although
some works do not address directly the domain adaptation problem, there
are couple of works that make use of unlabeled data and interestingly could
be applied in the domain adaptation problem: Pang and Lee (2004) with
Min-Cut algorithm or Label propagation on k-nn graph (Niu et al., 2005).
Our work in this dissertation can be considered as semi-supervised learning,
since we use unlabeled data in order to improve the performance in the target
domain.

Change of feature representation. Another way to perform the adapta-
tion to the new domain is to change the representation of the instances and
thus avoid the problem of the differences between distributions in the source
and target domains. The solutions proposed assume that it is possible to find
a new representations of the features where the joint probabilities in source
and target domain are the same.

A special and simple kind of transformation is feature subset selection.
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Satpal and Sarawagi (2007) proposed a feature subset selection method for
domain adaptation, where the criterion for selecting features is to minimize
an approximated distance function between the distributions in the two do-
mains. Blitzer et al. (2006) proposed a structural correspondence learning
(SCL) algorithm that makes use of the unlabeled data from the target domain
to find a low-rank representation that is suitable for domain adaptation. It
is empirically shown in (Ben-David et al., 2007) that the low-rank represen-
tation found by SCL indeed decreases the distance between the distributions
in the two domains. The core algorithm in SCL is from (Ando and Zhang,
2005). Ben-David et al. (2007) formally analyzed the effect of representation
change for domain adaptation. They proved a generalization bound for do-
main adaptation that is dependent on the distance between the induced joint
probability distribution given by the new representation in both domains.

Our main motivation explained in previous section fits in this categoriza-
tion. Using svd we find that the features that manage the similar information
in two domains are collapsed in the same feature and this way the distance
of the source and target domain can be minimized.

Multi-task learning is highly related to domain adaptation. In multi-task
learning there is single distribution of the observation and a number of dif-
ferent output variables. We can cast the domain adaptation as multi-task
formulating two tasks, one for each domain. Indeed, Daumé III (2007) pro-
posed a simple method for domain adaptation based on feature duplications
(cf. Section III.2.1.6). The idea is to make a domain-specific copy of the orig-
inal features for each domain (training data consist of examples from source
and target domains). An instance from domain k is then represented by both
the original features and the features specific to domain k. Similarly, Jiang
and Zhai (2007b) proposed a two-stage domain adaptation method, where in
the first generalization stage, labeled instances from k different source train-
ing domains are used together to train k different models, but these models
share a common component, and this common model component only ap-
plies to a subset of features that are considered generalizable across domains.

Ensemble Methods. Another set of models that could be useful for do-
main adaptation are those which construct complex models using ensembles
of classifier. Among these, we can find bagging, boosting or mixture of
models. For instance, a mixture model proposed by Daumé III and Marcu
(2006) for domain adaptation, in which three mixture components are as-
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sumed, one shared by both the source and the target domains, one specific
to the source domain, and one specific to the target domain. Labeled data
from both the source and the target domains is needed to learn this three-
component mixture model using the conditional expectation maximization
algorithm. Storkey and Sugiyama (2007) considered a more general mix-
ture model in which the source and the target domains share more than one
mixture components. Regarding Boosting methods, Dai et al. (2007a) pro-
posed to modify the widely-used AdaBoost algorithm to address the domain
adaptation problem. The idea here is to put more weight on mistakenly clas-
sified target domain instances but less weight on mistakenly classified source
domain instances in each iteration.

I.8 Contribution of the dissertation

Our aims for this dissertation are twofold. First, we want to shed light on the
sparse-data problem and large sets of redundant and heterogeneous features
spaces, as used in wsd. Second, we would like to explore domain adaptation
for wsd systems. Our main hypothesis is the following:

The use of Singular Value Decomposition (svd) can provide a
better representation for machine-learning Word Sense Disam-
biguation.

We propose different scenarios to explore the above hypothesis, developing
approaches not previously described in the literature. All in all, we think that
our contributions on this initial hypothesis are the following (including their
relation to chapters in the dissertation):

• SVD decomposition is useful to deal with data sparseness and
domain adaptation (Chapters 4, 5 and 6): We explored the contribu-
tion of features obtained with svd decomposition to wsd performance.
We presented several experiments across different datasets. We studied
the performance of a number of ml algorithms trained on these types
of features and analyzed the effect of the number of dimensions. We
also developed different ways to obtain the svd representation, each
catching different evidences from text. The svd representation is com-
plementary to the classic feature set, and we showed that combining
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them is a robust way to improve the results. We used two experimen-
tal scenarios: general domain wsd was tested in Senseval and SemEval
datasets, and domain-specific wsd. Our results obtain the state-of-
the-art over Senseval-like datasets. In domain adaptation, we showed
that svd features are good enough to obtain robustness (on a general
wsd system) and adaptation (on a system trained with examples from
general domain and domain-specific instances).

• Unlabeled data helps find better correlations among features
(Chapters 4, 5 and 6): We studied the usefulness of unlabeled data
to obtain better correlation among the features from labeled instances.
We use unlabeled data to help find higher-order correlations applying
svd to the augmented matrix. In order to asses the effect of the un-
labeled data we evaluated wsd systems trained on different amounts
of unlabeled data. We reported several experiments showing that un-
labeled data help up to certain amounts. On the domain adaptation
scenario, we played with unlabeled data from different sources, finding
that unlabeled data must be topically related to the training set in
order to obtain effective svd features. We showed that unlabeled data
helps obtain more reliable features and an it is an important factor in
the domain adaptation scenario.

• Combination of feature spaces is useful (Chapters 4 and 6): the
redundancy and heterogeneity of features can affect negatively. We
split the original feature set in coherent sets, and explored how to
combine them. In k-nn combination each k-nn system is trained on
a different feature space and casts votes for its first k neighbors. In
kernel-based combination, each kernel’s implicit function is a different
kind of svd mapping. The former method obtain the state-of-the-art
results in Senseval dataset. The latter showed that it is an effective way
to take profit of the general source domain in the supervised domain
adaptation scenario. We show that a combination of rich feature spaces
is a useful and robust manner to obtain good results for wsd.

• Robustness in face of semi-supervised domain adaptation (Chap-
ter 5). Using svd and unlabeled data we obtained a robust system that
performs well across different target domains without labeled data from
the target domains, reducing the domain shift problem for general wsd



18 Introduction

system. We found that in order to obtain a robust system the unlabeled
data should be from general domain and be related to the training set.

• Supervised domain adaptation (Chapter 6). We have showed for
the first time that source general domain examples are an useful addi-
tion to target domain examples in wsd, and provide for the best results
domain adaptation. Up to now, the general domain examples were not
shown to be useful We concluded that the correlations found by svd
and the generalization provided by the combination of svd-based ker-
nels are effective.

In order to make a more complete picture of domain adaptation, we also
explored the performance of knowledge-based models:

• Knowledge-based wsd system may outperform a general wsd
system (Chapter 7): We explored the application of knowledge-based
wsd systems to specific domains, based on a combination of state-of-
the-art graph-based wsd system (Agirre and Soroa, 2009) that uses the
information in WordNet with a distributional thesaurus built from the
target domains. This system outperformed supervised systems trained
on SemCor, showing that knowledge-based wsd systems are a powerful
alternative to supervised wsd systems.

I.9 Structure of the dissertation

• First chapter – Introduction

• Second chapter – State-of-the-art: resources, systems and evaluation.
This chapter is devoted to the description of different methods and
research lines that are presenting promising results in the wsd task.
It describes the main resources that are employed for wsd, including
lexical databases, corpora, and some well-known learning algorithms.
An important section will be dedicated to the Senseval competitions
and the participating systems. The last section will describe the-state-
of-art of domain-specific wsd,including available resources and different
settings.

• Third chapter – Methods and approaches from this dissertation. In
this chapter we describe the methods used in the whole dissertation. It
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includes the feature types used in supervised wsd, the foundations of
Singular Values Decomposition, svd features, and the combination of
k nearest neighbor (k-nn) systems and kernel-based combinations.

• Fourth chapter – Combination of feature spaces and unlabeled data
with svd for wsd. In this chapter we analyze the contribution of
svd, the use of unlabeled data, and feature split for general wsd. We
apply k-nn combination to use different feature spaces, and obtain
better performances. We will rely on different ml methods to study
the contribution of the new features, tested on Senseval-2, Senseval-3
and SemEval-2007 lexical-sample and all-words tasks.

• Fifth chapter – Semi-supervised domain adaptation. In this chapter
we explore robustness and adaptation issues for wsd using svd and
unlabeled data. We focus on the semi-supervised domain adaptation
scenario, where we train on the source (general domain) corpus and
test on the target (domain-specific) corpus, and try to improve results
using unlabeled data. We study the importance of the domain source
of the unlabeled data in order to obtain effective features.

• Sixth chapter – Supervised domain adaptation. The goal of this chap-
ter is to adapt a wsd system in a supervised domain adaptation sce-
nario, where we use both source and target corpora for training, while
we test on target corpora. We rely on svd, unlabeled data and kernel
and k-nn combinations. In addition, we study how many target corpus
example we need to get the adaptation to the target domain.

• Seventh chapter – Unsupervised domain-specific wsd. This chapter
explores the application of knowledge-based word sense disambigua-
tion systems to specific domains. We focus on graph-based wsd that
uses information in WordNet combined with distributional thesauri.
We compare the performance to state-of-the-art supervised systems.
We also analyze the importance of the predominant sense in specific-
domain corpora.

• Eighth chapter – Conclusions and future work. This last chapter
summarizes the main conclusions of the dissertation and sketches the
further work on the opened research lines.
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Proceedings of the Conference on Recent Advances on Natural Language
Processing (RANLP-05). Borovetz, Bulgaria, 2005.
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Sociedad Espaola para el Procesamiento del Lenguaje Natural (SEPLN-
06). Zaragoza, Spain, 2006.

• Agirre, E. and Lopez de Lacalle, 0. UBC-ALM: Combining k-nn with
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Manchester, UK, 2008.

Chapter VI:

• Agirre, E. and Lopez de Lacalle, O. Supervised Domain Adaption for
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In Proceedings of the Twenty-First International Joint Conferences on
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CHAPTER II

State-of-the-art: resources, systems and

evaluation

In this chapter we will present the state-of-the-art for wsd. This task has
received a great deal attention from many researches in nlp during the years.
Because an extensive survey of these works is out of scope of this disserta-
tion, we will organize the chapter as follows. First we will briefly introduce
the main resources that are applied to wsd research: Lexical databases and
publicly available corpora. Next we will describe which is the usual way to
encode knowledge for wsd. The next section will be devoted to a classi-
fication of well-known algorithms used for wsd. After that, we will focus
on the evaluation of wsd systems: measures, significance tests, and the last
three Senseval/SemEval competitions. The last section will be dedicated to
introduce the state-of-the-art of domain-specific wsd.

II.1 Resources

This section is devoted to the main resources for wsd. First we will list
the mostly used lexical databases or dictionaries, although not all the listed
dictionaries have been used in the experiments. Next, the most important
corpora for English will be introduced. Both hand-tagged and raw corpora
will be described.
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II.1.1 Lexical databases and dictionaries

As previously said, in this section will introduce the main lexical repositories
used for wsd. Not all the repositories described have been used in this
dissertation, although, they have been widely used in previous work. For
further details see Apendix A in (Agirre and Edmonds, 2006).

Among all the lexical repositories described bellow we mainly have used
WordNet, which has played the central role as sense-invento-ry during the
whole dissertation, although in some experiments (cf. Section IV.5) we used
OntoNotes.

Roget’s Thesaurus

The older 1911 edition has been made freely available by Project Gutenberg.
Although it lacks many new terms, it has been used to derive a number of
knowledge bases, including Factotum. A newer edition (Roget’s Thesaurus
of English Words and Phrases ) contains over 250,000 entries arranged in 6
classes and 990 categories.

WordNet lexical database

Princeton English WordNet (Fellbaum, 1998) is a lexical database developed
at Princeton University1. This semantic network is connected with paradig-
matic relations, such as synonymy, hyperonymy, antonymy, and entailment.
All English open-class words are included in this resource. The concepts are
represented by synsets, which store the words that are synonymous in some
context, e.g. {bank, cant, camber }2 .The main relation that structures this
database is hyperonymy, which gives a hierarchical organization to WordNet
for verbs and nouns (adjectives and adverbs are organized differently).

WordNet is widely used in nlp research, specially for wsd. The sense
distinctions in WordNet have become a commonplace for wsd research since
they were adopted in the Senseval-2 competition; although the sense inven-
tory has been criticized for its fine-grainedness, specially for verbs.

There have been different versions of WordNet during the years, and
mappings between versions (Daude et al., 2000) have been developed in order
to use different resources (such as hand-tagged corpora and WordNets in

1The original WordNet is sometimes referred as “Princeton WordNet”, to distinguish
it from other extensions of this approach.

2The synsets are usually represented by the word list between brackets.
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Corpus
WordNet
version

DSO 1.5 (Pre)
Semcor 1.6
Senseval-2 all-words 1.7 (Pre)
Senseval-2 lexical-sample 1.7 (Pre)
Senseval-3 all-words 1.7.1
Senseval-3 lexical-sample (except verbs) 1.7.1
SemeEval-2007 all-words (task 17) 2.1

Table II.1: Publicly available hand-tagged corpora and WordNet versions for
English. (Pre) indicates that a preliminary version of WordNet was utilized
at the moment of tagging.

other languages). The current version (March, 2009) is 3.0 . Table II.1 shows
the corpora used for wsd that have been tagged with different WordNet
versions. These corpora will be described in detail in section II.1.2.

As we mentioned in the introduction, WordNets for different languages
have been developed and linked to the original Princeton WordNet. Many
languages have adopted the WordNet sense inventory to organize Senseval
tasks, and therefore hand-tagged data has been built for other languages,
keeping the connection to English. The linking of WordNets offers interesting
prospects, making possible to experiment with multilingual information, as
different projects have shown (Atserias et al., 2004; Vossen, 1998).

Unified Medical Language System

The UMLS is composed of several knowledge sources, including the Metathe-
saurus is a large, multipurpose and multilingual vocabulary database which
contains information about biomedical and health-related concepts, their var-
ious names and the relations among them. The current release contains 135
semantic types and 54 relationships.

II.1.2 Corpora

In this dissertation we have used both labeled and unlabeled corpora. Hand-
tagged tagged corpora have been used to train and assess our contribution to
wsd. On the other hand, unlabeled data have been used for semi-supervised
learning, specially in domain-adaptation experiments.
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Although we do not used all the listed corpora below, we decided to
describe them all in order to have bigger scope of the resources in wsd. First,
we will describe the unlabeled corpora, and next we will focus on hand-tagged
corpora. The corpora used in this dissertation are the following:

• Unlabeled corpora: In order to improve the performance of wsd sys-
tems and experiment on domain adaptation we have use the British
National Corpus (bnc) and The Reuters News Corpus, the sports and
finance subsets.

• Sense-tagged corpora: The preliminary experiments have been carried
out on Senseval-2, Senseval-3 and SemEval-2007 lexical-sample and all-
words task datasets. SemCor corpus has been used as training corpus
for all-words tasks. For domain adaptation experiments we used the
Domain-specific Sussex corpus.

II.1.2.1 Unlabeled corpora

British National Corpus

The British National Corpus (BNC) has been built as a reasonably balanced
corpus: for written sources, samples of 45,000 words have been taken from
various parts of single-author texts. Shorter parts (up to 45,000 words) as a
multi-author texts (magazines, newspaper and so on) were in full, avoiding
over-representing idiosyncratic texts. In total, BNC is a 100 million word
collection of samples of written and spoken language.

Brown Corpus

The Brown Corpus (BC) is a million-word ”balanced” collection of texts
published in United States in 1961. It contains samples of varied written
prose: press articles (news, reviews, and reportage), fragments of scientific
texts, and fiction, among other categories. The 500 documents (2000 word-
long each) are classified into 15 categories.

The Reuters News Corpus

This Corpus has been widely used in nlp, especially in documents catego-
rization. There is a specialized hand tagged corpus useful for domain-specific



II.1 Resources 27

research (see below). The Sports and Financial parts of Reuters have been
used for this dissertation.

II.1.2.2 Sense-tagged corpora

SemCor corpus

SemCor (Miller et al., 1993) consists on a subset of the Brown Corpus (BC)
plus the novel The Red Badge of Courage. It contains a number of texts
comprising about 200,000 words where all content words have been manu-
ally tagged with PoS, lemma and senses from WordNet 1.6 . It has been
produced by the same team that created WordNet. SemCor has been cited
as having scarce data to train supervised learning algorithms (Miller et al.,
1994). Although the original SemCor was annotated with WordNet version
1.6, the annotation have been automatically mapped into newer versions.
More details in Chapter IV, where we used it as training corpus. It is also
used and mentioned in Chapter VII.

Senseval and SemEval test Suites

Senseval-1 English lexical-sample corpus. This corpus (Kilgarriff and Rosen-
zweig, 2000) consists on 8,512 test instances and 13,276 training instances
for 35 words (nouns, verbs, and adjectives). The instances are tagged with
HECTOR senses (Atkins, 1993), and their polysemy ranges from 2 to 15
senses. The examples are extracted from a pilot of the BNC.

Senseval-2 English lexical-sample corpus. This corpus (Kilgarriff, 2001) con-
sists on 73 target words (nouns, verbs, and adjectives), with 4,328 testing
instances, and 8,611 training instances. The examples come from the BNC
(mostly), and from the WSJ. The chosen sense inventory was a previous ver-
sion of WordNet 1.7 (1.7 pre-release), specially distributed for this competi-
tion. A peculiarity of this hand-tagged corpus is that the examples for a given
target word include multiword senses, phrasal verbs, and proper nouns. In
order to process these cases, we can include them as regular sense–tagged ex-
amples, we can remove them, or we can try to detect them by pre-processing.

Senseval-2 English all-words corpus. The test data for this task (Palmer
et al., 2001) consists on 5,000 words of text from three WSJ articles repre-
senting different domains from the Penn TreeBank II. The sense inventory
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used for tagging is the WordNet 1.7 pre-release. All content words are sense-
tagged, including multi-word constructions.

Senseval-3 English lexical-sample corpus. This corpus (Mihalcea et al., 2004)
was built relying on the Open Mind Word Expert system (Mihalcea and
Chklovski, 2003). Sense tagged examples were collected from web users by
means of this application. The source corpora was BNC, although early ver-
sions included data from the Penn TreeBank corpus, the Los Angeles Times
collection, and Open Mind Common Sense. As sense inventory WordNet
1.7.1. was chosen for nouns and adjectives, and the dictionary Wordsmyth3

for verbs. The main reason to rely in another inventory for verbs was the
fine-grainedness of WordNet. The results for verbs are usually poor, and
they wanted to test the effect of using a coarser inventory. 57 words (nouns,
verbs, and adjectives) were tagged in 7,860 instances for training and 3,944
for testing.

Senseval-3 English all-words corpus. As in Senseval-2, the test data for this
task consisted on 5,000 words of text (Snyder and Palmer, 2004). The data
was extracted from two WSJ articles and one excerpt from the BC. The texts
represent three different domains: editorial, news story, and fiction. Overall,
2,212 words were tagged with WordNet 1.7.1. senses (2,081 if we do not
include multiwords).

SemEval-2007 English lexical-sample corpus. This task consists of lexical
sample style training and testing data for 35 nouns and 65 verbs in the WSJ
Penn Treebank II as well as the Brown corpus. This data will include, for
each target item: OntoNotes sense tags (these are groupings of WordNet
senses that are more coarse-grained than traditional WN entries, and which
have achieved on average 90% ITA), as well as the sense inventory for these
lemmas. The training set consist of 22,281 instances and there were 4.851
instances for testing.

SemEval-2007 English all-words corpus. We have supplied a 5000 word chunk
of WSJ where all of the verbs and the head words of the verb arguments have
WordNet 2.1 sense tags. This is for testing purposes only, and has no training
annotation associated with it, or PropBank or VerbNet labels. Overall, only

3http://www.wordsmyth.net/
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465 words were tagged in the test set.

Defense Science Organisation corpus

This corpus was compiled by the team at the Defense Science Organisation
(DSO) of Singapore (Ng and Lee, 1996), which comprises sentences from two
different corpora. The first is the Wall Street Journal (WSJ), which belongs
to the financial domain, and the second is the Brown Corpus (BC) which
is a general corpora of English usage. 191 polysemous words (nouns and
verbs) of high frequency in WSJ and BC were selected and a total of 192,800
occurrences of these words were tagged with WordNet 1.5 senses, more than
1,000 instances per word in average. The examples from BC comprise 78,080
occurrences of word senses, and examples from WSJ consist on 114,794 oc-
currences. In domain adaptation experiments, the Brown Corpus examples
play the role of general corpora, and the examples form the WSJ play the role
of domain-specific examples. It have been widely used in domain adaptation
experiments.

Domain-Specific Sussex corpus

This sense tagged corpus was first reported in (Koeling et al., 2005). The ex-
amples come from the BNC (Leech, 1992) and the sports and finance sections
of the Reuters corpus (Rose et al., 2002), comprising around 300 examples
(roughly 100 from each of those corpora) for each of the 41 nouns. The
nouns were selected according to the following criteria: 18 words having at
least one synset labeled as Sports or Finance according to WordNet Do-
mains, 8 words which had salient frequencies in each domain (according to
the normalized document frequency), and 7 words with equal salience in both
domains. The occurrences were hand-tagged with the senses from WordNet
version 1.7.1 (Fellbaum, 1998). In domain adaptation experiments the BNC
examples play the role of general corpora, and the finance and sports ex-
amples the role of two specific domain corpora. We have used as dataset in
domain adaptation experiments described in chapters V, VI and VII.

National Library of Medicine wsd Test Collection

The NLM wsd Test Collection, a dataset for biomedicine, was developed by
Weber et al. (2001), and has been used as a benchmark by many indepen-
dent groups. The UMLS Metathesaurus was used to provide a set of possible
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meanings for terms in biomedical text. 50 ambiguous terms which occur fre-
quently in MEDLINE were chosen for inclusion in the test set. 100 instances
of each term were selected from citations added to the MEDLINE database
in 1998 and manually disambiguated by 11 annotators. Twelve terms were
flagged as ”problematic” due to substantial disagreement between the anno-
tators. In addition to the meanings defined in UMLS, annotators had the
option of assigning a special tag (”none”) when none of the UMLS meanings
seemed appropriate.

II.2 Features for wsd

Word Sense Disambiguation researchers have identified a wide range of lin-
guistic phenomena, such as selectional preferences and domain information,
relevant to resolving word sense ambiguity. Such linguistic phenomena are
known as knowledge sources. According to Stevenson and Wilks (2001), there
are three main classes of knowledge sources: syntactic, such as grammatical
structures of sentences, part-of-speech tags and subcategorization informa-
tion; semantic, for example, selectional preferences and associations between
word meanings; and pragmatic/topical, which relate to the role of the word
within the wider discourse, such as the information about the topic of the
text.

However these knowledge sources are relevant to the disambiguation of
words, they need to be coded as features. Features can be defined as different
ways to encode in an algorithmic level such sources. For instance, the domain
of a word sense can represented by the words co-occurring often with the
word sense (bag-of-words feature) as extracted from sense-tagged corpora, or
the domain code assigned to the word sense in a specific machine-readable
dictionary (MRD) or lexical knowledge base (LKB). Encoding features are
extracted from specific resources, as bag-of-words feature from sense-tagged
corpora, which, in this case, is the specific resource.

We now present a list of the features which are most commonly used in
wsd systems. Following each feature is a description of the knowledge source
and lexical source from which it may obtained. Depending on the type of
knowledge source that extracts the feature we can categorize as target-
word specific feature4, local feature or global feature (further details

4”Target word” refers to the word being disambiguated.
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in (Agirre and Edmonds, 2006)). Refer to Section III.1 to see the specific
learning features used in this dissertation.

Target-word specific features

• Word Form of Target Word : This feature may partially encode part-
of-speech (PoS) and morphology, depending on the language.

• Part of Speech of Target Word : A direct encoding of the PoS. It is
available in lexicons commonly used for wsd and these can be used to
determine the grammatical category of the senses.

• Sense Distribution of the Target Word : Encodes the frequency of the
senses. In principle this distribution could be calculate form sense-
tagged corpora, but this would suffer from data sparseness problems
unless the corpus was extremely large. Unfortunately, no appropriate
resource is currently available and sense distributions are domain de-
pendent, which makes still more difficult to found feasible distribution.

Local features

• Local Patterns : These are some of the most commonly used features
in wsd, which are based on local patterns around the target word.
The local patterns around the target word have many potential ways
to encode the knowledge sources. A very common extent of patterns
include n-grams around the target word, nth word to the right and left
to the target word and so on. Several features in the context could be
used to fill this patterns such as word form in text, word lemmas, their
PoS, or a mixture of these. These features are most easily extracted
from tagged corpus. In an untagged corpus it is difficult to say which
of word senses the pattern apply to.

• Subcategorization: The details of word’s subcategorization behavior
are usually extracted from tagged corpora using robust parser. For
example, the verb to grow is intrasitive when it is used in the “become
bigger” sense (john grew quickly) but transitive in all other senses (John
grew the plants).
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• Syntactic Dependencies : This feature encodes syntagmatic relations,
which the dependencies for word sense can be extracted from a parsed
and sense-tagged corpus.

• Selectional Preferences : Some of the lexicon include this information,
for example those used by Wilks (1978) and McRoy (1992). MRDs
often include selectional preference information. For example, LDOCE
has this information based on a set of 36 semantic types that Stevenson
(2003) used for wsd.

Global features

• Bag-of-Words : This feature encodes the semantic and topical word
associations, as well as domain information. The features consist of
a list of words occurring in a wide context window around the target
word and how many the occur. More complex features may be formed
as bag-of-bigrams. Although no linguistic processing is required, the
most of the wsd systems used the lemmatized form the bag-of-words.

• Relation to Word in Context : As bag-of-words this feature encodes
the semantic and topical word association, as well as domain informa-
tion, but it has been usually extracted from dictionaries. Lesk (1986)
suggested that counting the number of content words shared by defi-
nition of two sense provide a measure of semantic relatedness. This is
possible to combine the evidence given by the bag-of-words with the
dictionaries.

• Similarity to Words in Context : Encodes paradigmatic relations. Tax-
onomic information (WordNet) can be used to find similarity between
the senses of the target word and words in the context.

• Domain Codes : Encodes the domain information. Some lexical re-
sources list the most likely domain code for each sense. WordNet Do-
mains (Magnini and Cavagliá, 2000) links each sense with a set of
domain codes. This resource provide a set of 200 domain tags hier-
archically structured. For example, the first sense for bank, the sense
of financial institution, is attached to the economy domain tag, while
the second sense, the sloping land sense, is subject to geography and
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geology domain tags. In the case of LDCOE, it uses a set of 100 sub-
ject codes and 246 subdivision. Finally, the Roget’s International The-
saurus (Chapman, 1977) also includes domain codes in the form of the
categories into which the words are organized.

II.3 wsd Algorithms

The most common wsd approach categorization is based on which informa-
tion source they use in order to solve the knowledge acquisition bottleneck
(Stevenson, 2003).

1. Knowledge based approaches
These approaches are based on a lexicon or knowledge base. The make
use of the explicit information gathered from the lexicon. The lexicon
may be a machine readable dictionary or thesaurus such as LDOCE or
WordNet (described in Section II.1.1) or it can be hand-crafted.
These approaches are said to be unsupervised systems, since they do
not use any sense-tagged corpora (see below the explanation of this).
Some of this systems are described in Section II.3.1.

2. Corpus based approaches
These methods perform wsd using information gained form training on
some corpora. The corpora can be tagged or untagged and, thus, the
approaches which belong to this category can be further sub-classified:

(a) Tagged corpora
The corpora which is used is previously semantically disambiguated.
Some of this kind of corpora are described in Section II.1.2.2. The
algorithms that fall in this category are considered supervised, and
some the approaches are described in Section II.3.2.

(b) Untagged corpora
The information is gathered from raw corpora, which have not
been semantically tagged. These approaches are taken as unsu-
pervised methods.

3. Hybrid and semi-supervised learning approaches
These are approaches which use a mixture of corpus data and knowl-
edge from a explicit knowledge base. Depending on if they use tagged
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corpora or not will be considered supervised or unsupervised systems.
Nowadays most of the unsupervised approaches fall in this category.
Some relevant approaches are described in Section II.3.1.2.

We also include in this category methods that use both labeled and
unlabeled data in order to improve the performance. This disserta-
tion uses unlabeled corpora in order get better performance in general
domain and domain-specific corpora, as described in Chapter IV, and
Chapter V and Chapter V, respectively.

Nowadays the best performing systems try to use all the information
available. Basically, the assignment of the word senses is accomplished by
using two major sources of information:

• The context of the word to be disambiguated.

• External-knowledge sources such as lexical, encyclopedic dictionaries,
as well as hand-devised knowledge sources, which provide data useful
to associate words with meanings.

Traditionally, the unsupervised methods are those which do not assign any
fixed word sense from a sense-inventory, but rather make distinctions in
meaning based on distributional similarity or translational equivalence. The
former distributional approaches make distinction in word meanings based
on the assumption that words that occur in similar context will have similar
meanings (Harris, 1968; Miller and Charles, 1991). The latter are based on
parallel corpora, which identify translations of a word to target language that
are dependent on the sense of the word in source language.

In the strict sense, unsupervised methods are not guided by handcrafted
examples or knowledge resources (e.g., WordNet). However, “unsupervised”
has become a polysemous term in the word sense disambiguation literature.
Thus, in order to avoid any confusion we will call unsupervised method those
which are “not supervised”, including any method that does not use super-
vised learning from sense-tagged text, even if they make use of a knowledge
base.

So we will only distinct among the approaches in the meaning of the use
of hand-tagged data. Those that rely on sense-tagged data are considered as
supervised approaches; otherwise they are considered unsupervised.
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II.3.1 Unsupervised wsd techniques

Unsupervised learning is the greatest challenge for wsd researchers. The
underlying assumption is that similar senses occur in similar contexts, and
thus senses can be induced from text by clustering word occurrences using
some measure of similarity of context. Then, new occurrences of the word
can be classified into the closest induced cluster/senses. This is called sense
induction (Schütze, 1998).

Evaluation of sense induction techniques is not straightforward (Schütze,
1998).The performance is below supervised systems (cf. Section II.3.2) and
they can hardly beat the Most Frequent Sense (mfs) baseline (cf. Sec-
tion III.2.1.1). Focusing on the results obtained in the all-words task of
the different Senseval and SemEval editions (cf. Section II.4) we can con-
clude that the best systems’ performance is between 53% and 58% of F-score.
In the best cases some systems will slightly outperform the mfs baseline.

Next we will describe the most important methods: those which are en-
tirely based on a lexical knowledge base, and those which distributional sim-
ilarity is an important component.

II.3.1.1 Unsupervised lexical knowledge based methods

These methods use the information in a lexicon or knowledge base in order
to perform disambiguation.

The Lesk algorithm is a classical algorithm for word sense disambigua-
tion introduced by Lesk (1986). It is based in the distributional similarity
assumption. Given a word to disambiguate, the dictionary definition or gloss
of each of its sense is compared to the glosses (or definition) of every other
word in the context. A sense whose gloss shares the largest number of words
in common with the glosses of the words in context is assigned.

Other methods rely on the explicit structure of knowledge bases. For
instance, some algorithms for wsd rely on selectional preferences as a way
of constraint the possible meaning of a word in a given context. Selectional
preferences capture information about the possible relations between word
categories, and represent common sense knowledge about classes and con-
cepts. For instance, eat-food, drink-liquid are examples of such seman-
tic constraints. This constraints may be uses as a rule to select the correct
word sense. Several approaches have been proposed to acquire and determine
the selectional preference between two concepts. Brockmann and Lapata
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(2003) give a detailed analysis of these approaches, while Agirre and Mart́ınez
(2001b) report a comparative evaluation of some of these approaches.

Finally, there is a number of methods which are based on semantic sim-
ilarity or relatedness. The idea is that knowledge bases provide information
to determine semantic similarity, and it’s thus possible to select the sense of
the target word which is most similar to the words in context. Several se-
mantic similarity measures have been proposed in the literature, all of them
computing metrics on semantic nets. Some of them calculate the similarity
as the minimum length between concepts (Leacock et al., 1998; Hirst and
St-Onge, 1998). Resnik (1995) defines the notion of information content (the
probability of occurrence in a large corpus), and defines a measure of seman-
tic relatedness between words by quantifying the information content of the
lowest common subsumer of two concepts. Mihalcea and Moldovan (1999)
introduce a formula to measure similarity between words (including for differ-
ent PoS) creating connections through the glosses. Agirre and Rigau (1996)
introduce the notion of conceptual density, defined as the overlap between
the semantic hierarchy rooted by a given concept C, and the words in the
context of C.

Recently, graph-based methods for knowledge based wsd have gained
much attention in the nlp community (Sinha and Mihalcea, 2007; Navigli
and Lapata, 2007; Mihalcea, 2005; Agirre and Soroa, 2008, 2009). These
methods use well-known graph based techniques to find and exploit the
structural properties of the graph underlying a particular knowledge base.
Graph based wsd methods are particularly suited for disambiguating word
sequences, and they manage to exploit the interrelations among the senses
in the given context.

We will focus later on Personalized PageRank approach for wsd intro-
duce in Agirre and Soroa (2009), since it has been our unsupervised method
of choice for the domain-specific wsd experiments reported in Chapter VII.
The method will be presented in detail in Section III.2.2.

II.3.1.2 Unsupervised hybrid method

These are approaches which use a mixture of raw corpus data and knowledge
from an explicit knowledge base.

Yarowsky (1992) proposed a method to disambiguate words according to
their category from Roget’s International Thesaurus, using statistical models
of the categories in the thesaurus being inferred from raw, untagged text.



II.3 wsd Algorithms 37

Training was carried out on a corpus of 10 million words, the electronic
version of Grollier’s Encyclopedia.

Statistical models for each Roget category were built by extracting con-
text around each instance of any word in the category in the corpus. The
models themselves were based on Bayes’ rule. Disambiguation is carried out
by examining the context by examining the context of ambiguous word in
text and calculating the most likely of the possible categories by applying
Bayes’ formula. This method was tested on 12 polysemous words (previously
disambiguated words), and achieved 92% correct disambiguation.

In (McCarthy et al., 2004) they introduce a predominant sense acquisition
method, which consist of two steps. In the first step, a corpus of untagged text
from the target domain was used to construct a thesaurus of similar words,
based on distributional similarity measures. In the second step, each target
word was disambiguated using pairwise WordNet-based similarity measures,
taking as pairs the target word and each of the most related words according
to the thesaurus up to a certain threshold. We will get back to this method
in Section II.5.3.

II.3.2 Supervised wsd techniques

Supervised methods are those which rely on hand-tagged. Màrquez et al.
in (Agirre and Edmonds, 2006) give a classification of the main approaches
to supervised wsd. They differentiate among probabilistic methods (such as
Näıve Bayes, Maximum Entropy), which usually estimate a set of probabilis-
tic parameters that express the conditional or joint probability distributions
of a category and context; methods based on the similarity of the examples
(such as the Vector Space Model or k Nearest Neighbors), which perform
disambiguation according to some similarity metric; methods based on dis-
criminating rules (Decision List and Decision Trees are the most represen-
tative approaches), which assign senses that example satisfy one or more
rule; methods based on rule combination, like AdaBoost, which linearly com-
bine many simple and not necessarily accurate classification rules; and linear
classifier and kernel based approaches, which discriminate senses calculating
a hyperplane in n-dimensional feature space (the most successful algorithm
is the Support Vector Machines, among others, such as the Perceptron or
Winnow approaches).

In the next chapter we will present the different methods that are widely
used for supervised wsd, alone or in combination. Most of our experiments
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are performed using k Nearest Neighbor (k-nn) and Support Vector Machines
(svm). The Vector Space Model (vsm) have been only used in experiments
reported in Chapter IV.

In general terms, in order to represent a particular context of the target
word, we extract features from the example. Then, the ml methods be-
low return a weight for each sense, and the sense with maximum weight is
selected.

In terms of performance, corpus-based supervised methods obtain the
best results. Their performance vary depending on the number of sense-
tagged examples to train, but considering the all-words task (cf. Section II.4.2)
as the most realistic scenario, state-of-the-art performance is between 60%
and 70% of accuracy. The next Section will review this in detail.

II.4 wsd Evaluation

In order to evaluate how well do the systems perform, hand-tagged corpora
is used as gold standard, and different measures are calculated comparing
the answers of the system to this gold standard. Depending on the corpora
we use, two approaches have been taken for evaluation.

• One training/test partition: one part of the corpus is used for learning,
and the rest for evaluation. This approach is applied with the Senseval
datasets, and in cross-corpora tagging experiments.

• Cross-validation: the corpora is split in N parts of similar size, and this
process is repeated for each of the pieces in turn: the chosen part is
used as gold-standard, and the remaining (N-1) parts for training the
system. The final result is the average of the N executions. We can
partition the corpora randomly, or in a stratified way, that is, trying
to keep the same proportion of word senses in each of the folds.

II.4.1 Measures and significance tests

In order to measure the goodness of wsd methods, we use the following
measures: precision, recall, coverage, and F-score (harmonic average between
precision and recall), all ranging from 0 to 1. Given N (number of test
instances), A (number of instances which have been tagged), and C (number
of instances which have been correctly tagged):
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- precision = C/A

- recall = C/N

- coverage = A/N

- F−score = (2∗precision∗recall)/(precision+recall) = (2∗C)/(A+N)

The Senseval scoring software has been used to obtain precision and recall
measures during the dissertation5.

When comparing the performance of two algorithms, statistical tests help
us to know whether the observed differences in precision or recall are signif-
icant. We will applied two of these tests in some of our experiments:

• Bootstrap resampling (Noreen, 1989) is a statistical method for esti-
mating the sampling distribution of an estimator by sampling randomly
with replacement from the original sample, most often with the purpose
of deriving robust estimates of standard deviation and get confidence
intervals of the current system results. Based on those confidence in-
tervals we can determine whether the performance difference of two
systems is statistically significant.

• The MannWhitney U test (Mann and Whitney, 1947) is a non-
parametric alternative to the two sample t-test which is based solely
on the order in which the observations from the two samples fall. The
null hypothesis in the MannWhitney test is that the two samples are
drawn from a single population, and therefore that their probability
distributions are equal. The alternative hypothesis is that one sample
is stochastically greater. It requires the two samples to be independent,
and the observations to be ordinal or continuous measurements, i.e. one
can at least say, of any two observations, which is the greater.

II.4.2 wsd systems in Senseval-2

The second edition of Senseval (Edmonds and Cotton, 2001) was held in
Toulouse (France), in July 2001. It was organized under the auspices of
ACL-SIGLEX, and the workshop took place just before the main ACL-2001
Conference. For Senseval-2, there were three types of tasks on 12 languages:

5http://www.senseval.org/senseval3/scoring
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Lexical-sample task, all-words task and translation (a kind of lexical-sample
task where the senses are defined by means of translations to another lan-
guage, only for Japanese).

A total of 93 systems from 34 groups participated in the different tasks.
The majority competed in the English lexical-sample and all-words tasks. As
we saw in Section II.1.2, the WordNet 1.7 (pre-release) sense inventory was
chosen for English.

In the English lexical-sample the best system (JHU) scored 64.2%6, for
51.2% of the Lesk baseline. Table II.2 shows the results for the lexical-sample
task. The position, precision, recall, and coverage of each of the 20 competing
systems is given. The organization implemented some baseline systems as
reference. These are the more representative: Lesk-corpus (51.2% recall, see
previous section for description), mfs (47.6% recall), and Random (14.1%
recall).

As expected, the supervised systems were those performing best. There
were some teams that introduced methods from the ml literature for the first
time to wsd: AdaBoost (TALP), svm (UMD-SST), or Maximum Entropy
(Alicante). However, the top-scores in this task were for supervised systems
that relied on different characteristics, such as the use rich features (syntactic
relations, Named Entities, Semantic Codes, or WN Domains) and feature
selection and weighting.

Regarding the English all-words task, the results are shown in table II.3.
The top-scoring methods in the all-words task were also supervised systems,
which relied mostly on Semcor for training (SMUaw used also WordNet ex-
amples and an automatically generated corpus). We can see that the best
system (SMUaw) scored 69%, with a gain of more than 5% over the 2nd
system (CNTS-Antwerp). A baseline that would assign the 1st sense in WN
would score 57%. An indicator of the difficulty of this task is that only 4 out
of 21 systems were able to overcome the 1st sense baseline.

Next, we will describe the top-2 from the list in the following description
of Senseval-2 systems.

JHU (Yarowsky et al., 2001)

This was the best scoring system in the lexical-sample task with 64.2% recall;
with an architecture consisting on voting-based classifier combination. A rich

6There was the option of resubmittion to correct some bugs. This decision was adopted
because of the tight schedule of the process.
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Rank System Precision Recall Coverage
1 JHU (R) 64.2 64.2 100.0
2 SMUls 63.8 63.8 100.0
3 KUNLP 62.9 62.9 100.0
4 Stanford - CS224N 61.7 61.7 100.0
5 Sinequa-LIA - SCT 61.3 61.3 100.0
6 TALP 59.4 59.4 100.0
7 Duluth 3 57.1 57.1 100.0
8 UMD - SST 56.8 56.8 99.9
9 BCU - ehu-dlist-all 57.3 56.4 98.3

10 Duluth 5 55.4 55.4 100.0
11 Duluth C 55.0 55.0 100.0
12 Duluth 4 54.2 54.2 100.0
13 Duluth 2 53.9 53.9 100.0
14 Duluth 1 53.4 53.4 100.0
15 Duluth A 52.3 52.3 100.0
16 Duluth B 50.8 50.8 9.9
17 UNED - LS-T 49.8 49.8 99.9
18 Alicante 42.1 41.1 97.7
19 IRST 66.5 24.9 37.4
20 BCU - ehu-dlist-best 82.9 23.3 28.0

Table II.2: Table of the supervised systems in the Senseval-2 English lexical-
sample task sorted by recall (version 1.5, published 28 Sep. 2001). Fine-
grained scoring. R: resubmitted system.
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Rank System Precision Recall Coverage
1 SMUaw 69.0 69.0 100.0
2 CNTS-Antwerp 63.6 63.6 100.0
3 Sinequa-LIA - HMM 61.8 61.8 100.0
4 UNED - AW-U2 57.5 56.9 98.9
5 UNED - AW-U 55.6 55.0 98.9
6 UCLA - gchao2 47.5 45.4 95.5
7 UCLA - gchao3 47.4 45.3 95.5
8 CL Research - DIMAP 41.6 45.1 108.5
9 UCLA - gchao 50.0 44.9 89.7

10 Universiti Sains Malaysia 2 36.0 36.0 99.9
11 IRST 74.8 35.7 47.7
12 Universiti Sains Malaysia 1 34.5 33.8 97.8
13 Universiti Sains Malaysia 3 33.6 33.6 99.9
14 BCU - ehu-dlist-all 57.2 29.1 50.7
15 Sheffield 44.0 20.0 45.3
16 Sussex - sel-ospd 56.6 16.9 29.8
17 Sussex - sel-ospd-ana 54.5 16.9 31.0
18 Sussex - sel 59.8 14.0 23.3
19 IIT 2 32.8 03.8 11.6
20 IIT 3 29.4 03.4 11.6
21 IIT 1 28.7 03.3 11.6

Table II.3: Table of the supervised systems in the Senseval-2 English all-
words task sorted by recall (version 1.5, published 28 Sep. 2001). Fine-
grained scoring.

set of features was extracted from the context, including syntactic relations
(object, subject, noun/adjective modifier, ...) extracted by means of heuristic
patterns and regular expressions over the PoS tags around the target word.

Four algorithms were included in the voting ensemble: Vector cosine sim-
ilarity (similar to the vsm described in section III.2.1.2), Bayesian models
(word-based and lemma-based), and Decision Lists. Different voting schemes
were tested in cross-validation before submission: probability interpolation,
rank-averaged, equal weight, performance-weighted, and thresholded.

SMUls and SMUaw (Mihalcea and Moldovan, 2001)

These systems were applied to the lexical-sample task (ranking 2nd, with
63.8% recall), and the all-words task (winner, with 69% recall). The archi-
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tecture has two main components: Instance Based Learning (ibl)7, when
there is specific training data for the target words (lexical-sample task), and
pattern learning when there are few examples (all-words task). The sys-
tem has a pre-processing phase, where Named Entities and Collocations are
detected.

For pattern learning, the examples are obtained from SemCor, WN exam-
ples, and GenCor (automatically generated corpora, described in Mihalcea
(2002)). The patterns are extracted from the local context of words, and
follow the rules of regular expressions, where each token is represented by
its base form, its PoS, its sense (when available), and its hypernym (when
available).

For ibl, TiMBL (Daelemans et al., 2007) is used with information-gain
feature weighting. The novelty of this work is that they perform feature
selection per each word, using cross-validation in training data.

CNTS-Antwerp (Hoste et al., 2001)

The Antwerp all-words system relies on SemCor to build word-experts for
each word with more than 10 instances for training. They perform 10 fold
cross-validation at 2 levels, in order to optimize the parameters of each of
their three classifiers, and also to optimize the voting scheme. Their classifiers
consist on 2 versions of their memory-based learning (TiMBL), trained each
on local and topical feature space, and the rule induction Ripper algorithm.
Their method scored second in the all-words task, with 63.6% precision and
recall.

II.4.3 wsd systems in Senseval-3

The third edition of Senseval (Mihalcea and Edmonds, 2004) took place in
Barcelona, on July 25-26, 2004, in conjunction with the meeting of the Asso-
ciation for Computational Linguistics (ACL). Fourteen tasks were presented,
and 55 teams competed on them, for a total of more than 160 system submis-
sions. There were typical wsd tasks (lexical-sample and all-words) for seven
languages, and new tasks were included, involving identification of semantic
roles, logic forms, multilingual annotations, and subcategorization acquisi-
tion. We will focus, as before, on the English lexical-sample and all-words
tasks.

7Also noun as Memory Based Learning (MBL).
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Rank System Team Precision Recall
1 htsa3 University of Bucharest 72.9 72.9
2 IRST-Kernels ITC-IRST 72.6 72.6
3 nusels National University of Singapore 72.4 72.4
4 htsa4 University of Bucharest 72.4 72.4
5 BCU comb Basque Country University 72.3 72.3
6 htsa1 University of Bucharest 72.2 72.2
7 rlsc-comb University of Bucharest 72.2 72.2
8 htsa2 University of Bucharest 72.1 72.1
9 BCU english Basque Country University 72.0 72.0

10 rlsc-lin University of Bucharest 71.8 71.8
11 HLTC HKUST all HKUST 71.4 71.4
12 TALP U.P. Catalunya 71.3 71.3
13 MC-WSD Brown University 71.1 71.1
14 HLTC HKUST all2 HKUST 70.9 70.9

Table II.4: Top-14 supervised systems in the Senseval-3 lexical-sample task
(fine-grained scoring). For each system, the submitting research group and
the precision/recall figures are given.

The English lexical-sample task had the highest participation, as usual.
27 teams submitted 46 systems to this task, most of them supervised. The
corpus was built with the collaboration of web users, as is described in Sec-
tion II.1.2.2. WordNet 1.7.1 (for nouns and adjectives) and WordSmyth (for
verbs) were used as sense inventories. In the official results, 37 systems were
considered supervised, and only 9 were unsupervised. The performance of
the top-14 supervised systems is given in table II.28. The table shows the
name of the system and the submitting team, together with the precision
and recall.

The results of the top 14 systems, from 8 different teams, illustrate the
small differences in performance for this task, where the top-9 systems are
less than a point below. The results of the best system (72.9% recall) are
way ahead of the mfs baseline (55.2% recall), and present a significant im-
provement from the previous Senseval edition, which could be due, in part,
to the change in the verb sense inventory. Attending to the characteristics
of the top-performing systems, this edition has shown a predominance of
kernel-based methods (e.g. svm, see section III.2.1.4), which have been used
by most of the top systems.The top-ranked systems relied on combinations

8Check (Mihalcea et al., 2004) for complete table of supervised methods.
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Rank System Precision Recall
1 GAMBL-AW-S 65.1 65.1
2 SenseLearner-S 65.1 64.2
3 Koc University-S 64.8 63.9
4 R2D2: English all-words-S 62.6 62.6
5 Meaning-allwords-S 62.5 62.3
6 Meaning-simple-S 61.1 61.0
7 LCCaw-S 61.4 60.6
8 upv-shmm-eaw-S 61.6 60.5
9 UJAEN-S 60.1 58.8

10 IRTS-DDD-00-U 58.3 58.2

Table II.5: Top-10 systems in the Senseval-3 all-words task. For each system,
the precision/recall figures are given.

to integrate different knowledge source (using kernels or voting systems) and
the use of complex features. We will describe the top two systems (Htsa3
and ITC-IRST) in detail below.

Regarding the English all-words task, 20 systems from 16 different teams
participated on it. According to the result table presented in (Snyder and
Palmer, 2004), 7 systems were supervised and 9 unsupervised (the other
four are not categorized). The best system achieved 65.1% precision and
recall, while the “WordNet first sense” baseline would achieve 60.9% or 62.4%
(depending on the treatment of multiwords and hyphenated words). The
results of the top-10 systems are given in table II.3. The suffix (-S) in the
name of the system indicates “supervised”, and the suffix (-U) indicates
unsupervised.

The supervised methods rely mostly in Semcor to get hand-tagged exam-
ples; but there are several groups that incorporate other corpora like DSO,
WordNet definitions and glosses, all-words and lexical-sample corpora from
other Senseval editions, or even the line/serve/hard corpora (Leacock et al.,
1998). Most of the participant all-words systems include rich features in their
models, specially syntactic dependencies and domain information. We will
describe the two best-systems (GAMBL-AW and SenseLearner) below.

Htsa3 (Grozea, 2004)

The winner in the lexical-sample task was one of the six systems submit-
ted by the group of the University of Bucharest, with 72.9% precision and
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recall. The learning method applied was Regularized least-squares classifica-
tion (RLSC), which is based on a linear kernel and Tikhonov regularization.
The features that they used consist on local collocations (words, lemmas, and
PoS tags), and lemmas in the context of the target word. They normalized
its weight-values by dividing them with the empiric frequency of the senses
in training data, which gives a higher “a posteriori” probability to frequent
senses. A new parameter α is introduced to perform the normalization step
smoothly.

IRST-Kernels (Strapparava et al., 2004)

IRST-Kernels scored second in the English lexical-sample task, with 72.6%
recall. This system is based on svm (cf. section III.2.1.4), and they use the
kernel function to combine heterogeneous sources of information. Thus, they
define their kernel function as the addition of two kernels: the paradigmatic
kernel and the syntagmatic kernel. The former is implemented by splitting
further the kernel in collocation kernel (based on lemma sequences) and PoS
Kernel (bases on PoS sequences). The latter is also the addition of another
two: bag of words kernel and an Latent Semantic Indexing (LSI) kernel. The
second tries to alleviate the sparseness problem of the bag of words kernel.
Note that this last kernel is related to our approach in this dissertation (cf.
Section III.3).

GAMBL-AW (Decadt et al., 2004)

This system was the winner of the all-words task. GAMBL-AW is a super-
vised approach that relies on extensive corpora to learn the word-experts.
This corpus is obtained joining Semcor with all the tagged data from pre-
vious Senseval editions (all-words and lexical-sample; training and testing),
also including the training data in Senseval-3 lexical-sample, the examples
in WordNet, and the line/hard/serve corpora. From these examples, they
extract two types of features: the local context (including information about
chunks and dependency relations extracted from a shallow parser), and the
keywords in context.

GAMBL applies a word-expert approach using TiMBL and optimization
of features and parameters. They apply a cascaded architecture, where a
keyword-based classifier assigns a sense to the new example and it is used as
feature for the second local feature based classifiers. Exhaustive optimization
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is performed with Genetic Algorithms (GA) and heuristic optimization by
means of cross-validation. They use GAs to jointly optimize feature selection
and parameter optimization.

SenseLearner (Mihalcea and Faruque, 2004)

SenseLearner obtained the 2nd best score in the English all-words task, with
64.2% recall. This team considers one of their goals to use as few hand-tagged
data as possible, and they rely only on Semcor and the WordNet hierarchy to
construct their architecture. The method applies two main steps sequentially,
jumping to the second only when the first abstains:

1. Semantic Language Model: The examples in Semcor are used to learn
a model for each PoS (using jointly all the words), based on very simple
co-occurrence features, which are different for each PoS. TiMBL is then
applied to the testing examples, and the model predicts the word and
sense of the test example. If the predicted word corresponds to the
example, the predicted sense is assigned, otherwise there is no answer.
The average coverage of this method is 85.6%.

2. Semantic Generalizations using Syntactic Dependencies and WordNet:
In the learning phase, all the dependencies in Semcor are extracted
and expanded with the hypernyms of the nouns and verbs appearing in
them. For each dependency-pair, positive feature vectors are created for
the occurring senses, and negative vectors for the others. In the testing
phase, for each dependency-pair, feature vectors are created for all
possible combinations of senses. TiMBL assigns a positive or negative
value for each of this vectors, using the generalizations extracted from
Semcor. These values are used to make the final prediction.

II.4.4 wsd systems in SemEval-2007

The first edition of SemEval-20079 took place in Prague, in June 23-24, in
conjunction with the ACL conference. Eighteen tasks were organized, and
over 100 teams and 125 unique systems participate on them. Among the

9Taking into account the previous Senseval competition, actually, we can consider the
fourth edition of Senseval-like competition
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tasks, the typical wsd tasks, including lexical-sample and All-Words, were
presented.

Task-17 (English lexical sample, srl and all-words) focuses on both chal-
lenges, wsd and srl, using annotated English text taken from the Wall
Street Journal and the Brown Corpus. It includes three subtasks: i) the tra-
ditional All-Words task comprising fine-grained word sense disambiguation
using a 3,500 word section of the Wall Street Journal, annotated with Word-
Net 2.1 sense tags, ii) a Lexical Sample task for coarse-grained word sense
disambiguation on a selected set of lexemes, and iii) Semantic Role Labeling,
using two different types of arguments, on the same subset of lexemes. We
will focus on the two first sub-tasks, both related to wsd.

Rank Participant System Classifier F
1 Cai Junfu NUS-ML SVM 88.7±1.2
2 Oier Lopez de Lacalle UBC-ALM SVD+kNN 86.9±1.2
3 Zheng-Yu Niu I2R Supervised 86.4±1.2
4 Lucia Specia USP-IBM-2 SVM 85.7±1.2
5 Lucia Specia USP-IBM-1 ILP 85.1±1.2
5 Deniz Yuret KU Semi-supervised 85.1±1.2
6 Saarikoski OE naive Bayes, SVM 83.8±1.2
7 Univ. of Technology Brno VUTBR naive Bayes 80.3±1.2
8 Ana Zelaia UBC-ZAS SVD+kNN 79.9±1.2
9 Carlo Strapparava ITC-irst SVM 79.6±1.2

10 Most Freq. Sense in training Baseline N/A 78.0±1.2
11 Toby Hawker USYD SVM 74.3±1.2
12 Siddharth Patwardhan UMND1 Unsupervised 53.8±1.2
13 Saif Mohammad Tor Unsupervised 52.1±1.2

- Toby Hawker USYD* SVM 89.1±1.2
- Carlo Strapparava ITC* SVM 89.1±1.2

Table II.6: System Performance for the OntoNotes Lexical Sample task.
System marked with an * were post-competiton bug-fix submissions

The main important changes on lexical-sample was the use of different
sense-inventory. In order to guarantee a high annotator agreement, they use
OntoNotes data (Hovy et al., 2006), including word senses, at high inter-
annotator agreement (ITA) of over 90%. All the data for this task comes
from the 1M word WSJ Treebank. They selected a total of 100 lemmas (65
verbs and 35 nouns) considering the degree of polysemy and total instances
that were annotated. All the F-scores10 in Table II.6 and Table II.7 are

10For a system that attempts all the words, both Precision and Recall are the same.
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accompanied by a 95% confidence interval calculated using the bootstrap
resampling procedure.

A total of 13 systems were evaluated on the Lexical Sample task. Ta-
ble II.6 shows the Precision/Recall for all these systems. As expected, the
lexical sample task using coarse grained senses provides consistently higher
performance than previous more fine-grained Lexical Sample Tasks. Note
that the best system performance is now closely approaching the ITA for
this data of over 90%.

Regarding the system ranking, top scoring system are those based in
kernel based methods (e.g. svm) and memory-based k-nn approaches (sub-
mitted by us and detailed in Chapter IV). The results show that approaches
like svms are the best option when enough training instance are available.
Note that 5 systems out of 13 were svm systems. The second best system was
developed during this dissertation, and will be explained in Section IV.5. The
best system and the third best systems (NUS-ML and I2R) will be detailed
below.

Rank Participant System ID Classifier F
1 Stephen Tratz PNNL MaxEnt 59.1±4.5
2 Hwee Tou Ng NUS-PT SVM 58.7±4.5
3 Rada Mihalcea UNT-Yahoo Memory-based 58.3±4.5
4 Cai Junfu NUS-ML naive Bayes 57.6±4.5
5 Oier Lopez de Lacalle UBC-ALM kNN 54.4±4.5
6 David Martinez UBC-UMB-2 kNN 54.0±4.5
7 Jonathan Chang PU-BCD Exponential Model 53.9±4.5
8 Radu ION RACAI Unsupervised 52.7±4.5
9 Most Frequent WordNet Sense Baseline N/A 51.4±4.5

10 Davide Buscaldi UPV-WSD Unsupervised 46.9±4.5
11 Sudip Kumar Naskar JU-SKNSB Unsupervised 40.2±4.5
12 David Martinez UBC-UMB-1 Unsupervised 39.9±4.5
14 Rafael Berlanga tkb-uo Unsupervised 32.5±4.5
15 Jordan Boyd-Graber PUTOP Unsupervised 13.2±4.5

Table II.7: System Performance for the all-words task

Regarding the All-Words task, the data was selected from the WSJ corpus
that had been Treebanked and PropBanked. As said before, WordNet 2.1
was used as sense-inventory to annotated a total of 465 lemmas from about
3500 words of text. For this dataset, they got a ITA of 72% on verbs and
86% for nouns.
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A total of 14 systems were evaluated on the all-words task. These results
are shown in Table II.7. The baseline performance using the most frequent
WordNet sense for the lemmas is 51.4. The top-performing system was a
supervised system that used a Maximum Entropy classifier, and got a Pre-
cision/Recall of 59.1% – about 8 points higher than the baseline. Below, we
detail the two top ranked systems (PNNL and NUS-PT).

Compared to previous exercises, the system performance has ranged from
59% (mfs) to 65.2% (Senseval3, (Decadt et al., 2004)) to 69% (Seneval2, (Mi-
halcea and Moldovan, 2001) ). In this last edition there were proportionally
more verbs and fewer nouns than previous all-words English tasks, which
may account for the lower scores.

Regarding unsupervised systems, it is worth mentioning the RACAI sys-
tem, which has ranked 8 and outperformed the mfs baseline. However, it is
important to note that they use the sense order coded in WordNet, which is
derived from Semcor sense counts and thus the mfs baseline. They obtain
52.7% F-score, which degrades to 44.5% of F-score when no sense order is
used. The rest of the unsupervised systems are well below the mfs result.

NUS-ML (Cai et al., 2007)

This system was the winner of the lexical-sample task with 88.7% of F-score.
They relied on the data provided by the organization to train their wsd sys-
tem. The submitted system is based on a rich set of feature types, which
include PoS of the surrounding words to the target, local-collocations, syntac-
tic patterns, and bag-of-words (BoW) features. In addition, they construct
a topic feature targeted to capture the global context information using the
latent dirichlet allocation (LDA) algorithm with unlabeled corpus. LDA clus-
ters BoW features and thus helps relieve the scarcity problem. They used
unlabeled data to cluster words into a number of pre-fixed topics. Finally,
a modified na ive Bayes (nb) classifier is constructed to incorporate all the
features.

I2R (Niu et al., 2007)

They ranked third in the lexical-sample task of SemEval-2007, with 86.4%
F-score. In order to construct the classifiers they only relied in provided data.
The knowledge sources include the following features to capture the contex-
tual information: PoS of neighboring words with the position information,
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the BoW features from all the contextual sentences, and local-collocations.
They use a label propagation algorithm, where the label information of any
vertex in a graph is propagated to nearby vertices through weighted edges
until a global stable stage is achieved. They use unlabeled data in order to
improve the connection within the graph.

PNNL (Tratz et al., 2007)

PNNL was the best system in the all-words task, obtaining 59.1% F-score.
They recollected extra training data to improve the wsd classifier: they use
SemCor, OMWE (Mihalcea and Chklovski, 2003) and the example sentences
in WordNet (version 2.1). A large number of features are used as a knowledge
source, which consists of contextual information (3 tokens on each side of
the target word), syntactic information (grammatical and morphosyntactic
information) and semantic information (Named entities and hyperonyms, e.g:
Joe Smith is used as person). Over this large set of features an optimization
is performed by selecting the k best features according to the Information
Gain measure. The best features are used to train a Maximum Entropy
classifier.

NUS-PT (Chan et al., 2007b)

With 58.7% of F-score they got the second position in the all-words task.
This team also tries to augment the training data using other resources beside
SemCor corpus. English-Chinese parallel corpora and the DSO corpus are
also used as training corpus. Roughly speaking, a maximum of 1000 examples
were collected for each noun type word, and a maximum of 500 for verbs. The
training set was built adding DSO and parallel corpora examples to SemCor
examples following the sense distribution in SemCor. The svm classifier (cf.
Section III.2.1.4) was built using local-collocations, PoS and BoW as features.
They omit syntactic relations for efficiency reasons.

II.5 Domain-specific wsd

First, we will briefly mention current lexical-sample datasets for domain-
specific wsd. Section II.5.2 presents some possible settings for domain adap-
tation and Section II.5.3 reviews the state-of-the art in domain-specific wsd.
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II.5.1 Domain-related datasets

We will briefly present the three datasets which have been used for domain-
related studies in wsd, all of which are lexical-sample corpora.

The most commonly used dataset is the previously mentioned Defense
Science Organization (DSO) corpus, which was built on purpose to study
the cross domain adaptation. Another publicly available dataset is the one
presented in (Koeling et al., 2005), the Domain-Specific Sussex corpus. This
dataset has played a central role in domain adaptation and domain-specific
wsd experiments for this dissertation. Finally, a dataset for biomedicine,
the National Library of Medicine wsd Test Collection, has to be mentioned,
which is a useful dataset to study very specific domains. These three datasets
have been described in Section II.1.2.2, and have been used in the experiments
to be reported in Section II.5.3.

The biomedicine corpus tackles scholarly text of a very specific domain,
and while interesting, it is not possible to apply domain adaptation tech-
niques, as the senses used are not related to those found in generic resources
like WordNet and Semcor. The DSO corpus includes texts from the Brown
balanced corpus and the WSJ corpus, allowing for domain adaptation ex-
periments. The WSJ includes texts from Finance in the widest expression,
but also news of general interest which have no strict relation to the finance
domain. The Sussex corpus explicitly differentiates between texts from the
Finance and Sports domain, and texts from the balanced BNC, allowing
for more controlled domain adaptation experiments in different settings for
domain adaptation (as defined below).

Although these three corpora are useful for wsd research, they only in-
clude examples for a handful of words, and it is thus difficult to infer which
would be the performance of a wsd system on full texts. The corpus of
Koeling et al., for instance, only includes words which where salient for the
target domains, but the behavior of wsd systems on other words can’t be
explored.

II.5.2 Possible settings for domain adaptation

When performing supervised wsd on specific domains the first setting is to
train on a general domain data set and to test on the specific domain (source
setting). If performance would be optimal, this would be the ideal solution,
as it would show that a generalistic wsd system (trained on a generic corpus)
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is robust enough to tackle texts from new domains, and domain adaptation
would not be necessary.

The second setting (target setting) would be to train the wsd systems
using examples from the target domain. If this would be the optimal setting,
it would show that there is no cost-effective method for domain adaptation.
wsd systems would need fresh examples every time they were deployed in
new domains, and examples from general domains could be discarded. In
domain adaptation experiments we will give some results related to target
setting as reference to other setting.

In the third setting, the wsd system is trained with examples coming
from both the general domain and the specific domain. Good results in
this setting would show that supervised domain adaptation is working,
and that generalistic wsd systems can be supplemented with hand-tagged
examples from the target domain.

There is an additional setting, where a generalistic wsd system is sup-
plemented with untagged examples from the domain. Good results in this
setting would show that semi-supervised domain adaptation works, and
that generalistic wsd systems can be supplemented with untagged examples
from the target domain.

For this dissertation we focused on the last two settings: semi-supervised
domain adaptation and supervised domain adaptation. The semi-
supervised setting will be described in Chapter V, and the supervised one
will be described in Chapter VI.

The source setting and the target setting can be seen as baseline and
upperbound, respectively, for the semi-supervised setting. In the case of the
supervised adaptation setting, the target setting can be considered as a high
baseline, as very few systems have managed to improve over it.

II.5.3 State-of-the-art in wsd for specific domain

Initial work on domain adaptation for wsd systems showed that wsd systems
were not able to obtain better results on the source or adaptation settings
compared to the target settings (Escudero et al., 2000; Mart́ınez and Agirre,
2000), showing that if a generic wsd system (i.e. based on hand-annotated
examples from a generic corpus) would need to adapt it to a specific domain,
it would be better off throwing away the generic examples and hand-tagging
domain examples directly.
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Escudero et al. (2000) tested the supervised adaptation scenario on the
DSO corpus, which had examples from the Brown Corpus and Wall Street
Journal corpus. They found that the source corpus did not help when tagging
the target corpus, showing that tagged corpora from each domain would
suffice, and concluding that hand tagging a large general corpus would not
guarantee robust broad-coverage wsd. Mart́ınez and Agirre (2000) also used
the DSO corpus in the supervised scenario to show that training on a subset
of the source corpora that is topically related to the target corpus does allow
for some domain adaptation.

Similarly to these works, this dissertation also shows that the performance
of a generic wsd system decreases when such system is trained and tested
on different domains, and will propose a method to overcome this.

Better results have been obtained using purpose-built adaptation meth-
ods. Chan and Ng (2007) performed supervised domain adaptation on a
manually selected subset of 21 nouns from the DSO corpus. They used ac-
tive learning, count-merging, and predominant sense estimation in order to
save target annotation effort. They showed that adding just 30% of the tar-
get data to the source examples the same precision as the full combination of
target and source data could be achieved. They also showed that using the
source corpus allowed to significantly improve results when only 10%-30% of
the target corpus was used for training. Unfortunately, no data was given
about the target corpus results, thus failing to show that domain-adaptation
succeeded. In follow-up work (Zhong et al., 2008), the feature augmentation
approach was combined with active learning and tested on the OntoNotes
corpus, on a large domain-adaptation experiment. They reduced significantly
the effort of hand-tagging, and obtained domain-adaptation for smaller frac-
tions of the source and target corpus. Similarly to these works we show that
we can save annotation effort on the target corpus, but, in contrast, we do
get domain adaptation when using the full dataset. In a way, our approach
is complementary, and we could also apply active learning to further reduce
the number of target examples to be tagged.

The scarce positive results in wsd contrasts with domain adaptation ex-
periments in other nlp areas. In the supervised setting, a paper by Daumé
III (2007) shows that a simple feature augmentation method for svm is able
to effectively use both labeled target and source data to provide the best
domain-adaptation results in a number of nlp tasks. His method improves or
equals over previously explored more sophisticated methods (Daumé III and
Marcu, 2006; Chelba and Acero, 2004). The feature augmentation consists
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in making three version of the original features: a general, a source-specific
and a target-specific versions. That way the augmented source contains the
general and source-specific version and the augmented target data general
and specific versions. The idea behind this is that target domain data has
twice the influence as the source when making predictions about test target
data.We reimplemented this method in order to compare it to our methods.

There are no many works on semi-supervised domain adaptation in nlp.
Blitzer et al. (2006) used Structural Correspondence Learning and unlabeled
data to adapt a Part-of-Speech tagger. They carefully select so-called pivot
features to learn linear predictors, perform svd on the weights learned by
the predictor, and thus learn correspondences among features in both source
and target domains. Our technique also uses svd, but we directly apply it to
all features, and thus avoid the need to define pivot features. In preliminary
work we unsuccessfully tried to carry along the idea of pivot features to
wsd. This dissertation will show show that methods based on svd with
unlabeled data and combination of distinct feature space produce positive
semi-supervised domain adaptation results for wsd.

Regarding unsupervised methods, the unsupervised predominant sense
acquisition method was introduced first in (McCarthy et al., 2004). (Mc-
Carthy et al., 2004) does not report any domain adaptation experiments,
but in follow-up work,(Koeling et al., 2005; McCarthy et al., 2007) report re-
sults on domain specific corpora. The predominant sense acquisition method
consisted basically on two steps. In the first step, a corpus of untagged
text from the target domain was used to construct a thesaurus of similar
words. In the second step, each target word was disambiguated using pair-
wise WordNet-based similarity measures, taking as pairs the target word and
each of the most related words according to the thesaurus up to a certain
threshold. This method aims to obtain, for each target word, the sense which
is the most predominant for the target corpus. When a general corpus is used,
the most predominant sense in general is obtained (McCarthy et al., 2004),
and when a domain-specific corpus is used, the most predominant sense for
that corpus is obtained (Koeling et al., 2005). The main motivation of the
authors is that the most frequent sense is a very powerful baseline, but it
is one which requires hand-tagging text, while their method yields similar
information automatically. The results show that they are able to obtain
good results. This dissertation revisits their proposal, and confirms the good
results of their approach, specially in specific domains.

Current research on applying wsd to specific domains has been evaluated
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on three available lexical-sample datasets (Ng and Lee, 1996; Weber et al.,
2001; Koeling et al., 2005). This kind of datasets contains hand-labeled ex-
amples for a handful of selected target words. As the systems are evaluated
on a few words, the actual performance of the systems over complete texts can
not be measured. Actually, the different behavior of wsd systems when ap-
plied to lexical-sample and all-words datasets has been observed on previous
Senseval and Semeval competitions (Kilgarriff, 2001; Mihalcea et al., 2004;
Pradhan et al., 2007), where supervised systems attain results on the high
80’s and beat the most frequent baseline by a large margin for lexical-sample
datasets. The results on the all-words datasets were much more modest, on
the low 70’s, and a few points above the most frequent baseline.



CHAPTER III

Methods and approaches from this

dissertation

In this chapter we will present the main elements used in the dissertation.
The chapter is organized as follows. First, we will briefly introduce the learn-
ing features used in the supervised classifiers. The next section will describe
the wsd approaches used in this work, both supervised and knowledge-based.
The next section will be devoted to present Singular Value Decomposition
(svd). We will motivate the usefulness of svd, some mathematical founda-
tion will be explained, and application to wsd will be described, as well as
prior work on svd for wsd. Finally, the last section will describe the pro-
posed classifier combinations, both k based on nearest neighbors and kernels.

III.1 Learning features

In supervised learning for classification the consists in inducing an approx-
imation (or hypothesis) h of an unknown function f that maps from the
input space X to a discrete unordered output space Y = {1, ..., K}, given a
training set S, .

The training set contains m examples, S = {(x1, y1) , ..., (xm, ym)}, where
in each pair (x, y), x belongs to X and y = f (x). x is typically a vector
x = (x1, ..., xn), whose components, called features, are discrete- or real-
valued and describe the relevant information or properties about the example.
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The values of the output space Y associated with each training example
are called classes. Therefore, each training example is completely described
by set of feature-value pairs and class label. In our case the examples are
occurrences of the target words and the classes are the senses of the target
words that apply to those occurrences.

Features try to capture the information and knowledge about the con-
text of the target words to be disambiguated. Computational requirements
of learning algorithms and the availability of the information impose some
limitations on the features that can be considered, thus they necessarily cod-
ify only a simplification (or generalization) of the occurrence of word sense
instances (See Section II.2 for more details on knowledge representation for
wsd).

Usually, a complex pre-processing step is performed to build a feature
vector for each context of occurrence. This step often considers the use
of windowing or sentence-splitting, a PoS tagger to establish PoS patterns
around the target word, ad hoc routines for detecting multi-words or captur-
ing n-grams, or parsing tools for detecting syntactic dependencies between
lexical units.

The state-of-the-art on wsd has shown that all types of features are neces-
sary to assure good performance of supervised ml approaches. An interesting
survey on feature types and the knowledge they code is given in (Agirre and
Mart́ınez, 2001a).

The feature types used in this dissertation can be grouped in four main
sets. These features are described and analyzed in (Mart́ınez, 2004):

Local collocations: Bigrams and trigrams formed with the words around
the target. These features are constituted by lemmas, word-forms, or PoS
tags1. Other local features are those formed with the previous/posterior
lemma/word-form in the context.

Syntactic dependencies: Syntactic dependencies were extracted using
heuristic patterns, and regular expressions defined with the PoS tags around
the target2. The following relations were used: object, subject, noun-modifier,
preposition, and sibling.

Bag-of-words features: We extract the lemmas of the content words in the

1The PoS tagging was performed with the fnTBL toolkit Ngai and Florian (2001).
2This software was kindly provided by David Yarowsky’s group, from the Johns Hopkins

University.
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<instance id=1“:0@67@brown/cr/cr08@brown@en@on” docsrc=“wsj”>
<answer instance= “1:brown/cr08@brown@en@on” senseid=“1”/>
<context>
In this work, his use of non-color is startling and skillful. The sweep of space,
the delicate counterbalance of the white masses , the over-all completeness
and unity, the originality and imagination , all entitle it to be called an
authentic masterpiece. I <head> asked </head> Quasimodo recently
how he accomplished this, and he replied that he had painted his model “a
beautiful shade of red and then had her breathe on the canvas”, which was
his typical tongue-in-cheek way of chiding me for my lack of sensitivity .
</context>
</instance>

Figure III.1: An example from the SemEval-2007 lexical sample dataset,
showing the context of occurrence for ask, which is the target word.

whole context, and in a ±4-word window around the target. We also obtain
salient bigrams in the context, with the methods and the software described
in (Pedersen, 2001).

Domain features: The WordNet Domains resource was used to identify
the most relevant domains in the context. Following the relevance formula
presented in Magnini and Cavagliá (2000), we defined 2 feature types: (1) the
most relevant domain, and (2) a list of domains above a predefined threshold3.

Domain features were only used in our SemEval lexical sample and all
words dataset (for more details see Chapter IV. In the rest of the experiments
we worked with the other three feature sets (local collocations, syntactic
dependencies, bag-of-words). We will refer to this later in Section IV.2.2.

Figure III.1 shows an example extracted from SemEval-2007 lexical-sample
task. The examples consist of a context for the target word ask (actually
asked), where the size of the context consist of the previous two sentences,
the sentence containing the target word, and the following two sentences.
The features extracted from this example are related to the target word, as
the following sample shows:

• Regarding local collocations, “post N lem Quasimodo” would indicate

3The software to obtain the relevant domains was kindly provided by Gerard Escudero’s
group, from Universitat Politecnica de Catalunya
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that the target word is followed by the noun Quasimodo. Similarly,
“post J lem accomplished” and “post R lem recently” would indicate
that accomplished is the following adjective and recently is the next
adverb to the target word, respectively.

• An instance for a syntactic dependencies features would be “Object
Quasimodo NNP” where Quasimodo is the object of the target verb
ask.

• Concerning bag-of-words features, we would have one feature for each
lemmas in this chunk of text: “win cont lem context breath”. “ped-
ersen bigr beautiful shade” would indicate that these salient bigram
occurs in context (Pedersen, 2001).

• Domain features depend on the words in the context. In this case, the
domain tags would be “Domain A factotum” and “Domain A quality”,
where “Domain F quality” is the most relevant domain tag.

These four sets of feature will be referred as original learning features.
The whole set of feature type is listed in Appendix B. Section III.3 will
describe how svd is used to produce new features, which will be referred to
as as svd learning features.

III.2 wsd Algorithms

In this section we will introduce the algorithms which have been used in
the dissertation. These algorithms are considered to be representative of the
state-of-the-art in wsd. We will first describe supervised methods, followed
by a knowledge based method (Agirre and Soroa, 2009).

III.2.1 Supervised methods

Supervised methods rely on hand-tagged data in order to induce models
and disambiguate test examples. To date they outperform other methods.
See Section II.3.2 for a short review of methods. The we will now review
the methods used in our dissertation: Most Frequent Sense heuristic (mfs),
the Vector Space Model (vsm; Section III.2.1.2), k Nearest Neighbor (k-nn,
Section III.2.1.3) and Support Vector Machines (svm, Section III.2.1.4).
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III.2.1.1 Most Frequent Sense baseline (mfs)

This simple baseline method is frequently applied in wsd. It consists on
counting the number of examples for each sense in training data, and as-
signing the most frequent to all the examples in testing. In case of ties, the
algorithm chooses at random. Despite its simplicity, this approach is difficult
to beat for all-words systems that do not rely on hand-tagged data, and more
complex supervised systems sometimes only beat it by a small margin.

III.2.1.2 Vector Space Model (vsm)

In the Vector Space Model we represent each occurrence context as a vector,
where each feature will have a 1 or 0 value to indicate the occurrence/absence
of the feature. For each sense in training, one centroid vector is obtained
(Csk

). These centroids are compared with the vectors that represent testing
examples (f), by means of the cosine similarity function (formula III.1). The
closest centroid assigns its sense to the testing example.

weight(sk) = cos(Csk
,f) =

Csk
.f

||Csk ||||f || (III.1)

Leacock et al. (1993) compared svm, Neural Networks and nb and drew
the conclusion that the two first methods slightly surpass the last one in wsd.
In Senseval-2 a combination of different methods, including svm, obtained
very good results (Yarowsky et al., 2001). This method’s performance is
reported in Chapter IV.

III.2.1.3 Memory-Based Learning (k-nn)

The most widely used representative of this family is the k Nearest Neighbor.
In this algorithm, the classification of a new example is performed by search-
ing the set of the k most similar examples (or nearest neighbors) among the
previously stored set of sense-tagged examples (the training part). The sense
used most in those k examples is selected. In the simplest case, which has
been used in this dissertation, the training step is reduced to storing all of
the examples in memory (thus is being called memory-based) and the gen-
eralization is postponed until each new example is classified. This is why it
is sometimes also called Lazy Learning.

An important issue in this method is the definition of a similarity metric
for the task. We chose the cosine measure to calculated the similarities among
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the feature-vectors (cf. Eq. (III.1)). The combination is scheme for deciding
the resulting sense among the k nearest neighbors is an issue to be aware
of. In our case, the sense is selected by the maximum sum of the weighted
votes of the k most similar contexts. Votes have been weighted depending on
its (neighbor) position in the ordered rank, with the closest being first. Eq.
(III.2) formalizes k-nn algorithm, where Ci corresponds to the sense label
of the i-th closest neighbor. Although we are aware of other voting schemes
and similarity metrics (Daelemans and van den Bosch, 2005), in preliminary
experiments we realized that the method used here has an good performance
for wsd.

arg maxSj
=

k∑
i=1

{
1
i

if Ci = Sj

0 otherwise
(III.2)

k-nn is mentioned to be the best option for wsd by Ng (1997). Other
authors (Daelemans et al., 1999) argue that memory-based methods tend
to be superior in nlp problems because they do not applied any kind of
generalization and, therefore, they do not forget exceptions.

In Section III.4.1 we will describe our proposal for combining several k-nn
classifiers, which has been shown to be a robust system for domain adaptation
task.

III.2.1.4 Support Vector Machines (SVM)

Support Vector Machines (svm) are based on the Structural Risk Minimiza-
tion principle from Statistical Learning Theory (Vapnik, 1998). Basically,
they construct a separating hyperplane that divide a set of positive exam-
ples from a set of negative examples. The location of this hyperplane in
the space maximizes the distance between the closest positive and negatives
examples. Experimental results have shown that this learning method has
good properties in terms of generalization bounds for the induced classifiers.
Figure III.2 shows the geometrical intuition of the maximal margin hyper-
plane in two-dimensional space. The linear classifier is composed by two
main elements, which define the hyperplane: (1) a weight vector w (give
some weight to each feature) and (2) a bias b which stands for the distance
of the hyperplane to the origin. The classification rule assigns +1 or −1 to
a new example x as follows:
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Figure III.2: Geometrical interpretation of Support Vector Machines.

h(x) =

{
+1 if 〈w · x〉+ b ≥ 0

−1 otherwise
(III.3)

The examples (positive and negative) closest to the hyperplane are the
support vectors.

Learning the maximal margin hyperplane (w, b) is stated as a convex
quadratic optimization with a unique solution in its primal form: minimize
||w|| subject to (one of each example) yi[< w ·wi ≥ 1], indicating that all
training examples are classified with a margin equal or greater than 1.

Interestingly, it is possible to obtain a dual representation (Lagrangian
formulation) in which only training examples will be taken into consideration
in the form of dot products between vectors:

max
m∑

i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj 〈xi · xj〉

subject to:
N∑

i=1

αiyi = 0, α ≥ 0, ∀1 ≤ i ≤ m

(III.4)

From this formulation, the orthogonal vector to the hyperplane rests de-
fined as:

h(x) = 〈w,x〉+ b =
m∑

i=1

αiyi 〈xi · x〉 (III.5)
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Where αi 6= 0 for all training examples in the margin (support vectors)
and αi = 0 for the others. The classification rule is defined as in Eq. (III.3).

Duality is an important property of linear learning machines, which has
been a crucial concept in the development of svm. Using the dual form, data
appears only within dot products, and allows the use of kernel functions to
produce more powerful classifiers such as non-linear classifiers.

Kernel functions make svm work efficiently and implicitly in very high
dimensional features spaces, where new features can be expressed as combi-
nations of many basics features (Cristianini and Shawe-Taylor, 2000).

We will extend the explanations about kernel functions in the next sec-
tion.

In some cases, it is not possible to obtain an hyperplane that divides
the space linearly, or it is worthy to allow some errors in training data to
construct a more efficient hyperplane. This can be achieved with the soft
margin variant of the method, which permits a trade-off between training
errors and the maximization of the margin. The soft margin variant requires
the estimation of a parameter (denoted as C). This method has been used
during the whole dissertation.

III.2.1.5 Implicit mapping: the kernel trick

Kernel methods are a well known approach to solve ml problems. Given
the dual form, in which the training data only will appear in the form of
dot product, we can transform the feature space in a manner that non-linear
generalization are possible. In other words, kernel representations offer an
alternative solution by projecting the data into more informative new feature
spaces to increase the computational power of linear classifiers.

The possibility to map easily comes from the characteristic of representa-
tion in a dual form of any linear classifier (including support vector machines).
The main advantage of using the dual representation is that the number of
tunable parameters does not depend on the number of attributes being used.
This means that the hypothesis can be expressed as a linear combination
of the training points, and the decision can be taken calculating the inner
products of the test point and the training points. In this sense, it is clear
that defining an appropriate kernel function allows one to rewrite the data in
the new representation. Depending on the problem, choosing a correct ker-
nel will correspond to implicitly choosing a correct feature space mapping,
since the kernel function is defined by, k(x, z) = 〈φ(x) · φ(z)〉, where φ is
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Figure III.3: A feature map can simplify the classification task

the mapping function, φ : X → F , and 〈·〉 denotes a inner product between
vectors in the feature space (F).

Given a training set S = {x1,x2, ...,xm}, the information to kernel based
algorithms is contained entirely in the matrix of inner products,

G = K = (k (xi · xj))
m
i,j=1 ,

known as the Gram or kernel matrix. The information within the matrix can
be exploited, for instance, by operating on the matrix and giving the chance
to combine kernels into a single kernel.

The set of hypotheses considered is the following linear function:

h (x) = 〈w · φ (x)〉+ b

Applying the kernel trick, this weighted vector can be expressed as a linear
combination of the training points, w (x) =

∑m
i=1 αiφ (xi), and h can be

expressed in a dual representation,

h(x) = 〈w · φ(x)〉+ b =
m∑

i=1

αiyik(xi,x)

Given an explicit feature map φ we can use k(x, z) = 〈φ(x) · φ(z)〉 to com-
pute the corresponding kernel. The next section will describe the designed
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kernels and their feature mapping. All in all, in order to learn different re-
lations with a linear machine, we need to use the set of non-linear features
and to write the data in the new representation. We can see this as a way to
build a new linear (which can work as a non-linear) classifiers in two step:

1. Apply any kind of mapping to the original input space, where φ : X →
F is a mapping function from input space X into feature space F .

2. Train any linear classifier as svm.

Figure III.3 illustrates an example of feature mapping from two a dimen-
sional input space to a two dimensional feature space, where the data cannot
be separated by a linear function in the input space, but can be separated in
the mapped space.

Kernels give the chance to map (via non-linear functions) the features
onto higher dimensional space where linear separation could become an eas-
ier work. Although high dimensional spaces can be more informative, they
usually are computationally expensive, and sometimes might be preferable to
apply some kind of dimensionality reduction. In this dissertation, we apply
dimensionality reduction, moving from n dimensions to d dimensions, such
as:

x = (x1, ..., xn) 7−→ φ (x) = (φ1 (x) , ..., φd (x)) , d < n,

where the similarities between points computed in a reliable manner, and
both the computational and the generalization performance improve.

III.2.1.6 Feature augmentation method

In order to asses our contribution we decided to re-implement the feature
augmentation method introduced by Daumé III (2007). The main idea is
to give more importance to those examples that are coming from the same
domain, compared to those coming from a different domain. In this case, if we
are testing in the target domain, we would prefer to give more discriminative
power to the instances from training which are also drawn in the target
domain. This is related to (Escudero et al., 2000), where they found that
source corpus does not help when tagging the target corpus.

Essentially, all we are going to do is to make three versions of the origi-
nal feature vector: a general version, a source-specific version and a target-
version. The augmented source data will contain only general and source-
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specific versions. The augmented target data contains general and target-
specific versions. Thus, we will define our augmented space by X ′ = R3F .
Then, define mappings φs, φt : X → X ′ for mapping the source and target
data respectively:

φs(x) = 〈x,x,0〉 , φt(x) = 〈x,0,x〉 (III.6)

Suppose that the data points x are drawn from a reproducing kernel
Hilbert space X with kernel K : X × X → R, K positive semi-definite.
Then, K can be written as the dot product of two vectors: K(x,x′) =
〈φ(x) · φ(x′)〉. Define φs and φt in terms of φ, as:

φs(x) = 〈φ(x), φ(x),0〉 , φt(x) = 〈φ(x),0, φ(x)〉 (III.7)

Now, we denote an expanded Kernel by K ′(x,x′). When the domain is
the same, we get: K ′(x,x′) = 〈φ(x) · φ(x′)〉 + 〈φ(x) · φ(x′)〉 = 2K(x,x′).
When the domains differ, we get: K ′(x,x′) = 〈φ(x) · φ(x′)〉 = K(x,x′).
Considering the kernel as a measure of similarity – data points from the
same domain are a priori twice similar than those from different domains.

III.2.2 Knowledge based method

Among a number of graph based methods for knowledge based wsd (Sinha
and Mihalcea, 2007; Navigli and Lapata, 2007; Mihalcea, 2005; Agirre and
Soroa, 2008) we focused on the Personalized PageRank algorithm intro-
duced by Agirre and Soroa (2009), as it has been shown to produce superior
results. We have utilized this method in domain-specific wsd experiments
reported in Chapter VII.

Personalized PageRank is based on the PageRank algorithm. The
PageRank algorithm (Brin and Page, 1998) is a method for ranking the
vertices on a graph according to their relative structural importance. The
main idea of PageRank is that whenever a link from vi to vj exists on a
graph, a vote from node i to node j is produced, and hence the rank of node
j increases. Besides, the strength of the vote from i to j also depends on the
rank of node i: the more important node i is, the more strength its votes will
have. Alternatively, PageRank can also be viewed as the result of a random
walk process, where the final rank of node i represents the probability of a
random walk over the graph ending on node i, at a sufficiently large time.
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Let G be a graph with N vertices v1, . . . , vN and di be the out degree of
node i; let M be a N × N transition probability matrix, where Mji = 1

di
if

a link from i to j exists, and zero otherwise. Then, the calculation of the
PageRank vector PR over G is equivalent to solving Equation (III.8).

PR = cMPR + (1− c)v (III.8)

In the equation, v is a N × 1 vector whose elements are 1
N

and c is the so
called damping factor, a scalar value between 0 and 1. The first term of the
sum on the equation models the voting scheme described in the beginning of
the section. The second term represents, loosely speaking, the probability of
a surfer randomly jumping to any node. The damping factor c models the
way in which these two terms are combined at each step.

The second term on Eq. (III.8) can also be seen as a smoothing factor that
makes any graph fulfill the property of being aperiodic and irreducible, and
thus guarantees that PageRank calculation converges to a unique stationary
distribution.

In the traditional PageRank formulation the vector v is a stochastic nor-
malized vector whose element values are all 1

N
, thus assigning equal prob-

abilities to all nodes in the graph in case of random jumps. However, as
pointed out by Haveliwala (2002), the vector v can be non-uniform and as-
sign stronger probabilities to certain kinds of nodes, effectively biasing the
resulting PageRank vector to prefer these nodes. Such a calculation is often
called a Personalized PageRank. For example, if we concentrate all the prob-
ability mass on a unique node i, all random jumps on the walk will return
to i and thus its rank will be high; moreover, the high rank of i will make all
the nodes in its vicinity to also receive a high rank. Thus, the importance
of node i given by the initial distribution of v spreads along the graph on
successive iterations of the algorithm.

PageRank is actually calculated by applying an iterative algorithm which
computes Eq. (III.8) successively until convergence below a given threshold
is achieved, or, more typically, until a fixed number of iterations are exe-
cuted. Following usual practice, we used a damping value of 0.85 and finish
the calculations after 30 iterations. We did not optimize these parameters
(further details in Chapter VII).
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III.3 Singular Value Decomposition

As presented in the introductory section, svd is a technique to reduce the
dimensions a matrix, composed of vector representations of a problem. It
has been widely used in Text Categorization or Information Retrieval, being
the basic tool of Latent Semantic Analysis. svd reduces the dimensionality
of the feature vectors, finding correlations (both first order and higher order)
between features and, as we will show in this dissertation, representing the
data in a manner that helps to deal with data sparseness and domain shift
problem. We will review briefly svd as we apply it to wsd.

This section will introduce the main technique as used in this dissertation,
and we will refer repeatedly to this technique . In Section I.6 we tried to
motivate the use of svd in terms of the main difficulties found by supervised
classifiers in a wsd task, summarized as follows:

• Data sparsity: Most of the events occur rarely, even when large quan-
tities of data are available. Thus, the high dimensional features ob-
tained from training data are composed of mainly zeros. svd implicitly
finds correlations among features and documents, identifying synony-
mous or closely related words and other relations between features. We
show that these relations can be exploited to alleviate the sparsity in
wsd.

• Domain shift: Different domains involve different predominant senses,
some words tend to occur in fewer senses in the specific domains, the
context of the senses might change, new senses and terms might be in-
volved. We show that svd takes advantage of higher order correlations,
and help alleviate the gap between domains.

• Data redundancy: svd puts features which work similarly onto the
same reduced dimension, and thus help help against the curse of di-
mensionality and can be seen as a method for feature selection.

In the next subsection we will introduce a toy example that shows the
above problems. Section III.3.2 will describe some mathematical foundations
regarding svd. Finally, we will show how we applied this method to wsd.
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III.3.1 A toy-example

Let C = {d1, d2, ..., dn} be a corpus, where di is a document from the corpus.
Let W = {t1, t2, ..., tm} be the terms appeared in C, let M ∈ Rm×n be a
term-by-document matrix representing C, where mij ∈M is the frequency of
term ti in instance dj. Note that mij can be appropriately weighted if desired.
Equation (III.9) shows the example matrix, which we will use through this
section. This example matrix have been taken from (Manning and Schütze,
1999).

M =


d1 d2 d3 d4 d5 d6

cosmonaut 1 0 1 0 0 0
astronaut 0 1 0 0 0 0
moon 1 1 0 0 0 0
car 1 0 0 1 1 0
truck 0 0 0 1 0 1

 (III.9)

The matrix in Eq. (III.9) illustrates how data sparsity makes the overlap
to be zero, both for related terms and related documents. For instance,
cosmonaut and astronaut, being synonyms, do not share any document. If
we used the matrix to compute similarity between terms, e.g. using the
cosine between their document vectors (row vectors), we will conclude that
cosmonaut and astronaut are completely dissimilar, since the cosine would
yield 0.00.

In a likely manner, the similarity among documents will fail too. For
example, document d2 and document d3 have no word in common, and thus
the resulting similarity will be 0.00 as well.

The next section will review the basics notions for singular value decompo-
sition and its low-rank approximation, and show how it can find correlations
between words and documents.

III.3.2 svd: Mathematical foundations

In this Section we will explain svd, then main properties of low-rank ap-
proximation and how we can take advantage of them, and its application to
wsd.
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III.3.2.1 Matrix and svd decomposition

Given a m × n term-by-document matrix M , let U be a m × m matrix
whose columns are orthogonal eigenvectors of MTM , and V be the m ×
n matrix whose columns are orthogonal eigenvectors of MMT . Following
theorem III.3.1 below, svd decomposes a matrix M as a product of three
matrices.

Theorem III.3.1 Let be k the rank of M ∈ Rm×n matrix. Then, we obtain
a singular value decomposition of the form

M = UΣV T =

k=min{m,n}∑
i=1

σiuivi
T (III.10)

where

• U = [u1, ..., um] ∈ Rm×m: ui columns are orthonormal and called left
singular vectors of M .

• V = [v1, ..., vm] ∈ Rm×n: ui columns are orthonormal and called right
singular vectors of M

• Σ is a diagonal matrix which contains k singular values in descending
order, where σ1 ≥ σ2 ≥ ... ≥ σk ≥ ... ≥ 0 and k = min {m,n}.

Note that in wsd the number of instances (documents) is much lower
than the number of features (terms), and thus n << m and k is always equal
to the number of instances.

U =


dim1 dim2 dim3 dim4 dim5

cosmonaut −0.44 −0.30 0.57 0.58 0.25
astronaut −0.13 −0.33 −0.59 0.00 0.73
moon −0.48 −0.51 −0.37 0.00 −0.61
car −0.70 0.35 0.15 −0.58 0.16
truck −0.26 0.65 −0.41 0.58 −0.09

 (III.11)

Σ =


2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

 (III.12)
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V T =


d1 d2 d3 d4 d5 d6

dim1 −0.75 −0.28 −0.20 −0.45 0.33 −0.12
dim2 −0.29 −0.53 −0.19 0.63 0.22 0.41
dim3 0.28 −0.75 0.45 −0.20 0.12 −0.33
dim4 0.00 0.00 0.58 0.00 −0.58 0.58
dim5 −0.53 0.29 0.63 0.19 0.41 −0.22

 (III.13)

For instance, the decomposition of the matrix III.9 is given in matrices
III.11 through III.13. As mentioned before this matrices have orthonor-
mal columns, which means that columns vectors are unit length and are
orthogonal to each other (UTU = V TV = I, where I is a diagonal matrix).
Matrix III.12 contains the singular values of M . Note that it is a diagonal
matrix, where the singular values are stored in descending order. All singular
values are semi-positive and the ith singular values indicates the amount of
variation among the ith axis.

As intuitive explanation of svd, it is possible to view svd as a process
where the axes are rotated in the n-dimensional space. The largest variation
among the documents are represented along the first axis, the second largest
variation along the second dimension and so forth until the last singular value.
The matrices U and V represent terms and documents in a new space, so
the first row of U corresponds to the first row of M and so on. Similarly, the
first column of V corresponds to the first row of M . Further explanation will
be given in the next section.

III.3.2.2 Low-rank approximation

svd can be used to solve the low-rank approximation as we will show in
this section. Given a m×n matrix M the low-rank approximation consist in
finding the Mk matrix of rank at most k, where we minimize the discrepancy
between M and Mk, calculated by the Frobenious norm of the matrix differ-
ence ||M −Mk||. If k << r, where r is the rank of M , then this is referred
to as a low-rank approximation.

Once we have decomposed the matrix M in singular values of form M =
UΣV T , then we can select the first p singular values from Σ, where p < k
and k is the rank of M . Replacing by zeroes the rest of the singular values
we obtain the Mp = UΣpV

T as the rank-p approximation to M . The rank
of the approximated matrix is at most k.
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The following theorem introduced by Eckart and Young (1936) explains
that among the matrices with rank p or lower, Mp is the one with the highest
approximation to M .

Theorem III.3.2 Given the decomposition in III.3.1, where the rank of M
is k (k ≤ min(m,n)). The following is defined:

Mp = UpΣpV
T
p =

p∑
i=1

σiuiv
T
i p ≤ k, (III.14)

where Up and Vp are first p columns of U and V . The following is satisfied:

min
A‖rank(A)≤p

||M − A|| = ||M −Mp|| = σp+1 (III.15)

Due to Theorem III.3.2 we know thatMp is the best rank-k approximation
to M and the incurring error is σk+1. Thus, we move from the vector space
defined by M to the vector space defined by Up and this new space is called
the p dimensional reduced space or the latent semantic space.

As we mentioned before, selecting the first p dimensions we obtain the
best rank-k matrix approximation. In other words, via svd it is possible to
represents the terms and the documents in a low-dimensional vector space.
This is a key property to exploit correlations among words and documents.
Words with similar co-occurrence patterns are projected onto the same direc-
tion. This way, semantically related words and documents will be measured
as similar even if the words do not share documents or the documents do not
share words.

B = Σ2V
T
2 =

 d1 d2 d3 d4 d5 d6

dim1 −1.62 −0.60 −0.44 −0.70 −0.70 −0.26
dim2 −0.46 −0.84 −0.30 1.00 0.35 0.65


(III.16)

The example in Equation (III.11) shows that the second dimension on
matrix U (column dim2) splits up the words in two groups. The first group
contains the terms related to space exploration topic(cosmonaut, astronaut,
moon) with negative values in this column, whereas the second group con-
tains automobile-related terms (car, truck), with positive values.

Equation (III.16) shows the representation of the documents in two di-
mensions after rescaling to the first 2 singular values (with the diagonal
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d1 d2 d3 d4 d5 d6

d1 1.00
d2 0.78 1.00
d3 0.40 0.88 1.00
d4 0.47 -0.18 -0.62 1.00
d5 0.74 0.16 -0.32 0.94 1.00
d6 0.10 -0.54 -0.87 0.93 0.74 1.00

Table III.1: The matrix of document correlation calculated with the cosine
similarity. The documents are represented in 2 dimension (see Eq. (III.16))
and rescaled with the singular values: BTB = V Σ2Σ2V

T

values 2.16 and 1.59 from Σ) in this way: Σ2V
T . As the term-similarity has

changed, it also affects document similarity. Table III.1 shows the matrix of
document similarity when using the 2 dimension space. As one could expect
from the contents of the documents, we can see two groups of highly similar
documents, with d1 and d2 (0.88) and d4, d5 and d6 (0.94, 0.93, 0,74) show-
ing high similarity among them. Note that d2 and d3 are now highly similar,
even if they don’t share words any words and the similarity in the original
space is 0.00.

This toy-example shows that svd is able to bring together terms with
similar co-occurrence patterns, and also makes it possible to improve the
quality of any pattern recognition system based on distributional similarity.
The next section will show how to extend this idea to wsd.

III.3.3 Application to wsd

Our approach is inspired by Latent Semantic Indexing (lsi), as introduced by
Deerwester et al. (1990). This method projects unseen vectors onto the low-
dimensional space collapsing terms with similar correlation patterns, such
as synonyms, onto the same dimensions, incrementing the similarity among
their respective vectors.

In the following sections we will detail the different approaches to build
the matrices and then apply the decomposition. In general terms, we build
two types of matrices:

• A unique term-by-document matrix for every target word to be dis-
ambiguated. We will refer to this as the single matrix for all words
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matrix. This approach is very similar to lsi and to that used in (Gliozzo
et al., 2005).

• A feature-by-instances matrix for each target word, where in the
columns we use the context of each instance of the target word, and in
the rows we use all features as defined in Section III.1. We will refer to
these as one matrix per target word matrices.

After we build the matrices, we proceed to decompose it into three ma-
trices (M = UΣV ) and then construct the reduced dimensionality space
selecting the first p singular values. Thus we reduce the current space to p di-
mensions, and can thus project hand-tagged training and test instanced into
the reduced space. The Equation (III.17) shows how to make this projection,
where ~tT is the transpose of the vector of features or terms corresponding to
an occurrence of the target word. Thus we can easily project any vector that
did not occur in the initial matrix M (typically test instances that we need
to classify) into the low-dimensional space.

~tp = ~tTUpΣ−1
p (III.17)

Note that we can map each row (features or terms) and columns (instances
or documents) to the p dimensional space, because this space is defined by
the p principal eigenvectors of MMT and MTM .

Once we project all training and testing instances into the reduced space,
we can apply any ml algorithm as usual, using the values of the reduced
dimensions as new features.

In the following sections we will describe the details on matrix construc-
tion and what we would expect from them: Section III.3.3.1 describes how
to use the term-by-document matrix for wsd task, Section III.3.3.1 focuses
on the feature-by-instance matrix, and Section III.3.3.3 shows how to use
unlabeled data in order to obtain more reliable correlations when applying
svd.

III.3.3.1 Single matrix for all words

When building a single matrix for all words (sma), we define a unique
matrix for all target words. The idea is to use unlabeled data obtained from
any corpus to find correlations among terms occurring in the documents.
Those terms are actually the values of bag-of-word features in train and test
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Figure III.4: Summary of the whole process of extracting the svd features
from sma matrix: sma features.

instances, so we are actually finding correlations between those features, and
thus overcome the low overlap of features caused by data-sparseness and
domain shifts.

In order to build the sma matrix and extract the features to be used in
wsd, the method comprises the following steps:

i. Extract terms from unlabeled corpora. Previously, documents are tok-
enized and lemmatized.

ii. Build the term-by-document matrix. Optionally, it is a good idea to
apply a weighting scheme for term frequencies such as tf-idf or log-
entropy.

iii. Decompose the matrix with svd (see Eq. (III.10)) and obtain the pro-
jection matrix UpΣ−1

p after the new dimensionality have been chosen
(p).

iv. Project the bag-of-word features of labeled data (train/test) onto the
reduced space, obtaining p new features.

Figure III.4 illustrates the steps above. As this feature space is obtained
from the sma matrix we will refer to the new features as sma features.
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Figure III.5: Summary of the whole process of extracting the svd features
from omt matrix: omt features.

This technique is very similar to previous work on svd (Gliozzo et al.,
2005). The dimensionality reduction is performed once, over the whole un-
labeled corpus, and it is then applied to the labeled data of each word. The
reduced space is constructed only with terms, which correspond to bag-of-
words features, and thus discards the rest of the extracted features. Given
that the wsd literature has shown that all features, including local and syn-
tactic features, are necessary for optimal performance (Pradhan et al., 2007),
we explored other alternatives to construct the matrices, as explained in the
following section.

The use of this type of features are reported in the following chapters:
Chapter IV, Chapter V and Chapter VI.

III.3.3.2 One matrix per target word

The wsd literature has shown that complex and rich features are necessary
for an optimal performance (Pradhan et al., 2007). We propose an alternative
method for applying svd based on the idea of using all features (not only
bag-of-words as in sma) and treating each occurrence of the target word
as documents. that is, instead of terms we use all extracted features, and
instead of documents we use occurrences of the target word. We will call this
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feature-by-instance matrices one matrix per target word (omt). Note
that this variant performs one svd process for each target word separately,
hence its name. As in previous matrix the goal is twofold:

• Find correlations among features that show similar occurrence pattern
in training set. The idea is to collapse in one dimension those features
that manage similar information.

• Increase the overlap among the training and testing vector and, this
way, deal with the data sparseness problem.

Contrary to sma, we construct one matrix per target word based on the
training set. So the method for each word is as follows:

i. Construct a corpus with occurrences of the target word. The corpus can
include labeled training corpus, but given the fact that we do not use
sense labels in the process, we can also add large amounts of unlabeled
data (see Section III.3.3.3 for further details).

ii. Extract features from the context of each occurring instance.

iii. Build the feature-by-example matrix and, if desired, apply a weighting
scheme.

iv. Decompose it with svd, select the desired number of dimensions, and
construct the projection matrix (UpΣ−1

p ).

v. Finally, project all labeled training and test instances into the reduced
space, thus obtaining p new features.

Figure III.5 illustrated all the steps explained above. We call the newly
induced features omt features.

The use of this type of features is reported in Chapter IV, Chapter V and
Chapter VI.

III.3.3.3 svd with unlabeled data

The knowledge acquisition bottleneck is a critical problem in wsd. If we
were to apply omt over the training instances, the resulting matrix would
only contain tens of examples, and the correlations found in the data might
not be reliable. Given the fact that the sense (label) of the instances is not
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used in the svd process, we can use unlabeled data to have a larger matrix
for each word, and hopefully obtain better correlations in the reduced space.
Depending on the experiment and the domain we have used different unla-
beled corpora to get large amounts of unlabeled instances, and thus augment
the feature-by-instance matrix M into augmented M ′. In our experiments we
have tested different amounts of unlabeled data. We call this process back-
ground learning. A similar idea is used in (Zelikovitz and Hirsh, 2001) with
Latent Semantic Indexing for Text Categorization. Once we have done the
svd decomposition of M ′ we obtain the new U ′ and Σ′p, we project training
and testing instances as in Equation (III.17) and can thus proceed to apply
any ml method.

In the case of sma matrices, the starting point is already untagged cor-
pora, where we do not have any sense tagged. In this case, we also experi-
mented with different sources and sizes of corpora.

Chapter IV will focus on the use of unlabeled data without any domain
adaptation. Chapter V and Chapter VI will report the effect of domains
and sources of the unlabeled data in semi-supervised domain adaptation and
supervised domain adaptation, respectively.

III.3.4 Prior Work on svd for wsd

Although svd is a well-known technique and widely used in several disciplines
out of the nlp area such as Psychology, Image Retrieval, Signal Processing,
etc. It is has also been widely used in Information Retrieval, Text classifica-
tion and Term Similarity, but it’s application to wsd is more rare. Below,
we will present some relevant literature that use svd for wsd, but will also
include work in other areas.

III.3.4.1 A kernel pca method (Wu et al., 2004)

Wu et al. (2004) presented a wsd system based on Kernel Principal Compo-
nent Analysis (kpca), which is a dimensionality reduction technique. They
outperformed the best systems at the date in the Senseval-2 data (cf. Section
II.4) obtaining %65.7 of accuracy. Their results were statistically significant
at 0.10 level according to bootstrap resampling method.

They built a kernel which performed pca over a nonlinear implicit func-
tion. pca can be understood as the equivalent to apply svd on a covariance
matrix of data. They claimed that the nonlinear principal components anal-
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ysis applied stronger generalization biases, taking combinations of predictive
features into account. In (Su et al., 2004), they used large amounts of unla-
beled data in order to improve the results in Senseval-2.

III.3.4.2 Complex kernel combination (Gliozzo et al., 2005)

This work combines various knowledge sources into a complex kernel combi-
nation. The kernels are used by a svm algorithm. Among the kernels, Gliozzo
et al. (2005) include the lsa kernel, which uses svd to reduce the space of the
term-to-document matrix. They computed the similarity between train and
test instances using a mapping to the reduced space as an implicit function
of the lsa kernel (similar to our sma method in Section III.3.3.1).

They report state-of-the-art performance on a number of languages in the
Senseval-3 lexical-sample datasets. An early version of the method was used
in the Senseval-3 lexical-sample competition (Strapparava et al., 2004) (cf.
Section II.4.3). Our present work differs from theirs in that we propose an
additional, more effective, method to use svd (the omt method), and that
we focus on domain adaptation.

III.3.4.3 Alternating Structure Optimization (Ando, 2006)

Ando (2006) applied Alternative Structured Optimization (aso) to wsd.
aso tries to take advantage of all labeled examples (irrespective of the target
word) for learning, using labeled training examples for other words. For such
purpose, she used a multi-task learning framework, creating m predictors
(one for each target word) and finding the structure which represent the
relations with respect to the other problems. This structure is found applying
svd to feature-by-predictor matrices, in contrast to our use of svd over term-
by-documents, or features-by-examples.

She first trained one linear predictor for each target word, and then per-
formed svd on 7 carefully selected submatrices of the feature-by-predictor
matrix of weights. In order to make the selection, the author focuses on the
feature type and the PoS of the predictors. The system attained small but
consistent improvements (no significance data was given) on the Senseval-3
lexical sample datasets using svd for multi-task learning and unlabeled data.
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III.3.4.4 A multiclassifier in a reduced space (Zelaia et al., 2008)

This work sets up several k-nn classifiers, and combine them using a Bayesian
voting scheme. They used omt feature space, as inspired by this dissertation.
Once they reduced the space, they implement a bagging approach, and by
random resampling they obtain a set of k-nn classifiers.

Their system was tested in SemEval-2007 lexical-sample data set and
they obtain 85.65% of F-score. Among the number of parameters (number
of classifiers, size of training set, number k nearest neighbor) they analyzed
the effect of svd dimensions. They concluded that the best dimension was
set as half of the dimensions according to the number of training instances.
Note that, in SemEval, all the words in training set not do share the same
amount of examples, so that each word in the test has a different dimension
reduction.

III.3.4.5 svd feature selection for taxonomy learning (Francesca
and Zanzotto, 2009)

Although this work does not focus on wsd, it is highly related since some kind
of semantic disambiguation is needed in order to learn taxonomic relations.
As a learning model they use probabilistic learning model introduced by Snow
et al. (2006), and they use svd as unsupervised feature selection method for
their logistic regression classifier.

Their evaluation consists in determining how well their model can repli-
cate an existing taxonomy (a portion of WordNet 1.5). The use of svd is
beneficial, obtaining up to 55% of accuracy.

III.3.4.6 Works from other areas

Zelikovitz and Hirsh (2001) introduce the notion of background learning for
Text Classification (tc). They claim that lsi can suffer when there is little
data to train. For example, many words occur only once in small datasets,
and thus limit the power of lsi to create a proper model. The solution is to
use large amounts of unlabeled data in order to get richer and more reliable
patterns from text. The intuition is tested on four datasets for tc: Technical
papers, Web page titles, WebKB and 20 Newsgroup. In all the dataset,
except WebKB, lsi with background outperforms default version of lsi. In
WebKB both approaches show similar performances. In addition, the use of
background text show robustness, since performance on different amount of
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training data vary less than without unlabeled data. They conclude that the
use of unlabeled data seems to be useful when there is lack of training data.

(Kim et al., 2005) presents an extensive survey about dimensionality re-
duction in tc. They try several dimensionality reduction methods: svd,
Centroid-based algorithm for dimension reduction of clustered data, and
Generalized-svd. The last two methods try to maintain the clustering struc-
ture, but the latter maximizes the scatter between clusters while minimizes
the scatter within clusters by defining two matrices and applying a dimen-
sional reduction technique. The reduction techniques were applied over three
ml algorithms: vsm, svm and k-nn (cf. Section III.2.1). Surprisingly, the
best improvement is obtained when k-nn when generalized-svd is performed.
Although svm algorithm outperform the rest of the classifiers, the improve-
ment is marginal when svd is applied. Similarly, in (Zelaia et al., 2005) k-nn
obtains the best accuracy when dimension reduction is performed, and again
svm algorithm decrease its performance. According to this dissertation, clus-
tering the training data would increase the bias of the model, and this could
be harmful for the domain adaptation strategies.

Pereira and Gordon (2006) presents a novel classification method which
combines dimensionality reduction with svd and optimization of a single
learning objective. They present an efficient algorithm which optimizes these
two objective in a single optimization process. They recall that usually svd
computes the decomposition without reference to the label of training data.
They introduce the decomposition procedure as a component inside the op-
timization problem, giving some weight regarding the loss function. The
optimization is carred out by a sequential optimization method. The Sup-
port Vector Decomposition Machine (svdm) is tested in fMRI analysis and
the results show that this method outperforms the rest of the two phase
approaches.

In our opinion, svdm is not a useful strategy for domain adaptation, since
svdm pays attention on the classification problem, and herein will be biased
to training distribution, which differs from the test data.

III.4 Ensembles of classifiers

The combination paradigm, known as ensembles of classifiers, is a very well-
known approach in the ml community. It helps reduce variance and yields
more robust classification results. The important point is that the errors
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produced by the combined classifier are not as correlated as those produced
by the single classifiers. (Dietterich, 1997) provides interesting insights mo-
tivating classifier combination.

The most common combination schemes are based on weighted voting,
where depending on the reliability of each classifier, the given vote is weighted.
Nevertheless, this weighing scheme can show overfitting when the combined
classifier is tested on domains different from the training domain. We pro-
pose a combination scheme that where the bias of the single classifiers is
removed, but still keeping the vote weighted. This is possible due to the
k-nn classifiers properties.

We also test kernel combinations. Kernels give the chance to combine
different knowledge sources (different feature spaces) in very elegant and
simple ways (Cristianini and Shawe-Taylor, 2000).

In this dissertation we deal with the sparseness and redundancy of the
data by means of combining classifiers with different feature spaces. We
have shown that the richer feature space, better are the results (Agirre and
Mart́ınez, 2004a). Large feature spaces tend to have highly redundant and
heterogeneous features. Regarding heterogeneity, splitting the feature space
might allow the learning algorithm to better capture the patterns in the data.
Obtaining more coherent feature spaces we could in principle avoid the noise
created by redundant information. We tested three possible improvements:

• Apply svd to find correlations in the feature space.

• Use unlabeled data from different domain sources for background learn-
ing.

• Separate the feature space and train different voting classifiers. Note
that in the latter voting scheme the svd features are introduced.

The following sections will describe the two combination schemes pro-
posed in this dissertation. Section III.4.1 describes k-nn combination, and
Section III.4.2 shows our approach for kernel combination.

III.4.1 k-nn combination

Our k-nn combination method takes advantage of the properties of k-nn
classifiers and exploit the fact that a classifier can be seen as k points (number
of nearest neighbor) each casting one vote. This makes easy to combine
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several classifiers, one for each feature space. For instance, taking two k-nn
classifiers of k = 5, C1 and C2, we can combine them into a single k = 10
classifier, where five votes come from C1 and five from C2. This allows to
smoothly combine classifiers from different feature spaces.
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Figure III.6: How two k-nn systems trained on different feature space can be
combined. Each system casts k votes and final decision is taken among 2k
votes.

Figure III.6 shows how two k-nn systems, each trained in a different fea-
ture space, can be combined. Every vote (one of the k neighbor) is weighted
depending on its classifier and space, and each classifier will cast k votes. The
final decision is taken among all the casted neighbors. The Figure shows a
combination of two systems, but equally can be generalized to n k-nn sys-
tems.

In order to combine them we firstly weighted each vote based on the cosine
similarity of each selected neighbor. Then we noticed that each features space
has its own similarity scale and it could introduced some kind of bias through
certain classifier. For the rest of the experiments, in order to keep away from
this situation, we decided to weight each vote by inverse ratio of its position
in the rank of the single classifier, (k − ri + 1)/k, where ri is the rank. The
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rank weighting methods alleviate bias problem and maintains the importance
of some neighbors regarding to others less similar.

In this work we built various single k-nn classifiers trained on a number
of features spaces. The features spaces are based in three main featured
presented up to this point: omt, sma and the original features. We will
show through the dissertation that this way to combine feature space is an
effective and robust one.

Combination of k-nn classifiers is a relatively unexplored area. Related
to wsd task, for instance, the JHU-English system (Yarowsky et al., 2001;
Florian et al., 2002), which used a voting scheme, obtained the best perfor-
mance at English lexical sample task in Senseval-2. The main conclusions of
their study was that the feature space had significantly greater impact than
the algorithm choice, and that the different algorithms help to construct
significantly a more robust wsd system.

Kohomban and Lee (2005) showed in a different wsd task that building
separate k-nn classifiers from different subsets of features and combining
them works better than constructing a single classifier with the entire feature
set. Their combination was based on the weighted single voting, and they
used held-out development data set for adjusting classifiers weights.

Another approach is presented in (Stevenson and Wilks, 2001). In this
work, they integrate the answers of three partial taggers based on different
knowledge sources in a feature-vector representation for each sense. The
vector is completed with information about the sense, and simple collocations
extracted from the context. A memory based learning algorithm is then
applied to classify new examples.

An interesting method to create a multiclassiefier is proposed by Zelaia
et al. (2008). Authors present a multiclassifier based on obtaining multiple
training sets by ramdon subsampling and training k-nn classifier on each
sampled training test. The combination is done by applying a Bayesian
voting scheme, where the confidence of each single classifier is calculated in
the training phase.

Not related to the wsd task, Bay (1999) describes MFS (Multiple Feature
Subset), a combination of nn (nearest neighbor) algorithms that classifies
using simple voting from nn classifiers, each having access only to a random
subset of feature. As we did, the author built less accurate single classifiers
(each classifier making independent errors) and joined them into a unique
classifier. The author tried to build less correlated feature subsets in order
to make independent errors. The experiments were done in several datasets
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from the UCI Repository. Related to this, Dietterich (1997) claims that
splitting features only works when the feature space is highly redundant. We
implemented the proposal from Bay (1999) in order to compare to ours.

III.4.2 Kernel combination

In Section III.2.1.5 we have introduced some aspects of kernels, describing
their essential properties. This section will describe our proposal to combine
the obtained feature spaces via kernels.

In previous Section III.3.3 we explained how to extract learning features
by mapping with svd matrices. In this section introduce how to use those
mappings in a implicit and simple way by using kernels.

As explained previously, the basic idea is to find a suitable mapping
function (φ) in order to get a better generalization. Instead of doing this
mapping explicitly, kernels give the chance to do it inside the algorithm:
k(x, z) = 〈φ(x) · φ(z)〉. This way, we can very easily define mappings rep-
resenting different information sources and use this mappings in several ma-
chine learning algorithm. In our work we used svm.

In order to exploit the properties of the different mapping functions de-
fined in Section III.3, we defined three individual kernels. Each kernel cor-
responds to the previously explained feature spaces (omt, sma, original fea-
tures). We have taken advantage of the svd decomposition and its resulting
mapping matrix and have defined them as an implicit mapping function. Af-
terward, we define a kernel combination schema in order to learn together
the three feature spaces.

Firstly, we define the original feature kernel (korig). Our aim is to use
the information from the original features. This way, the mapping function
can be considered as identity function, φ : X → X , and the kernel may be
defined as:

korig(xi,xj) =
〈xi · xj〉√

〈xi · xi〉 〈xj · xj〉

The denominator part is used to normalize and avoid any kind of bias in
the combination.

Next we define the omt kernel (komt) and sma kernel (ksma) by us-
ing omt and sma projection matrices, respectively (cf. Section III.3), in
order to defined mapping functions. We define omt mapping function as
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φomt : Rm → Rp, where m is the number of the original features and p the
new dimensionality into the projected space by omt matrix. For the sma
mapping function (φsma) we define a similar function, but instead of using
omt, sma matrices are used. So both kernels, komt and kSma, may be defined
as follow4:

ksvd(xi,xj) =
〈φ(xi) · φ(xj)〉√

〈φ(xi) · φ(xi)〉 〈φ(xj) · φ(xj)〉
Finally, we define the kernel combination schema capturing the properties

of each mapping function and generalizing together as follows:

kcomb(xi,xj) =
n∑

l=1

kl(xi,xj)√
kl(xi,xi)kl(xj,xj)

where n is the number of single kernels explained above, and l the index
for kernel type. Note the combination of these kernels into a single one keeps
the K kernel matrix (Gram matrix) as positive semi-definite.

4In order avoid repetition in formulas we define only once as ksvd. It is enough to
substitute φ by φomt or φsma to obtain komt and ksma, respectively.
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CHAPTER IV

Combination of feature spaces and unlabeled

data with SVD for WSD

In this chapter we explore three different improvements to state-of-the-art
systems: 1) using Singular Value Decomposition in order to find correlations
among features, trying to deal with sparsity, 2) using unlabeled data from
a corpus related to the evaluation corpus, and 3) splitting the feature space
into smaller, more coherent, sets. Each of the proposals improves the results,
and properly combined are able to improve the state-of-the-art results for the
different Senseval and SemEval dataset (lexical-sample and all-words). The
analysis of the results provides further insights and possibilities for the future.

IV.1 Introduction

ml methods that rely on tagged text have to face data sparseness, specially
in wsd, where only a small amount of tagged data is available (cf. Sec-
tion I.4). In addition, supervised wsd systems degrade when the domain
of the train and test texts differs (we shall deal with this in the following
chapters). The impact of the above problems is exemplified by the frustrat-
ing handful of systems which are able to beat the simple mfs baseline in
all-words tasks (Snyder and Palmer, 2004; Pradhan et al., 2007).
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As explained in Chapter III, we will tackle the sparsity problem using
svd, unlabeled data, and combinations of splits of the feature space. We will
show that each of the modifications in the feature space improves the results,
and properly combined they obtain state-of-the-art results. The analysis of
the results will provide further insights and possibilities for the future.

Several experiments have been performed in a number of datasets. This
chapter reports results on the lexical-sample and all-words tasks of Senseval-
2, Senseval-3 and SemEval-2007 datasets. Some experiments cover different
goals, and thus the order of the experiments, as reported, does not follow
a chronological order. Figure IV.1 organizes all the experiments performed
in this chapter. The figure details the goals for each dataset and which
techniques have been used.

In the first set of experiments we will report the results obtained in
Senseval-3 lexical-sample using svd-omt features, unlabeled data to aug-
ment the svd matrices, and splits of feature sets. Similarly, in the second
set of experiments we will focus on the features obtained from sma matrix,
where we used unlabeled data and a split of the feature set in smaller spaces.
In this case, we set the parameters in Senseval-2 lexical-sample dataset, and
test in Senseval-3 lexical-sample and all-words. Finally, in the third set of
experiments we will report our participation in SemEval-2007 lexical-sample
and all-words. In this dataset we tried to confirm our findings in the previous
experiments.

The chapter is structured as follows. Section IV.2 will organize the ex-
periments and remark the explicit goals, including the feature set and ml
methods used, whereas Sections IV.3 to IV.5 show the results achieved in
each experiment setting. Finally, Section IV.6 draws the conclusions and the
future work.

IV.2 Experimental settings

The aim of this section is to introduce the experiments we performed in the
current chapter and link each dataset with a set of experiments (see below).
In order to facilitate the reading of the results and the conclusion we will
remark the goals of each setting (Figure IV.1 summarizes the experiments,
and their goals for this Chapter). The Section is organized as follow, first
will describe the target datasets for our experiment. Next section will list
the learning features, and the ml algorithms tested in this chapter, including
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the applied combinations, used the experiments.

First set of experiments

• Goal: to prove the usefulness svd-omt application (see Sec-
tion III.3.3.2) , unlabeled data, and separation of feature spaces.

• Dataset: Senseval-3 lexical-sample task.

Second set of experiments

• Goal: Analysis on svd-sma application (see Section III.3.3.1), unla-
beled data and separation of feature spaces.

• Datasets:

– Senseval-2 lexical-sample: Optimization of parameters.

– Senseval-3 lexical-sample: Test set.

– Senseval-3 all-words: Test set.

Third set of experiment

• Goal: Confirms of findings of svd-omt, svd-sma and other feature
space combination, and participate on the SemEval-2007 competition.

• Dataset:

– Semeval 2007 lexical-sample.

– Semeval 2007 all-words.

Figure IV.1: A brief summarization of the experimental settings: The goals
and used components for such purpose.

IV.2.1 Datasets

Senseval-2 lexical-sample was used for parameter optimization. Specially,
we selected the best svd dimension and combinations setting. Regarding k-
nn, previous experiments (Senseval-3 lexical-sample dataset) showed that 5
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was a good choice, and therefore all the following experiments were carried
with a k set to 5. vsm does not need any optimization, since it has not any
parameter, and finally, we have used svm optimized in a previous experi-
ments (Senseval-3 lexical-sample). The results on this test set are described
in Section IV.4.

Senseval-3 lexical-sample has been used in two scenarios. In the first our
goal was to prove the usefulness of the svd over one matrix per target word
technique (omt; see Section III.3.3.2). In the second experiment we wanted
to confirm the results over Senseval-2 lexical sample.The results with omt
are shown in Section IV.3, and for sma in Section IV.4.

Senseval-3 all-words has been used to confirm findings from Senseval-2
lexical-sample. The best sma-svd dimensions, the optimum amount of un-
labeled data and best combination were we chosen according to the results
in Senseval-2. The details on the test set are described in Chapter II, and
we show the results in Section IV.4.

In Section IV.5 we will describe our participation in SemEval 2007 lexical-
sample. As in the rest of the datasets, we focused on two svd applications
(omt and sma), the split of features set and k-nn combinations. In the same
section, we describe our participation on the all words task of SemEval
2007.

The British National Corpus (Bnc) was used to obtain the unlabeled
examples to augment the omt and sma matrices in all experiments.

IV.2.2 Learning Features

The set of features is split in two. On the one hand we had original the
features, those usual in wsd systems, which are directly extracted from the
target corpus. They comprise local collocations, syntactic dependen-
cies, bag-of-words and domain features (cf. Section III.1). Note that
domain features only have been used the third set of experiments. On the
other hand we have the svd features, which are induced from the original
features via dimensionality reduction. We used both omt and sma features
(Section III.3.3). omt were used on the first and third set of experiments,
and sma on the second and third sets.
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IV.2.3 Learning methods

We used three well known classifiers in this chapter: Support Vector Machines
(svm) , k-Nearest Neighbors (k-nn), and the Vector Space Model (vsm). All
these methods are more detailed explained in Section II.3.2. Regarding svm
we used linear kernels in SVM-Light (Joachims, 1999) implementation. We
estimated the soft margin (C) for each word using a greedy process in a
preliminary experiment on the source training data using cross-validation.

k-nn, a memory based learning method, the similarity among instances
was measured by the cosine of their vectors. The test instances were labeled
with the sense obtaining by the maximum the sum of the weighted vote of
the k most similar contexts. k was set performing 3-fold cross-validation in
the training data.

Finally, for the vsm each occurrence context is represented as a vector,
and each sense in the training data is characterized by a centroid vector. The
test vector is sense-assigned by the closest centroid. The similarity function
is computed by the cosine formula.

Systems combination. We used combination of k-nn systems in order to
combine different feature spaces. As explained in Section III.4.1, we built
several single k-nn classifiers trained each in split spaces or in latent svd
spaces. In order to combine them each single k-nn classifier cast k neighbors,
being each one vote. Depending on the experiment we weight each vote either
by the cosine similarity computed in its space or by the inverse ratio of its
position in the rank of the single classifier, (k−ri+1

k
), where ri is the rank.

IV.3 1st experiments: svd-omt, unlabeled data

and features split

In this set of experiments we wanted to test the usefulness of svd for wsd
task. Specially, we focused on omt in order to extract the new learning
features. In addition to that, we augmented the matrices with unlabeled
data and split the features. Finally, we combined all the new features relying
on different k-nn systems, each one trained on a different feature space.

The current section is organized as follow. First, we will present the
results of the baseline methods. Next sections will describe the improved
system based on the previously shown improvements (svd, unlabeled data
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Classifier Recall
k-nn k=5 67.7
k-nn k=4 67.4
svm 62.3
vsm 68.0

Table IV.1: Results for baseline classifiers in 3-fold cross-validation (Senseval-
3 training set).

Classifier Recall
k-nn k=5 70.5
svm 71.2
vsm 71.5

Table IV.2: Results for baseline classifiers in the Senseval-3 lexical-sample
test set.

and feature split), their optimization and results. The results of combination
will be shown in Section IV.3.3, and finally we will discuss the achieved goals.

IV.3.1 Results of baseline methods

Initially we test the performance of k-nn, svm and vsm trained on the orig-
inal features and obtained the baseline results . vsm has no parameters, but
k-nn needs to find an optimal k (number of neighbors) and svm allows to
optimize the “soft margin”. We used 3-fold cross-validation on the Senseval-
3 lexical-sample training set. For k-nn we only tried two values: k = 5 and
k = 4. For svm we used the “soft margin” value obtained by cross-validation
on greedy process from other experiments.

Table IV.1 shows the results from cross-validation. We can see that the
results of vsm and k-nn are very similar, with vsmoutperforming k-nnfor
0.3 points, and svmperforming much lower1. For the rest of the experiments,
we set k = 5 for all uses of k-nn. The results on the test set are shown
in Table IV.2, with vsm increasing its advantage over k-nn and svm in the
middle of both.

1This could be because we used the wrong C estimation
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IV.3.2 Improved systems

Now, we will show the results for the improved systems. We tested the
previously shown baseline systems on the omt features and on the split
features spaces.

Splitting feature space

As seen in Section IV.2.2, wsd uses a high number of heterogeneous fea-
tures. All the methods used in these experiments are based on geometrical
properties of the feature space. If we split the problem into more coherent
feature sets, the classification algorithms should find easier its way in such a
simple space. We can thus build separate classifiers for each set of features,
and hopefully obtain better results.

In order to test this hypothesis we split the features in two subsets:

• Topical features: Comprising the bag-of-word features.

• Local features: Comprising the local collocations and the syntactic
dependencies.

Parameter setting for svd

svd needs to set several parameters which can affect the performance. In
order to set those parameters we ran several preliminary experiments using
svd coupled with k-nn using 3-fold cross-validation as before. In the rest of
the chapter, svd was performed using the following parameters:

• Number of desired dimensions: We tried with 100, 200, 300, 500
and 1000 dimensions, and the best performance was obtained with 200
dimensions.

• Weighting scheme for the frequencies in the feature-by-instance ma-
trix: We tried different classic schemes, including local weighting for-
mulas such as term frequency (tf), log and binary (min{tfij, 1}), and
global measures like inverse document frequency (idf) and entropy. For
these set of experiments we used log and entropy weighting scheme,
replacing the term frequency in the cells of the matrix, tij ∈ M , by
log(tij) · entropy(i).
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Classifier Recall
k-nn k=5 67.7
svm 62.3
vsm 68.0
k-nn-omt k=5 69.8
svm-omt 61.2
vsm-omt 63.9

Table IV.3: Results for k-nn and vsm with svd in 3-fold cross-validation
(Senseval-3 training set).

k-NN (k = 5) Recall diff.
plain 67.7 —
local+topical 69.4 +1.7
omt 69.6 +1.9
omt (25% BNC) 69.2 +1.5
omt (50% BNC) 69.6 +1.9

Table IV.4: Improved k-nn classifier in 3-fold cross-validation (Senseval-3
training set). Plain stands for baseline k-nn.

• Threshold for global frequency (g): After building the matrix we can
remove features that are very common (the less informative). We tried
with different thresholds, and finally we chose to accept all features
(g = 0).

Improved results

Table IV.3 presents the results of doing svd, and then applying vsm, svm and
k-nn on the reduced space. We can observe that only k-nn improves per-
formance, with vsm and svm getting lower results. These and other prior
experiments motivated us to only use k-nn on the improved systems.

Table IV.4 shows the results on the training set for the baseline k-nn sys-
tems, as well as all improvements explored. Plain stands for the baseline
k-nn system. The difference over the baseline system shows that all im-
provements were positive, raising from 1.5 to 1.9 the performance of the
baseline. Still, there is no improvement observed when introducing unla-
beled data into svd (omt + 25% of the Bnc and omt + 50% of the Bnc)
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Classifier Recall diff.
plain 70.5 —
local+topical 70.8 +0.3
omt 70.7 +0.2
omt (25% BNC) 70.8 +0.2
omt (50% BNC) 71.2 +0.7
vsm 71.5 +1.0
svm 71.2 +0.7

Table IV.5: Improved k-nn classifier in the Senseval-3 lexical-sample test set.
Plain stands for baseline k-nn. vsm and svm results are also provided for
comparison.

compared to using labeled data only (omt in Table IV.4).
Table IV.5 shows the same data for all baseline systems (including vsm and

svm) on the test set. The improvement here is lower but consistent with
Table IV.4. The only difference is that using 25% or 50% of the Bnc as
unlabeled data for svd is better than not using labeled data. Table IV.5
also presents the results of the other two baseline systems, showing that all
k-nn systems are below vsm and svm. This motivated us to try to combine
the k-nn classifiers.

IV.3.3 Results of combination methods

The results from the previous section show that the improved systems (Sec-
tion IV.3.2) are able to increase the results of k-nn, but are still below our
svm and vsm baseline systems. The key observation here is that under each
of the improved classifiers there is a slightly different feature space. All of
them provide improvements, and are therefore able to generalize interesting
properties of the problem space. If we are able to combine them properly,
we might be able to further improve the results.

Here we exploited the fact that a k-nn classifier can be seen as k points
casting each one vote, making easy a combination of several k-nn classifiers.
In order to carry through the properties of each feature space, we decided to
weight each vote by the cosine similarity of that point instead of the rank.
We need to note that this combination method was also used in the previous
section to combine the local and topical classifiers.

Table IV.6 shows the results over the training set. The following rows
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show the improved systems from the previous Section. Then the results of
combining the algorithms two by two are shown, where each of the improved
systems has been combined with the baseline k-nn system. The results show
that all combinations attain better results than any of their components. We
can also see that, in this setting, using unlabeled data (plain+omt with 50%
of the Bnc) improves slightly over not using it (plain+omt). Finally, the
full combination of all the systems provides the best results. Note that for
the full combination, we applied omt (with only labeled data, plus 25% and
50% of the Bnc) also to the local and topical classifiers.

The results on the test set, Table IV.7, confirm the cross-validation re-
sults. Note that unlabeled data makes a more significant improvement over
plain+omt. Below the combined system, Table IV.7 also shows our base-
line systems, as well as the best system in the Senseval 3 competition and
the best reported result to date. The full combination of our k-nn systems
attains the best results of them all.

k-NN(k = 5) Recall diff.
plain 67.7 —
local+topical 69.4 +1.7
omt 69.6 +1.9
omt (25% BNC) 69.2 +1.5
omt (50% BNC) 69.6 +1.9
plain + local+topical 69.9 +2.2
plain + omt 70.7 +3.0
plain + omt (25% BNC) 70.7 +3.0
plain + omt (50% BNC) 70.8 +3.1
full combination 71.9 +4.2

Table IV.6: Results for different combinations of k-nn classifiers in 3-fold
cross-validation (Senseval-3 training set)

IV.3.4 Discussion on the experiments

The results show that we have been able to better model the feature space.
svd helps to find correlations among the features, and thus alleviate the
sparse data and redundancy problems. Including unlabeled data provides
very narrow performance increases, but combined with the other classifiers
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Classifier Recall diff.
plain 70.5 —
local+topical 70.8 +0.3
omt 70.7 +0.2
omt(25% BNC) 70.8 +0.2
omt(50% BNC) 71.2 +0.7
plain + local+topical 71.5 +1.0
plain + omt 71.2 +0.7
plain + omt (25% BNC) 72.3 +1.8
plain + omt (50% BNC) 72.7 +2.2
full combination 73.4 +2.9

svm 71.2 —
vsm 71.5 —
Best S3 72.9 —
Gliozzo et al. (2005) 73.3 —

Table IV.7: Results for different combinations of k-nn classifiers in the
Senseval-3 lexical-sample test set. Plain stands for baseline k-nn. vsm and
svm results are also provided, as well as the best Senseval-3 system and the
best result published to date.

it makes a difference. Splitting the feature space in two and combining the
two spaces also improves the results. These improvements in isolation are
not very large. In fact, the resulting k-nn systems are below our svm and
svm baseline systems for the original feature set. But when we combine the
k-nn algorithms over each of the feature spaces, we attain the best results
to date in the Senseval-3 dataset.

We think that the reason explaining the extraordinary performance of
the combination is that each of the changes in the feature space helps finding
regularities in the data that k-nn could not find before. When we combine
each of the simpler k-nn systems, we are looking for the word sense that is
closest to the target instance in as many of the changed feature spaces as
possible. All in all, the best system is the combinations of many features
spaces. First we split the spaces in three: the original space (the whole set
of features), the topical features (also know as bag-of-words features), and
the local features (the rest of the features). For each split space we obtained
4 systems: (i) a k-nn trained on the features themselves (without svd),
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and three systems based on omt features: (ii) only with tagged corpora,
(iii) adding 25% of the occurrences in the Bnc, and (iv) adding 50% of the
occurrences in the Bnc. In total 12 systems were combined.

In (Gliozzo et al., 2005) instead of splitting the feature space and then
combining the classifiers, they used specialized kernels to model the similar-
ity for each kind of features. They also used svd but only for bag-of-words
features, while we apply svd to all features. The good performance of cou-
pling k-nn and svd are well known in the ml literature, e.g. (Thomasian
et al., 2005; Kim et al., 2005; Zelaia et al., 2008).

Although as a main conclusion we think that the real improvement is
coming from the combination of the different k-nn systems, each trained on
a different feature space, we have to admit that omt paradigm, where each
word has its own feature-by-instance matrices, is an expensive approach.

IV.4 2nd experiments: sma features set and

combinations

In the previous set of experiments we showed that svd on omt matrices
significantly improves the results in wsd. Although omt is useful, we con-
sider that it is costly to be apply in an all-words scenario. That is why we
decided to perform experiments using more cheaper, but less accurate, ma-
trix. In this section will focus on the use of sma matrices. In addition, we
performed more experiments through combination of finer splits of features.
We explored feature set combination for different wsd systems.

Regarding types of combination, on the one hand we compared the sim-
ple voting and k-nn combination, and on the other hand we compared our
manually split feature set to randomly created sets.

We have set the best combination options using Senseval-2 lexical-sample,
and then evaluated on two datasets (Senseval-3 lexical-sample and all-words).
For the all-words test set we took SemCor as the training corpus.

From the previous set of experiments we know that there are many ways
to split the feature set. For these experiments we tried finer set experiments.
Following our criterion we tried to group regarding the kind of the feature
type, trying build a coherent set of features. In total, we tried with 6 fea-
ture spaces related to original features (cf. Section III.1). Initially, we have
the set with all the features, being the richest and most heterogeneous fea-
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ture space. Another way for distributing them is to separate bag-of-words
feature and rest features (Local collocations, salient bag-of-bigrams, and syn-
tactic dependencies). To finish with original features, we try with the local
collocations, syntactic dependencies and the bag-of-bigrams obtained from
the context as described in (Pedersen, 2001). Regarding svd features we
performed the experiments with sma features. We can summarize the used
features in the following manner:

• bow: bag-of-words (open-class lemmas).

• local: local collocations.

• sx: syntactic dependencies.

• bob: bag-of-bigrams.

• notbow: all features except bow.

• ehu: all features.

IV.4.1 Development: Senseval-2 lexical-sample

We use the Senseval-2 lexical-sample (Kilgarriff, 2001) data for optimization
purposed. We focused on finding the best combination set. For k-nn methods
we saw, in previous experiments, that best k was 5. All the experiments
were carried with a fixed k in 5. We have done an exploration for the best
combination. The vsm does not need any optimization, as it has not any
parameter, and finally, we have used svm in a default mode, without any
parameter optimization.

First, we will show the results for single classifiers in the different feature-
spaces, and finally, we will describe the results for best combination.

Senseval-2 lexical-sample single classifiers

Table IV.8 shows the results, recall and precision, for each method trained
and tested in several feature spaces (the extension of the classifier denote the
feature space). The results show that the more feature types one throws into
the algorithm, the better are the results as shown in (Agirre and Mart́ınez,
2004a).
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We can see richest feature space, ehu, is the best single classifier in every
method, except for svm which attains the same results for ehu and notbow
feature distributions.

The vsm from the ehu feature space is the best method. It obtains 63.3
of recall in the Senseval-2 Lexical Sample.

Taking into account each of the feature sets, we note that generally the
local collocations features (local) discriminate better than bag-of-words fea-
tures (bow). Only in the case of vsm the bow features work better than local
ones. The reason that syntactic dependencies (sx ) and bag-of-bigrams (bob)
do not work as well as local collocations and bag-of-words features might be
the insufficient amount of feature instances that occur in the given context.
But we see that they help when we throw into a more complex feature space
(notbow).

Taking into account that sma features are bag-of-words features projected
onto a latent spaces, the table shows that sma discriminates better than
bow features. The association of higher order correlation works well for this
dataset.

Senseval-2 lexical-sample combination optimization

In this section we report the results for the combination of the single systems
in the previous section. As our focus is on the use of feature spaces, we tried
all exhaustive combinations of feature sets, but always using a single learning
method.

Table IV.9 shows the best combinations per learning method. For k-nn,
ehu+sma+notbow yields the best results, for the k-nn combination. The best
k-nn combination improve significantly over the single classifier (65.1 vs 62.4)
and outperform the best system in competition (Yarowsky et al., 2001).The
combination which yields best results for svm was ehu+bow+notbow+bob,
and ehu+bow+notbow+bob was the best in the case of vsm. k-nn is the only
one improving over the single methods, and attains the best results overall.

Table IV.9 also shows that the finer grained feature sets are not the best,
and that using all features helps obtain better results.
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Classifier Coverage Recall
knn.ehu 100 62.4
knn.notbow 100 60.4
knn.local 100 58.5
knn.sma 100 54.6
knn.bow 100 52.4
knn.sx 100 49.1
knn.bob 39.0 23.8 (60.8)
svm.ehu 100 61.0
svm.notbow 100 61.0
svm.local 100 60.9
svm.sx 100 56.1
svm.bow 100 55.8
svm.bob 100 51.9
vsm.ehu 100 63.3
vsm.notbow 100 57.2
vsm.bow 100 55.2
vsm.local 100 51.6
vsm.sx 100 41.6
vsm.bob 39.0 22.1 (56.6)

Table IV.8: Results for single classifiers in the Senseval-2 lexical-sample.
Parenthesis for precision.

Classifier Recall
knn.ehu+sma+notbow (knn-comb) 65.1 ↑
vsm.ehu+bow+notbow+bob 63.0 ↓
knn.ehu+bow+notbow (single-vot) 62.2 ↓
svm.ehu+bow+notbow 61.0 =

Table IV.9: Results for best classifier combinations in the Senseval-2 lexical-
sample. ↑ means ehu single system is worse, = means ehu system is equal,
and ↓ is ehu system better. Coverage is 100% for all.

IV.4.2 Senseval-3 lexical-sample: Single and combined
classifiers

Table IV.10 shows the results of the single and combined classifiers. As ex-
pected from the results in the previous section, the combinations for vsm and
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svm do not improve over the single results, but do improve over the k-nn sys-
tem. The best results are for k-nn with the combined k-nn following closely.

Compared to more complex system described in Section IV.3 we are still
1.1 points below. Nevertheless, the obtained results were promising and
encouraged us to keep on exploring the use of sma features and feature sets
combinations.

Classifier Recall
knn.sma 63.9
vsm.ehu 71.5
knn.ehu 70.4
svm.ehu 69.2

knn.ehu+sma+notbow (knn-comb) 72.3
vsm.ehu+bow+notbow+bob 70.9
knn.ehu+bow+notbow (single-vot) 70.6
svm.ehu+bow+notbow 68.9

Best SL-3 72.9
omt combination (Section IV.3.3) 73.4

Table IV.10: Results for best single and combined classifier in the Senseval-3
lexical-sample.Coverage is 100% for all.

IV.4.3 Senseval 3 all-words task

We use SemCor (Miller et al., 1993) corpus for training, hand-tagged in
WordNet 1.6. We have use the mapping from WordNet 1.6 to 1.7.1 (Daude
et al., 2000), because the Senseval-3 all-words task was hand-tagged using
WordNet 1.7.1. In the case where target word has less than 10 instances in
SemCor we have applied the most frequent sense.

We prepared a clean test set to make our systems results comparable with
the official results from Senseval-3 all-words task. Taking into account that
systems from Senseval-3 did not know the part-of-speech (PoS) of the target
word, we have removed test instances where the PoS was wrongly assigned by
the two best systems in the competition. We have also removed multiwords.
After cleaning the test set comprises 1.819 instances.

As in the previous section, we used the parameter setting from Senseval-2
lexical-sample (cf. IV.4.1).
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Classifier Recall
knn.ehu+bow+notbow (knn-comb) 68.5
knn.ehu+sma+notbow (knn-comb) 68.4
svm.ehu 67.9
knn.ehu 67.8
knn.ehu+bow+notbow (single-vot) 67.8
GAMBL (best S3AW) 67.8
vsm.ehu 65.5

Table IV.11: Results for different systems in the Senseval-3 all-words task.
Coverage is 100% for all.

Table IV.11 shows that the k-nn combination outperforms all the other
systems, including the best system in Senseval-3 all-words task (GAMBL).
We performed more combination (apart from the best in previous data sets)
in order to confirm whether ehu+sma+not-bow was the best combination in
the current dataset. Surprisingly, contrary to our expectation, ehu+bow+notbow
combination obtained the best results, though the difference was marginal.

IV.4.4 Discussion on the experiments

We have shown that a simple method like a k-nn classifier can work as good
as more complex, and a priori more powerful methods. Splitting the feature-
space and then combining them into a single classifier obtains the best results
up to date in the Senseval-3 all-words task.

The good results are due to the potential for k-nn classifiers to be com-
bined. Rather than using “the one classifier one vote” paradigm, each classi-
fier suggest the k closest instances (and their word senses) from their feature
space and after that, the merged classifier sums them to decide the word
sense.

We think that the reason of the good performance of the combination is
that each of the changes in the feature space helps finding regularities in the
data, which single k-nn could not find. When we combine each of the simpler
k-nn systems, we are looking for the word sense that is closer to the target
instance in different feature spaces. In other words, we are discriminating
word senses from different point of view.

In order to compare our method of splitting the feature space with the
proposal from (Bay, 1999) (cf. Section IV.4), we performed some additional
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experiments on the Senseval-3 lexical-sample dataset. Bay (1999) created
random subsets of features and combined less accurate 1-nn classifiers to
improve the classifier. Table IV.12 shows the results of applying a random
split over original features in three feature sets, both using single voting over
1NN and our method for 5NN. We also tried using 1NN instead of 5NN, but
the results are lower than combined system (last row).

Classifier Recall
Random, 3 splits 1NN 65.7
Random, 3 splits 5NN 70.0
knn.ehu+bow+notbow 1NN 67.1
knn.ehu+bow+notbow 5NN 71.4

Table IV.12: Results for additional experiments on Senseval-3 lexical-sample.

IV.5 3rd experiments: Semeval-2007

This last set of experiments describes our participation on lexical-sample and
all-words wsd subtask of SemEval 2007 task 17. We applied a combination
of different k-nn classifiers. As in the previous experiments each classifier
manages different information sources, and also making the combination a
powerful solution. Our main goal for this set of experiments have been to
apply previous findings (first and second experiments) in a new datasets: We
combined omt, sma and split original features on a number of k-nn.

It is important to note that the dataset for lexical-sample was annotated
with the OntoNotes sense. Due to this, the comparison among the previous
dataset becomes harder. Regarding all-words task occurrences were anno-
tated with WordNet senses (version 2.1)

These experiments are organized as follows. Before we show the results,
next section will describe performed feature splits. In Section IV.5.2 we will
draw the results on the training data, for both lexical-sample ant all-words
tasks. Finally, we will show the figures over the test data.

IV.5.1 Features splits for k-nn combinations

Our previous experience has shown that splitting the problem up into more
coherent spaces, training different classifiers in each feature space, and then



IV.5 3rd experiments: Semeval-2007 107

combining them into a single classifier is a good way to improve the results.
Depending on the feature type (original features or features extracted from
svd projection) we split different sets of feature spaces. In total we tried 10
features spaces.

Following we will describe the features split based on original features and
how we denoted them:

• ehu: Extracted all original features, including the domain features.

• ehu-notdom: All original features except domain features. This set of
features have been used in the previous sections. In order to assess the
contribution of the domain features we removed these type of features
from the whole set.

• local: Those features comprising the local collocations and the syntac-
tic dependencies. In other words: All the extracted original features
except domain and bag-of-words features. This set have been previ-
ously shown.

• topical: The set of bag-of-words and domain features.This set have
been previously shown.

• bow: Bag-of-word features.

• dom: Domain features.

For the svd features we project onto reduced space several set of original
features. Following we show the applied kinds of projection :

• omt[ehu]: omt matrix applied to the whole set of the original features.

• omt[local]: omt matrix with the local features.

• omt[topic]: omt matrix consisting of the topical features.

• sma: Features obtained from the projection of bow features with the
sma matrix.

The votes in the combination process were weighted by the inverse ratio
of its position in the rank (k − ri + 1)/k, where ri is the rank.
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IV.5.2 Experiments on training data

This section will show the results obtained in Semeval-2007 on the training
data, where we optimize some aspects of the wsd system. Due to dataset
for lexical-sample was different, different sense-inventory was used in the tag-
ging process, we decided to explore some of the parameter: The number of
neighbors (k), the svd dimension (d) and the optimal combination. First
of all, results of the best single classifiers will be given, next we will show
the improvement achieved when combination of several classifier are com-
bined. We will describe a simple methodology to find an optimum ensemble
of classifiers.

Regarding all-words, we used SemCor as a training data set and we based
on the previous experiments (Section IV.4) to set the values of the param-
eters. The optimization focused on finding the best combination of feature
spaces. Results of the single classifiers will be shown in order to test whether
combination were useful or not.

Optimization for the lexical-sample task

For the lexical-sample task we only use the training data provided. We tuned
the classifiers using 3 fold cross-validation on the SemEval lexical-sample
training data. We tried to optimize several parameters: number of neighbors,
svd dimensions and best combination of the single k-nn systems. We set k
as one of 1, 3, 5 and 7, and the SVD dimension (d) as one of 50, 100, 200 and
300. We also fixed the best combination. This is the optimization procedure
we followed:

1. For each single classifier and feature set (see section IV.5.1), check each
parameter combination.

2. Fix the parameters for each single classifier. In our case, k = 5 and
k = 7 had similar results, so we postponed the decision. d = 200
was the best dimension for all classifiers, except omt[topic] which was
d = 50.

3. For the best parameter settings (k = 5; k = 7 and d = 200; d = 50
when omt[topic]) make a priori meaningful combinations (due to CPU
requirements, not all combination were feasible).

4. Choose the x best combination overall, and optimize word by word
among these combination. We set x = 8 for this work, k was fixed in
5, and d = 200 (except with omt[topic] which was d = 50).
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Feature type Feature space F-score

Original features

ehu: k = 5 87.2
ehu-notdom: k = 5 87.2
local: k = 7 86.4
topical: k = 7 83.0

svd features

omt: d = 200; k = 7 87.8
omt: d = 200; k = 5; 25% Bnc 88.1
omt: d = 200; k = 5; 50% Bnc 88.0
sma: d = 200; k = 7 82.4

Table IV.13: Result for the best k-nn classifiers for each single feature spaces.
The experiments were performed using 3 fold cross-validation on SemEval
lexical-sample.

The results obtained by single classifiers are shown in Table IV.13. The
table is organized as follows. The first two columns denote the feature type
and features space used by the k-nn classifiers, the third column shows the
results in terms of F-score (note that our systems always answer, and thus the
precision and recall are equal). We have omitted some results and only show
the best system for each feature space. Focusing on the original features,
the figures confirm that the more rich and complex is the feature space the
better performance has the classifier. Contrary to our expectation domain
features do not help improving the results, not at least in this data set.

The table shows that svd on omt improve considerably the results over
the original space. We are able to improve 0.9 point in the best case. We can
concluded that although unlabeled data help, only improved slightly. With
respect to sma, surprisingly obtained lowest results among all the classifiers.

Rank Combination F-score
1 ehu + topic + local+ omt[ehu] + omt[topic] + omt[local] 88.8
2 ehu + ehu-dom + topic + local + sma + omt[ehu] + omt[topic] + omt[local] 88.7
3 ehu + topic+local + sma + omt[ehu] + omt[topic] + omt[local] 88.5
4 ehu-notdom+topic+local + sma + omt[ehu] + omt[topic] + omt[local] 88.5
5 ehu + ehu-notdom + topic + local 88.4
6 ehu-notdom + local + sma 88.3
7 ehu + ehu-notdom + local + sma 88.2
8 ehu + topic + local 88.1

word-by-word optimization 89.5

Table IV.14: Result for the best k-nn combinations in 3 fold cross-validation
SemEval lexical-sample.
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Regarding combination, Table IV.14 shows the best eight results for 3 fold
cross-validation in SemEval lexical-sample training corpus. The results show
that on average the more different spaces you combine the better are the
results, although there are some combinations that do not work well. The
best combination (without taking to account word-by-word optimization)
was the one which combines all the features, the topical and local features
in both space, the original and the latent spaces. After the optimized each
single word the performance increases 0.7 percentage points over the best
combination, and comparing to the omt best single classifier the results
improve significantly in 1.4 points (2.3 point over k-nn trained on the original
set features).

Regarding sma, the results reveal that it is not as powerful as the omt
and the best combination does not contain this space. Nevertheless, the con-
tribution on ensemble of classifier is positive: Second ranked system combine
sma features. Thus, we think that, due to its feasibility in all-words task,
could be very useful for all-words wsd system.

Optimization for the all-words task

To train the classifiers for the all-words task we just used SemCor. In Sec-
tion IV.4, we already tested our approach on the Senseval-3 all-words task.
The best performance for the Senseval-3 all-words task was obtained with
k = 5 and d = 200, but we decided to perform further experiments to search
for the best combination. We tested the performance of the combination
of single k-nn training on SemCor and testing both on the Senseval-3 all-
words data (cf. Table IV.16) and on the training data from SemEval-2007
lexical-sample (cf. Table IV.17).

First of all, we will show the results of the single classifiers trained on Sem-
Cor and tested on SemEval-2007 lexical-sample. The results on Senseval-3
all-words have been shown in the previous set of experiments (cf. Section
IV.4 and Table IV.11). Table IV.15 shows the results for each feature space.
Again, the richest feature space (ehu) attains the best results, over 2.5 points
on topical and local features. Concerning svd, sma features outperform sig-
nificantly over the best system in original space. This confirms our hypothesis
that svd helps alleviating the data sparseness: Many words occur less than
10 times in SemCor.

Relating to the combinations, Table IV.16 and Table IV.17 show the
some of the results obtained on Seneval-3 all-words and SemEval-2007 lexical-
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Feature type Feature space F-score

Original features
ehu: k = 5 63.5
topical: k = 5 60.8
local: k = 5 60.6

svd features sma: d = 200; k = 5 66.8

Table IV.15: Results for single k-nn classifier on SemEval-2007 lexical-
sample, using Semcor as training corpus.

sample, respectively, taking them as test sets. The two tables are organized
as the previous ones, where columns express the combined features and the
attained score, respectively.

Regarding the results, note that tables IV.162 and IV.17 show contradic-
tory results. While the same or similar combinations were performed in both
data sets, they gave different responds in terms of F-score. On Senseval-3 all-
words the best results was obtained by the system with all the feature splits
(ehu + topical + local + sma). Contrary, on Semeval-2007 lexical-sample
the same set of feature splits was not able to improve over ehu + sma neither
sma as single classifier (the best in this dataset).

Given that in SemEval-2007 lexical-sample the senses are more coarse
grained, and Senseval-3 all-words should be more similar to test set on
SemEval-2007 all-words, we decided to take the best combination on Senseval-
3 all-words for the final submission. Therefore, the elected combination con-
sisted of a set of all features (ehu), a set of topical features, a set of local
features, and sma features.

Combination F-score
ehu + topical + local + sma 68.9
ehu + local + notbow 68.5
ehu + local + sma 67.9

Table IV.16: Results for the best k-nn combinations in Senseval-3 all-words,
using SemCor as training corpus.

2notbow feature split have been was used for experimets described in Section IV.4.1
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Combination F-score
ehu + sma 66.6
ehu +topical + local + sma 66.4
ehu + local + sma 66.1

Table IV.17: Results for the best k-nn combinations in training part of
SemEval lexical-sample, using Semcor as training corpus.

IV.5.3 Official results

Table IV.18 shows the performance obtained by our system and the winning
systems in the SemEval lexical-sample and all-words evaluation. On the
lexical-sample evaluation our system is 2.6 lower than the cross-validation
evaluation. This can be a sign of a slight overfitting on the training data due
to the exhaustive searching of the best combination. All in all we ranked
second over 13 systems.

Our all-words system did not perform so well. Our system is around
4.7 points below the winning system, ranking 5th from a total of 14, and 3
points above the baseline given by the organizers. This is a disappointing
result when compared to our previous section on Senseval-3 all-words where
we were able to beat the best official results. Note that the test set was rather
small, with 465 occurrences only, which might indicate that the performance
differences are not statistically significant. We plan to further investigate the
reasons for our results.

Further details have been given in Section II.4.4, where we analized the
SemEval-2007 edition.

Task Method Rank F-score
LS Best 1 88.7
LS k-nn combination 2 86.9
LS Baseline - 78.0
AW Best 1 59.1
AW k-nn combination 5 54.4
AW Baseline - 51.4

Table IV.18: Official results for SemEval-2007 task 17 lexical sample and
all-words subtasks.
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IV.6 Conclusions

First set of experiments – omt, unlabeled data and feature split. In this
work we have explored feature modeling, trying to tackle sparse data, redun-
dancy and heterogeneity in the feature set. We have proposed and evaluated
three improvements: 1) using svd in order to find correlations among fea-
tures and deal with sparsity and redundancy, 2) using unlabeled data from
a corpus related to the evaluation corpus in order to provide background
knowledge, and 3) splitting the feature space into smaller, more coherent,
sets. Each of the proposals improves the results for a k-nn classifier, and
properly combined they provide we obtained one of the best results for the
Senseval-3 lexical-sample dataset.

In the discussion we have argued that these improvements help to model
better the feature space, which, coupled with a ml algorithm well suited for
combination such as k-nn, explains the good results. This opens new feature
modeling possibilities. In particular we think that using kernels to better
model similarity for certain features might provide better results, as later
shown in Chapter VI. On the other hand we have shown that unlabeled data
helps, and later in the dissertation we explore which is the situation when
the training and test data come from distinct corpora or domains.

Second set of experiments – sma features set and combinations. This
set of experiments explored the split of feature sets in order to obtain better
wsd systems through combinations of classifiers learned over each of the split
feature sets. Our results show that k-nn is able to profit from the combi-
nation of split features (contrary to vsm and svm), and that simple voting
is not enough for that. Instead we propose combining all k-nn subsystems
where each of the k neighbors casts one vote. The reader will has noticed
that we did not performs all the experiments with svm and vsm algorithms.
Due to our previous experience in the first set of experiments we decided not
to perform any experiment on sma features. Nevertheless, in the following
chapters we will show some results for svm on sma.

The experiments explore different feature spaces by splitting a rich set
of features into a smaller and less accurate, but more coherent, sets. The
comparison with random splits suggest that a manual split based on the
nature of the features is more productive than random splits.

We showed that sma features behaved well through different datasets.
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The experiments demonstrated that sma and the combination with the origi-
nal features finds different patterns in text, improving consistently the system
performances.

We have performed a thorough evaluation on two datasets (Senseval-3
lexical-sample and all-words), having set the best combination options in
a development dataset (Senseval-2 lexical-sample). The results for the all-
words task were the best published at that date.

Third set of experiments – Participation in Semeval-2007. In these exper-
iments we confirmed our findings in the previous experiments. First of all, we
built a robust system based on a number of k-nn classifiers , each trained on
a different feature spaces. The classifier was tested in lexical-sample and all-
words tasks. Regarding lexical-sample, we saw that omt features outperform
the rest of the features, and that sma features are useful in combinations. In
all-words, we only experimented with sma, obtaining good results.

Overall conclusions. In this Section we have explored several feature
spaces, reporting results in different experiments for features induced from
the svd decomposition, with and without unlabeled data. We also explored
different ways to combine these feature spaces.

We applied svd to two different kinds of matrices. Our experiments show
that the omt technique to apply svd compares favorably to sma, which has
been previously used in (Gliozzo et al., 2005). Although constructing one
matrix per target word (omt) yields the best results, it is a relatively expen-
sive process, so we did not apply it to the all-words setting. In the all-words
experiment we only tested the single matrix for all (sma) approach, with
good results. The results show that our combined k-nn systems are state-
of-the-art, specially in lexical sample settings, and that the induced features
provide significant improvements. In the future, it would be interesting to
apply omt to all-words settings.



CHAPTER V

Semi-supervised domain adaptation

In this chapter we will explore robustness and domain adaptation issues
for Word Sense Disambiguation (wsd) using Singular Value Decomposition
( svd) and unlabeled data. We will focus on the semi-supervised domain
adaptation scenario, where we train on the source corpus and test on the
target corpus, and try to improve results using unlabeled data. Our method
yields up to 16.3% error reduction compared to state-of-the-art systems, being
the first to report successful semi-supervised domain adaptation. Surprisingly
the improvement comes from the use of unlabeled data from the source corpus,
and not from the target corpora, meaning that we get robustness rather than
domain adaptation. In addition, we will study the behavior of our system on
the target domain.

V.1 Introduction

In the previous chapter we have studied the contribution of svd. We also
have showed that the use of unlabeled data might alleviate the data sparsity
problem. And finally, we have showed the combination of various sets of fea-
ture space can be beneficial to improve the performance of the wsd systems.
As a result, we have been able to outperform the state-of-the-art through
several datasets. Now we will focus on domain shift problem: How we can
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use the previous contributions on domain adaption scenario.
In many nlp tasks we find that a large collection of manually-annotated

text is used to train and test supervised machine learning models. While
these models have been shown to perform very well when tested on the text
collection related to the training data (what we call the source domain), the
performance drops considerably when testing on text from other domains
(called target domains).

As remarked in Section II.5, in order to build models that perform well in
new (target) domains we usually find two settings (Daumé III, 2007): In the
semi-supervised setting the goal is to improve the system trained on the
source domain using unlabeled data from the target domain, and the baseline
is that of the system trained on the source domain. In the supervised
setting, training data from both source and target domains are used, and
the baseline is provided by the system trained on the target domain. The
semi-supervised setting is the most attractive, as it would save developers
the need to hand-annotate target corpora every time a new domain is to be
processed.

The main goal in this chapter is to use unlabeled data in order to get
better domain-adaptation results for wsd in the semi-supervised setting.
svd has been shown to find correlations between terms which are helpful
to overcome the scarcity of training data in wsd ((Gliozzo et al., 2005),
and showed in previous chapter). This chapter explores how this ability of
svd can be applied to the domain-adaptation of wsd systems, and we show
that svd and unlabeled data improve the results of two state-of-the-art wsd
systems (k-nn and svm). For the sake of this chapter we call this set of
experiments the semi-supervised domain adaptation scenario.

In addition, we also perform some related experiments on just the target
domain. We use unlabeled data in order to improve the results of a system
trained and tested in the target domain. These results are complementary
to the domain adaptation experiments, and also provide an upperbound for
semi-supervised domain adaptation. We call these experiments the target
domain scenario. This last scenario is closely related to the experiments
performed in Chapter IV, since the data from training and test sets are
coming from the same source. Note that both scenarios are semi-supervised,
in that our focus is on the use of unlabeled data in addition to the available
labeled data. Figure V.1 summarize all the experiments reported in this
chapter.

The experiments were performed on a publicly available corpus which
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Semi-supervised domain adaptation scenario: Bnc → X
• Goals: Adapt a general purpose supervised wsd system from source

(Bnc) to target (Sports, Finance) domain.

• Explore the effects of distinct unlabeled data.

• Unlabeled data. Source domain: Bnc; Target domain: Sports,
Finance.

• Features spaces: sma, omt, and original features.

Target domain scenario: X → X

• Goals: Train and test on the target domain (Sports, Finance).

• The upperbound for semi-supervised domain adaptation.

• Unlabeled data. Source domain: Bnc; Target domain: Sports,
Finance.

• Features spaces: sma, omt, and original features.

Figure V.1: The scheme of experiments in this chapter. Each scenario has
defined its own goals and purposes.

was designed to study the effect of domain in wsd (Koeling et al., 2005).
It comprises 41 nouns closely related to the Sports and Finance domains
with 300 examples for each. The 300 examples were drawn from the British
National Corpus (Leech, 1992) (Bnc), the Sports section of the Reuters
corpus (Rose et al., 2002), and the Finance section of Reuters in equal
number (cf. Section II.1.2.2).

The chapter is structured as follows. Section V.2 is devoted to the ex-
perimental settings: learning methods and learning features will be reviewed.
The experimental results are presented in Section V.3, for the semi-supervised
domain adaptation scenario, and Section V.4, for the target scenario. Sec-
tion V.5 presents the discussion and Section V.6 the conclusions and the
future work.
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V.2 Experimental settings

V.2.1 Learning methods

We used Support Vector Machines (svm) and k-Nearest Neighbors (k-nn) (cf.
Section III.2.1). Regarding svm we used linear kernels implemented in SVM-
Light (Joachims, 1999). We estimated the soft margin (C) for each feature
space and each word using a greedy process in a preliminary experiment on
the source training data using cross-validation. The same C value was used
in the rest of the settings.

With k-nn the k nearest neighbors were calculated by using the cosine
similarity, and we set k in 5 based on previous results (Chapter IV). When
combining, the vote was weighted depending on its (neighbor) position in
the ordered rank, with the closest being first.

V.2.2 Learning features

We relied on the learning features used in previous chapter (detailed descrip-
tion is given in Section III.1). The original features can be summaries as
follows: Local collocations, Syntactic dependencies and Bag-of-words
features.

As the same manner as in previous chapter we extracted the svd fea-
tures (cf. Section III.3) . We used both omtand sma features. We base on
Bnc, the Finance part of Reuters, and the Sports part in order to build
matrix and extract features, depending on the domain we want to perform
the adaptation.

Building Matrices

Due to high possibilities to combine the unlabeled, labeled data and build
sma and omt matrices, we tried these possibilities: 1) use the train corpus
alone; 2) add a corpus from the source domain (general domain in this case)
to the train; and 3) add a domain-specific corpus from the same domain as
the target corpus. These are the matrices which have been applied in the
experiments:

• Train: The matrix comprises features from labeled train examples
alone. This matrix can only be used to obtain omt features.
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• Train ∪ Bnc: In addition to Train, the matrix also includes un-
labeled examples from the source corpus (Bnc). Both omt and sma
features can be obtained, since unlabeled data is used.

• Train ∪ {Sports, Finance}: Like the previous, but using unlabeled
examples from one of the target corpora (Finance or Sports) instead.
Both omt and sma feature can be obtained.

Note that sma features are always obtained from the unlabeled data (we
do not use labeled data), but for simplicity, we report it in the same category
as omt features – when we use unlabeled data to extract them. For example,
when we say that Train ∪ Bnc matrix is for sma, it means that do not use
the examples from training (only for projecting).

Based on previous work described in Chapter IV, we used 50% of the
respective unlabeled corpora for omt features, and the whole corpora for
sma. In Section V.3.2 we will report some experiments controlling the size
of unlabeled corpora.

Dimensionality selection

An important parameter when applying svd is the number of dimensions in
the reduced space (p). We tried two different values for p (25 and 200) in the
Bnc domain. Once we set the best dimension for each feature space and ml
algorithm, we keep the values for the sake of the experiments.

Table V.2 shows the effect of the dimensionality. We performed 3-fold
cross-validation in order to select the best p dimension for each feature space
and ml approach. The columns denote the classifier and the feature space
used: the mfs column corresponds to the most frequent sense in the Bnc
dataset. k-nn-orig (svm-orig) corresponds to performing k-nn (svm) on
the original feature space, k-nn-omt (svm-omt) corresponds to k-nn (svm)
on the reduced dimensions of the omt strategy, and k-nn-sma (svm-sma)
corresponds to k-nn (svm) on the reduced dimensions of the sma strategy
(cf. Section III.3). The rows correspond to the matrix used for svd (cf.
Section V.2.2). Each omt and sma column has another sub-columns, which
correspond to the dimension reductions (25 and 200 dimension). Note that
some of the cells have no result, because that combination is not applicable,
e.g. using the Train ∪ Bnc in the original space.

From the figures in Table V.2 we can conclude that when only labeled data
is used (the figures on Train row), 200 dimensions performs better for the
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omt in general terms. In the case of the k-nn-omt both dimensions perform
equal, but based on the results of previous chapter and the performance on
svm we consider 25 as best option for testing in the Sports and Finance.

When unlabeled data is used (Train ∪ Bnc row) for omt 25 performs
better in all the cases, besides, the difference are statistically significant.
For k-nn-sma the performance is very similar and there is no significant
difference. Again, based on previous experiments (Chapter IV), we chose
200 dimensions for sma.

Bnc → Bnc (xval)
mfs k-NN-orig k-NN-omt k-NN-sma

Dimensions (p) 25 200 25 200
Train 52.0±1.3 62.7±1.4 64.5±1.2 64.5±1.4 - -
Train ∪ Bnc - - 69.7±1.4 64.0±1.3 64.9±1.3 64.7±1.2

mfs svm-orig svm-omt svm-sma
Dimensions (p) 25 200 25 200
Train 52.0±1.3 64.8±1.14 57.4±1.3 61.5±1.2 - -
Train ∪ Bnc - - 70.3±1.3 65.6±1.1 66.0±1.4 67.0±1.1

Table V.1: Accuracy for the source scenario: training on labeled source
corpus, plus unlabeled corpora.

V.3 Semi-supervised domain adaptation sce-

nario

In this scenario we tried to adapt a general purpose supervised wsd system
trained on the source corpus (Bnc) to a target corpus (either Sports or
Finance) using unlabeled corpora only. In addition we want to analyze the
the effect of the source of unlabeled data.

The experiments were organized as follows. First, we trained each ml
algorithm in each defined feature space (original,omt, sma) without any kind
of unlabeled data. After that, we used unlabeled data in order to perform
the adaptation. Thus, svd features were induced from Bnc (source domain)
and Sports/Finance (target domain) and tested in the target domain.
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V.3.1 Experimental results

Table V.2 shows the precision results for this scenario. Note that all methods
have full coverage, i.e. they return a sense for all test examples, and therefore
precision suffices to compare among systems. We have computed significance
ranges for all results in this work using bootstrap resampling (Noreen, 1989).
F1 scores outside of these intervals are assumed to be significantly different
from the related F1 score (p < 0.05).

The table has two main parts, each regarding to one of the target do-
mains, Sports and Finance. The use of two target domains allows to test
whether the methods behave similarly in both domains. The columns de-
note the classifier and svd method used: the mfs column corresponds to the
most frequent sense, k-nn-orig (svm-orig) corresponds to performing k-
nn (svm) on the original feature space, k-nn-omt (svm-omt) corresponds
to k-nn (svm) on the reduced dimensions of the omt strategy, and k-nn-
sma (svm-sma) corresponds to k-nn (svm) on the reduced dimensions of
the sma strategy (cf. Section III.3). The rows correspond to the matrix
used for svd (cf. Section V.2.2). Note that some of the cells have no result,
because that combination is not applicable, e.g. using the Train ∪ Bnc in
the original space.

In the first row (Train) of Table V.2 we can see that in both domains svm
on the original space outperforms k-nn with statistical significance. Those
are the baseline systems. On the same row, working on the reduced space of
the Train matrix with omt allows to improve the results of k-nn, but not
for svm.

Contrary to our expectations, adding target unlabeled corpora (Train
∪ Sports and Train ∪ Finance rows, respectively) does not improve the
results over the baseline. But using the source unlabeled data (Train ∪
Bnc), we find that for both domains and in all four columns the results are
significantly better than for the best baseline in both Sports and Finance
corpora.

The best results on the Train ∪ Bnc row depend on the domain corpus.
While k-nn-omt obtains the best results for Sports, in Finance k-nn-sma
is best. k-nn, in principle a weaker method that svm, is able to attain the
same or superior performance than svm on the reduced spaces.
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Bnc → Sports
matrix configuration mfs k-nn-orig k-nn-omt k-nn-sma
Train 39.0±1.3 51.7±1.3 53.0±1.6 -
Train ∪ Sports - - 47.8±1.5 49.7±1.5
Train ∪ Bnc - - 61.4±1.4 57.1±1.5
matrix configuration mfs svm-orig svm-omt svm-sma
Train 39.0±1.3 53.9±1.3 47.4±1.5 -
Train ∪ Sports - - 51.8±1.5 53.8±1.5
Train ∪ Bnc - - 57.1±1.6 57.2±1.5
Bnc → Finance
matrix configuration mfs k-nn-orig k-nn-omt k-nn-sma
Train 51.2±1.6 60.4±1.6 62.5±1.4 -
Train ∪ Finance - - 57.4±1.9 60.6±1.5
Train ∪ Bnc - - 65.9±1.5 68.3±1.4
matrix configuration mfs svm-orig svm-omt svm-sma
Train 51.2±1.6 62.9±1.6 59.4±1.5 -
Train ∪ Finance - - 60.4±1.4 62.7±1.4
Train ∪ Bnc - - 67.0±1.3 66.8±1.5

Table V.2: Precision for the domain adaptation scenario: training on labeled
source corpus, plus unlabeled corpora.

V.3.2 Controlling size

In the original experiments reported in the previous sections the size of the
unlabeled corpora was not balanced. Due to the importance of the amount of
unlabeled data, we performed two control experiments for the omt and sma
matrices on the domain adaptation scenario, focusing on the k-nn method.
Regarding omt, we used the minimum number of instances per word be-
tween Bnc and each of the target domains. The system obtained 60.0 of
precision using unlabeled data from Bnc and 49.5 for Sports data (com-
pared to 61.4 and 47.8 in Table V.2, respectively). We did the same in the
Finance domain, and we obtained 65.6 of precision for Bnc and 54.4 for
Finance (compared to 65.7 and 57.4 in Table V.2, respectively). Although
the contribution of Bnc unlabeled data is slightly lower in this experiment,
due to the smaller amount of data, it still outperforms the target unlabeled
data by a large margin. These results are shown in Table V.3.

In the case of the sma matrix, we used 25% of the Bnc, which is com-
parable to the Sports and Finance sizes. The results, 56.9 of precision in
Sports domain and 68.1 in Finance (compared to 57.1 and 68.3 in Table
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Bnc → Sports 50% corpus # Bnc = Sports
Bnc 61.4 60.0
Sports 47.8 49.5

Bnc → Finance 50% corpus # Bnc = Finance
Bnc 65.7 65.6
Finance 57.4 54.4

Table V.3: Results of the experiments to control the unlabeled corpus size
effect.

V.2, respectively), confirm that the size is not an important factor for sma
either.

V.4 Target scenario
In this second scenario we focus on the target domain. We train and test on
the target domain, and use unlabeled data in order to improve the result.
The goal of these experiments is to check the behavior of our method when
applied to the target domain, in order to better understand the results on
the domain adaptation scenario. They also provide an upperbound for semi-
supervised domain adaptation.

V.4.1 Experimental results

The results are presented in table V.4. All experiments in this section have
been performed using 3-fold cross-validation. Again, we have full coverage
in all cases, and the significance ranges correspond to the 95% confidence
level. The table has two main parts, each regarding to one of the target
domains, Sports and Finance. As in Table V.2, the columns specify the
classifier and svd method used, and the rows correspond to the matrices
used to obtain the features.

Table V.4 shows that k-nn-omt using the target corpus (Sports and
Finance, respectively) slightly improves over the k-nn-orig and svm-orig
classifiers, with significant difference in the Sports domain. Contrary to
the results on the previous section, the source unlabeled corpus degrades
performance, but the target corpus does allow for small improvements. Note
that, in this scenario, both svm and k-nn perform similarly in the original
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Sports → Sports (xval)
matrix configuration mfs k-nn-orig k-nn-omt k-nn-sma
Train 77.8±1.2 84.5±1.0 85.0±1.1 -
Train ∪ Sports - - 86.1±0.9 82.7±1.1
Train ∪ Bnc - - 84.4±1.0 80.4±1.5
matrix configuration mfs svm-orig svm-omt svm-sma
Train 77.8±1.2 85.1±1.0 81.0±1.5 -
Train ∪ Sports - - 85.1±1.1 80.3±1.5
Train ∪ Bnc - - 84.3±0.9 79.8±1.2
Finance → Finance (xval)
matrix configuration mfs k-nn-orig k-nn-omt k-nn-sma
Train 82.3±1.3 87.1±1.0 87.4±1.0 -
Train ∪ Sports - - 87.8±0.8 84.3±1.4
Train ∪ Bnc - - 87.4±1.2 83.5±1.2
matrix configuration mfs svm-orig svm-omt svm-sma
Train 82.3±1.3 87.0±1.0 85.5±1.1 -
Train ∪ Sports - - 86.4±0.9 82.9±1.1
Train ∪ Bnc - - 85.7±0.9 84.3±1.1

Table V.4: Precision for the target scenario: training on labeled target cor-
pora, plus unlabeled corpora.

space, but only k-nn is able to profit from the reduced space. Table V.5
summarizes the best result, alongside the error reduction.

The results of these experiments allow to contrast both scenarios, and to
get deeper insight about the relation between the labeled and unlabeled data
when performing svd, as we will examine in the next section.

V.5 Discussion

The main contribution of this dissertation is to show that we obtain robust-
ness when faced with domain shifts using a semi-supervised strategy. We
show that we can obtain it using a large, general, unlabeled corpus. Note
that our semi-supervised method to attain robustness for domain shifts is
very cost-effective, as it does not require costly hand-tagged material nor
even large numbers of unlabeled data from each target domain. These re-
sults are more valuable given the lack of substantial positive results on the
literature on semi-supervised or supervised domain adaptation for wsd (Es-
cudero et al., 2000; Mart́ınez and Agirre, 2000; Chan and Ng, 2007).
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Compared to other settings, our semi-supervised results improve over the
completely unsupervised system in (Koeling et al., 2005), which had 43.7%
and 49.9% precision for the Sports and Finance domains respectively, but
lag well behind the target domain scenario, showing that there is still room
for improvement in the semi-supervised setting.

While these results are based on a lexical sample, and thus not directly
generalizable to an all-words corpus, we think that they reflect the main
trends for nouns, as the 41 nouns where selected among those exhibiting
domain dependence (Koeling et al., 2005). We can assume, though it would
be needed to be explored empirically, that other nouns exhibiting domain
independence would degrade less when moving to other domains, and thus
corroborate the robustness effect we have discovered.

Table V.5 summarizes the main results, and also shows the error reduc-
tion figures, which range between 6.9% and 16.3%. As the most important
conclusion, we want to stress that, in this scenario, we are able to build a
very robust system just adding unlabeled source material, and that we fail
to adapt to the domain using the target corpus. These results are relevant
to improve a generic wsd system to be more robust when ported to new
domains.

The fact that we attain robustness rather than domain adaptation
proper deserves some analysis. In the domain adaptation scenario only source
unlabeled data helped, but the results on the target scenario show that it is
the target unlabeled data which is helping, and not the source one. Given
that svd basically finds correlations among features, it seems that construct-
ing the term-by-document (or feature-by-example) matrix with the training
data and the unlabeled corpus related to the training data is the key factor
in play here.

The reasons for this can be traced back as follows. Our source corpus
is the Bnc, which is a balanced corpus containing a variety of genres and
domains. The 100 examples for each word that have been hand-tagged were
gathered at random, and thus cover several domains. For instance, the omt
strategy for building the matrix extracts hundreds of other examples from the
Bnc, and when svd collapses the features into a reduced space, it effectively
captures the most important correlations in the feature-by-example matrix.
When faced with examples from a new domain, the reduced matrix is able
to map some of the features found in the test example to those in the train
example. Such overlap is more difficult if only 100 examples from the source
domain are available. The unlabeled data and svd process allow to capture
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correlations among the features occurring in the test data and those in the
training data.

On the other hand, we are discarding all original features, as we focus
on the features from the reduced space alone. The newly found correlations
come at the price of possibly ignoring effective original features, causing
information loss. Only when the correlations found in the reduced space
outweigh this information loss do we get better performance on the reduced
space than in the original space. The experiment in Section V.4 is important
in that it shows that the improvement is much smaller and only significant in
the target domain scenario, which is in accordance with the hypothesis above.
This information loss is a motivation for the combination of the features from
the reduced space with the original features, which will be the focus on next
chapter.

Regarding the learning method and the two strategies to apply svd, the
results show that k-nn profits from the reduced spaces more than svm, even
if its baseline performance is lower than svm. Regarding the matrix build-
ing system, in the domain adaptation scenario, k-nn-omt obtains the best
results (with statistical significance) in the Sports corpus, and k-nn-sma
yields the best results (with statistical significance) in the Finance domain.
Averaging over both domains, k-nn-omt is best. The target scenario results
confirm this trend, as k-nn-omt is superior to k-nn-sma in both domains.
These results are in accordance with our previous experience in Chapter IV,
where our omt method got better results than sma and those of Gliozzo
et al. (2005) (who also use a method similar to sma) on the Senseval-3 lexi-
cal sample. While omt reduces the feature-by-example matrix of each target
word, sma reduces a single term-by-document matrix. sma is able to find
important correlations among similar terms in the corpus, but it misses the
rich feature set used by wsd systems, as it focuses on bag-of-words alone.
omt on the other hand is able to find correlations between all features which
are relevant to the target word only.

V.6 Conclusions

In this chapter we explore robustness and domain adaptation issues for Word
Sense Disambiguation using svd and unlabeled data. We focus on the semi-
supervised scenario, where we train on the source corpus (Bnc), test on two
target corpora (Sports and Finance sections of Reuters), and improve the
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results using unlabeled data.
Our method yields up to 16.3% error reduction compared to svm and

k-nn on the labeled data alone, showing the first positive results on domain
adaptation for wsd. In fact, we show that our results are due to the use of a
large, general, unlabeled corpus, and rather than domain-adaptation proper
we show robustness in face of a domain shift. This kind of robustness is even
more cost-effective than semi-supervised domain adaptation, as it does not
require large unlabeled corpora or repeating the computations for each new
target domain.

These experiments show that the omt technique to apply svd that we
proposed in Section III.3.3.2 compares favorably to sma, which has been
previously used in (Gliozzo et al., 2005), and that k-nn excels svm on the
features from the reduced space. We also show that the unlabeled data needs
to be related to the training data, and that the benefits of our method are
larger when faced with a domain shift (compared to test data coming from
the same domain as the training data).

In the next chapters we combine the features from the reduced space with
the rest of the features, either using a combination of k-nn classifiers (cf.
Section III.4, and Chapter IV for experimental results) or a more complex
kernel combination (cf. Section III.4), where it is natural extension to apply
this techniques to the supervised domain adaptation scenario. This way,
we pretend to take advantage of both knowledge representation and try to
minimize the information loss from both spaces.
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CHAPTER VI

Supervised domain adaptation

We have shown that svd in combination with unlabeled data is a reliable way
to find better correlations among features. By mixing both source and target
domains in the training set, we hypothesized thatsvd would help to find a
bridge between the features in source and target domains. Our results show
that it is possible to build a feature space where the gap between domains is
smaller, and that the examples from the source general domain are useful,
and lead to the first positive supervised domain adaptation results to date. In
this chapter we will show that our wsd system trained on a general source
corpus ( Bnc) and the target corpus obtains up to 22% error reduction when
compared to a system trained on the target corpus alone. In addition, we
show that as little as 40% of the target corpus (when supplemented with the
source corpus) is sufficient to obtain the same results as training on the full
target data. The key for success is the use of unlabeled data with svd, a
combination of kernels and svm.

VI.1 Introduction

In Chapter V we have shown that ml models for wsd (for nlp in general)
suffer from the domain shift problem. Their perfomance drop drastically
when training data and testing data are comming from other domains.
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In this chapter we will focus on supervised wsd adaptation. Following the
work done in the previous chapter, we will compare the performance of similar
supervised wsd systems on three different scenarios: In the source scenario
the wsd system is trained on the source domain and tested on the target
domain (this scenario is comparable to the one mentioned in the previous
chapter). In the target scenario the wsd system is trained and tested
on the target domain (using cross-validation). In the supervised domain
adaptation scenario the wsd system is trained on both source and target
domain and tested in the target domain (also using cross-validation over the
target data). Note that we have already studied the source to target and the
target scenarios in Chapter V.

The source scenario represents a weak baseline for domain adaptation, as
it does not use any examples from the target domain. The target scenario
represents the hard baseline, and in fact, if the domain adaptation scenario
does not yield better results, the adaptation would have failed, as it would
mean that the source examples are not useful when we do have hand-labeled
target examples.

Previous work shows that current state-of-the-art wsd systems are not
able to obtain better results on the adaptation scenario compared to the
target scenario (Escudero et al., 2000; Agirre and Mart́ınez, 2004b; Chan
and Ng, 2007). This would mean that if a user of a generic wsd system
(i.e. based on hand-annotated examples from a generic corpus) would need
to adapt it to a specific domain, he would be better off throwing away the
generic examples and hand-tagging domain examples directly. This chapter
will show that domain adaptation is feasible, even for difficult domain-related
words, in the sense that generic corpora can be reused when deploying wsd
systems in specific domains. We will also show that, given the source corpus,
our technique can save up to 60% of effort when tagging domain-related
occurrences.

In this chapter we will also present additional experiments, such as learn-
ing curves, where we will study the effect of different numbers of target
tagged data added into the training set. The purposed method obtains good
adaptation with little target data adding to source training set. We used
the method purposed by Daumé III (2007) to have a reference and deeper
conclusions. We will show that while the latter method can outperform the
simplest baselines, and get somehow adapted, is not able to do better than
the stronger baselines.

The chapter is structured as follows. Section IV.2.1 reviews datasets and
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the learning algorithms, including system combination. The experimental
results are presented in Section VI.3, Section VI.4 and Section VI.5, for
source scenario, target scenario and supervised domain adaptation scenario,
respectively. Section VI.6 presents the discussion and some analysis of this
chapter and finally, Section VI.7 draws the conclusions.

VI.2 Experimental settings

Regarding the experiments, we have used the identical experimental settings
we used in the previous chapter1. In short, the dataset (Koeling et al.,
2005) consists of the examples coming from the Bnc (Leech, 1992) and the
Sports and Finance sections of the Reuters corpus (Rose et al., 2002),
comprising around 300 examples (roughly 100 from each of those corpora)
for each of the 41 nouns. The nouns were selected because they were salient
in either the Sports or Finance domains, or because they had senses linked
to those domains. The occurrences were hand-tagged with the senses from
WordNet (Wn) version 1.7.1 (Fellbaum, 1998). The unlabeled data also is
coming from Bnc, Sports and Finance. It is important to note that in
these experiments we always have used unlabeled data related to the training
data. Thus, if the training set consist of the Bnc and Sports, we use mixed
unlabeled data from the Bnc and Sports, in equal quantity of examples for
each domain.

Concerning learning algorithms, again, we test an k-nn algorithm and a
linear svm classifier. In k-nn the cosine was used and the degree of neighbors
(k) was set in 5. For svm, the soft margin parameter is highly dependent
on the feature set and training dataset, and given that we will be doing
experiments combining different examples, we opted to avoid overfitting C.
For the kernelized version (see below) we used the default C value, and for
the linear we have utilized the same values as in Chapter V. Note that all
methods presented here have full coverage, i.e. they return a sense for all
test examples, and therefore precision equals recall, and suffices to compare
among systems.

With respect to learning features, we used the so-called original features,
which consist of local collocations features, syntactic features, and bag-of-
words features (additional details in Section III.1) ; and the svd features:

1Note that although they are reported separately, both chapters represent a continuum
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omt and sma features (further details in Section III.3.2.1 and Section V.2.2).

Combination of feature spaces

In short, we have used the following combination techniques in this chapter:

k-nn combination (more details in Section III.4): For this experiments we
built three classifiers trained on omt, sma and original features. In order to
combine them we weight each vote (one of the k neighbors for each classifier)
by the inverse ratio of its position in the rank of the single classifier.

Kernel combination (further details in Section III.4): the combined kernel
is a combination of a normalized linear kernel, an omt kernel and an sma
kernel. Due to the domain differences, we did not optimize the C parameter.

Feature augmentation method (cf. Section III.2.1.6): the main idea is to
give more importance to those examples coming from the same domain. As
we are testing in the target domain, we would prefer to give more discrimina-
tive power to the instances from training which are from the target domain.
Essentially, all we did was to make three version of the original feature vec-
tor: a general version, a source-specific version and a target-version. The
augmented source data contained only general and source-specific versions
and the augmented target data contains general and target-specific versions.
Thus, the target data has twice influence than source when making prediction
about test target data.

VI.3 Source scenario

In this scenario our supervised wsd systems are trained on the general source
corpus (Bnc) and tested on the specific target domains separately (Sports
and Finance). We do not perform any kind of adaptation, and therefore
the results are those expected for a generic wsd system when applied to
domain-specific texts.

Table VI.1 shows the results for k-nn and svm trained with the original
features on the Bnc. In addition, we also show the results for the Most
Frequent Sense baseline (mfs) taken from the Bnc. The second column
denotes the accuracies obtained when testing on Sports, and the third col-
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Bnc → X Sports Finance
mfs 39.0 51.2
k-nn 51.7 60.4
svm 53.9 62.9

Table VI.1: Source to target results: Train on Bnc, test on Sports and
Finance.

Sports Finance
X → X train +unlab train +unlab

mfs 77.8 - 82.3 -
k-nn 84.5 - 87.1 -
svm 85.1 - 87.0 -
k-nn-omt 85.0 86.1 87.3 87.6
svm-omt 82.9 85.1 85.3 86.4
k-nn-sma - 81.1 - 83.2
svm-sma - 81.3 - 84.1
k-nn-comb 86. 0 86.7 87.9 88.6
svm-comb - 86.5 - 88.5

Table VI.2: Target results: train and test on Sports, train and test on
Finance, using 3-fold cross-validation.

umn the accuracies for Finance. The low accuracy obtained with mfs, e.g.
39.0 of precision in Sports, shows the difficulty of this task. Both classi-
fiers improve over mfs. These classifiers are weak baselines for the domain
adaptation system.

VI.4 Target scenario

In this scenario we lay the harder baseline which the domain adaptation
experiments should improve on (cf. next section). The wsd systems are
trained and tested on each of the target corpora (Sports and Finance)
using 3-fold cross-validation.

Table VI.2 summarizes the results for this scenario. train denotes that
only tagged data was used to train, +unlab denotes that we added unlabeled
data related to the source corpus when computing svd. The rows denote the
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classifier and the feature spaces used, which are organized in four sections.
On the top rows we show the three baseline classifiers on the original features.
The two sections below show the results of those classifiers on the reduced
dimensions, omt and sma. Finally, the last rows show the results of the
combination strategies. Note that some of the cells have no result, because
that combination is not applicable (e.g. using the train and unlabeled data
in the original space).

First of all note that the results for the baselines (mfs, svm, k-nn) are
much larger than those in Table VI.1, showing that this dataset is specially
demanding for supervised wsd, and particularly difficult for domain adapta-
tion experiments. These results seem to indicate that the examples from the
source general corpus could be of little use when tagging the target corpora.
Note specially the difference in mfs performance. The priors of the senses
are very different in the source and target corpora, which is a well-known
shortcoming for supervised systems. Note the high results of the baseline
classifiers, which leave small room for improvement.

The results for the more sophisticated methods show that svd and un-
labeled data helps slightly, except for k-nn-omt on Sports. sma decreases
the performance compared to the classifiers trained on original features. The
best improvements come when the three strategies are combined in one, as
both the kernel and k-nn combinations obtain improvements over the re-
spective single classifiers. Note that both the k-nn and svm combinations
perform similarly.

In the combination strategy we show that unlabeled data helps slightly,
because instead of only combining omt and original features we have the
opportunity to introduce sma. Note that it was not our aim to improve the
results of the basic classifiers on this scenario, but given the fact that we are
going to apply all these techniques in the domain adaptation scenario, we
need to show these results as baselines. That is, in the next section we will
try to obtain results which improve significantly over the best results in this
section.

VI.5 Supervised Domain adaptation scenario

In this last scenario we try to show that our wsd system trained on both
source (Bnc) and target (Sports and Finance) data performs better than
the one trained on the target data alone. We also use 3-fold cross-validation
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Sports Finance
Bnc + X → X train + unlab train + unlab

Bnc → X 53.9 - 62.9 -
X → X 86.0 86.7 87.9 88.5
mfs 68.2 - 73.1 -
k-nn 81.3 - 86.0 -
svm 84.7 - 87.5 -
k-nn-omt 84.0 84.7 87.5 86.0
svm-omt 85.1 84.7 84.2 85.5
k-nn-sma - 77.1 - 81.6
svm-sma - 78.1 - 80.7
k-nn-comb 84.5 87.2 88.1 88.7
svm-comb - 88.4 - 89.7
svm-aug 85.9 - 88.1 -

Table VI.3: Domain adaptation results: Train on Bnc and Sports, test on
Sports (same for Finance).

for the target data, but the entire source data is used in each turn. The
unlabeled data here refers to the combination of unlabeled source and target
data.

The results are presented in table VI.3. Again, the columns denote if
unlabeled data has been used in the learning process. The rows correspond
to classifiers and the feature spaces involved. The first rows report the best
results in the previous scenarios: Bnc → X for the source to target scenario,
and X → X for the target scenario. The rest of the table corresponds to
the domain adaptation scenario. The rows below correspond to mfs and the
baseline classifiers, followed by the omt and sma results, and the combina-
tion results. The last row shows the results for the feature augmentation
algorithm (Daumé III, 2007).

Focusing on the results, the table shows that mfs decreases with respect
to the target scenario (cf. Table VI.2) when the source data is added, proba-
bly caused by the different sense distributions in Bnc and the target corpora.
The baseline classifiers (k-nn and svm) are not able to improve over the base-
line classifiers on the target data alone, which is coherent with past research,
and shows that straightforward domain adaptation does not work.

The following rows show that our reduction methods on themselves (omt,
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Sports Finance
Bnc → X
mfs 39.0 51.2
svm 53.9 62.9
X → X
mfs 77.8 82.3
svm 85.1 87.0
k-nn-comb (+unlab) 86.7 88.6
Bnc +X → X
mfs 68.2 73.1 significance test
svm 84.7 87.5 svm (t) k-nn-comb svm-aug
svm-aug 85.9 88.1 ++ - - -
svm-comb (+unlab) 88.4 89.7 ++ ++ ++

Table VI.4: The most important results in each scenario. The significance
columns shows the significance over the baselines and svn-aug: ++ (signif-
icant in both domains), - - (not significant in both domain). svm(t) denote
the svm baseline in target scenario.

sma used by k-nn and svm) also fail to perform better than in the target sce-
nario, but the combinations using unlabeled data (k-nn-comb and specially
svm-comb) do manage to improve the best results for the target scenario,
showing that we were able to attain domain adaptation. The feature aug-
mentation approach (svm-aug) does improve slightly over svm in the target
scenario, but not over the best results in the target scenario, showing the
difficulty of domain adaptation for wsd, at least on this dataset.

VI.6 Discussion and analysis

Table VI.4 summarizes the most important results. The kernel combination
method with unlabeled data on the adaptation scenario reduces the error
on 22.1% and 17.6% over the baseline svm on the target scenario (Sports
and Finance respectively), and 12.7% and 9.0% over the k-nn combination
method on the target scenario. These gains are remarkable given the already
high baseline, specially taking into consideration that the 41 nouns are closely
related to the domains. The differences, including svm-aug and k-nn-comb,
are statistically significant according to the Wilcoxon rank sum test with
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y=85.1

Figure VI.1: Learning curves for Sports. The X axis denotes the amount
of Sports data and the Y axis corresponds to accuracy.

p < 0.01.

In addition, we carried extra experiments to examine the learning curves,
and to check, given the source examples, how many additional examples
from the target corpus are needed to obtain the same results as in the target
scenario using all available examples. We fixed the source data and used
increasing amounts of target data. We show the original svm on the target
scenario, and svm-comb (+unlab) and svm-aug as the domain adaptation
approaches. The results are shown in Figure VI.1 for Sports and Figure VI.2
for Finance. The horizontal line corresponds to the performance of svm on
the target domain. The point where the learning curves cross the horizontal
line show that our domain adaptation method needs only around 40% of the
target data in order to get the same performance as the baseline svm on
the target data. The learning curves also shows that the domain adaptation
kernel combination approach, no matter the amount of target data, is always
above the rest of the classifiers, showing the robustness of our approach.
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Figure VI.2: Learning curves for Finance. The X axis denotes the amount
of Finance data and Y axis corresponds to the accuracy.

VI.7 Conclusion and future work

In this chapter we explored supervised domain adaptation for wsd with pos-
itive results, showing that hand-labels from the general domain (source text)
are useful when training a wsd system that is be applied to specific domains
(target texts). We performed several experiments in three scenarios. In the
first scenario (source scenario), the classifiers were trained on general source
domain data (the Bnc) and tested on the target domains, composed by the
Sports and Finance sections of Reuters. In the second scenario (target
scenario) we set the main baseline for our domain adaptation experiment,
training and testing our classifiers on the target domain data. In the last
scenario (domain adaptation scenario), we combined both source and target
data for training, and test on the target data.

We reported results in each scenario for k-nn and svm classifiers, for
reduced features obtained using svd over the training data, for the use of
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unlabeled data, and for k-nn and svm combinations of all.
Our results show that our best domain adaptation strategy (using ker-

nel combination of svd features and unlabeled data related to the training
data) yields statistically significant improvements: up to 22% error reduction
compared to svm on the target domain data alone. We also show that our
domain adaptation method only needs 40% of the target data (in addition to
the source data) in order to get the same results as svm on the target alone.

We obtain coherent results in two target scenarios, and consistent im-
provement at all levels of the learning curves, showing the robustness of our
findings. We think that our dataset, which comprises examples for 41 nouns
that are closely related to the target domains, is specially demanding, as one
would expect the performance of a generic wsd system to drop when moving
to the domain corpus, specially for domain-related words, while we could
expect the performance to be similar for generic or unrelated words.

In terms of contributions we may summarize the chapter as follows:

• First successful results in supervised domain adaptation in the super-
vised scenario

• Our wsd system was able to take profit from the source general domain
tagged examples.

• Kernel methods are a good option to combine different feature spaces
in a simple and elegant way.

For the future, it would be interesting to evaluate our method on all words
datasets (e.g. DSO or OntoNotes), to confirm whether our the positive results
are confirmed2. We would also like to study word-by-word behavior, in order
to assess whether target examples are really necessary for words which are
less related to the domain.

2We are organizing domain-specific wsd task for SemEval-2010:
http://xmlgroup.iit.cnr.it/SemEval2010/
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CHAPTER VII

Knowledge-based domain-specific WSD

This chapter explores an alternative method for wsd of specific-domains.
We used a state-of-the-art graph based wsd system (introduced by Agirre
and Soroa (2009)) that uses the information in WordNet. Evaluation was
performed in the same framework as the two previous chapters. The results
show that in all three corpora the knowledge-based wsd algorithm improves
over previous knowledge-based results, and also over two state-of-the-art su-
pervised wsd systems trained on SemCor, the largest publicly available anno-
tated corpus. We also show that disambiguating automatically built thesauri
(instead of the actual occurrence contexts) yields better results on the domain
datasets, but not on the general one. Interestingly, the results are higher
for domain-specific corpus than for the general corpus, raising prospects for
improving current wsd systems when applied to specific domains.

VII.1 Introduction

The state-of-the-art in wsd has shown the best performing systems are those
based on supervised learning (cf. Section II.4). Despite the impressive re-
sults, they need large amounts of hand-tagged data to deal with data sparse-
ness and domain shift problems. The sparseness and domain shift problems
are specially acute when deploying a supervised wsd system on a specific
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domain. Hand tagging examples for every new domain would provide the
desired performance, but it is unfeasible in practice, because of the high
manual cost involved. In Chapter V and Chapter VI we have showed that
when the training and test data come from different domain the performance
decrease significantly, and presented a method to alleviate those problems.

As an alternative to supervised systems, knowledge-based wsd is re-
emerging as a powerful alternative. Knowledge-based systems exploit the
information in a Lexical Knowledge Base (lkb) to perform wsd, without
using any corpus evidence. In particular, graph-based methods are getting
increasing attention from the wsd community (Sinha and Mihalcea, 2007;
Navigli and Lapata, 2007). These methods use well-known graph-based tech-
niques to find and exploit the structural properties of the graph underlying a
particular lkb. In (Agirre and Soroa, 2009) authors proposed a graph-based
algorithm using Personalized PageRank which outperformed other unsuper-
vised wsd systems in publicly available datasets. In this chapter we explore
the application of their algorithm to domain-specific corpora.

Our work here focuses on the comparison between state-of-the-art super-
vised and knowledge-based wsd systems on specific domains, and to study
better ways to apply knowledge-based wsd methods on specific domains.
Our proposal can also be seen as a continuation of (Koeling et al., 2005),
and we show that our WordNet-based wsd method yields better results.
We also study whether the strategy to select one predominant sense for the
whole corpus using the thesaurus performs better than disambiguating each
occurrence of the word separately. This chapter is complementary to those
experiments performed with the supervised methods in previous chapters,
and holds promise for potential combinations.

The chapter is structured as follows. Section VII.2 briefly reviews the
supervised systems used for comparison purposes. Section VII.3 presents
the graph-based techniques, which are applied to wsd. In Section VII.4 the
evaluation framework and results are presented. Finally, the conclusions are
drawn and further work is mentioned.

VII.2 Supervised wsd

As baselines, we use two state-of-the-art wsd classifiers: Support Vector
Machines (svm) and k-Nearest Neighbors (k-nn), respectively.

Regarding k-nn, the similarity among instances was measured as the
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cosine of their featured vectors. We set k to 5 based on previous work.
Regarding svm, we used linear kernels, due to the high amount of learning
features. No soft margin (C) was estimated for any baseline system and the
default C was used. We used the one-versus-all strategy, as implemented in
SVM-Light.

In order to train the classifiers, we relied on the original features described
in Section III.1. The feature space consist of local collocation, syntactic
dependencies, and bag-of-words. Both systems were trained on SemCor,
which we mapped it from WordNet 1.6 to WordNet 1.7.1 (Daude et al., 2000).
In the case where target word has fewer than 10 instances in SemCor we have
applied the most frequent sense, as customary in all-words supervised wsd
systems. For the 41 words in the evaluation dataset (cf. Section VII.4) 8
words had less than 10 training instances. The maximum amount of training
instances was 114, with an average of 37.

VII.3 Lexical Knowledge based wsd

In this section we will briefly explain how to apply PageRank and Personal-
ized PageRank to knowledge-based wsd, as introduced in (Agirre and Soroa,
2009). We give further details in Section II.3.1.2.

A Lexical Knowledge Base (lkb) is formed by a set of concepts and
relations among them, plus a dictionary, i.e. a list of words (typically, word
lemmas) each of them linked to at least one concept of the lkb. Such a lkb
can be naturally represented as an undirected graph G = (V,E) where nodes
represent lkb concepts (vi), and each relation between concepts vi and vj is
represented by an undirected edge ei,j. In this work, we used WordNet 1.7
as the lkb, using all relations supplemented with disambiguated glosses as
provided by the Extended WordNet. This setting was optimal in (Agirre and
Soroa, 2009). The WordNet version follows that of the evaluation dataset
(cf. Section VII.4).

VII.3.1 Static PageRank (PR), no context

If we apply traditional PageRank over the whole WordNet, we get a context-
independent ranking of word senses. All concepts in WordNet get ranked
according to their PageRank value. Given a target word, it suffices to check
which is the relative ranking of its senses, and the wsd system would output
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the one ranking highest. We call this application of PageRank to wsd Static
PageRank, as it does not change with the context, and we use it as a baseline.

As PageRank over undirected graphs is closely related to the degree,
the Static PageRank returns the most predominant sense according to the
number of relations the senses have. We think that this is closely related to
the Most Frequent Sense attested in general corpora, as the lexicon builders
would tend to assign more relations to the most predominant sense. In fact,
our results (cf. Section VII.4.1) show that this is indeed the case, at least for
the English WordNet.

VII.3.2 Personalized PageRank (PPR) using context

Static PageRank is independent of context, but this is not what we want in
a wsd system. Given an input piece of text we want to disambiguate all
content words in the input according to the relationships among them. For
this we can use Personalized PageRank over the whole WordNet graph.

Given an input text (a sentence in our case), we extract the list Wi i =
1 . . .m of content words (i.e. nouns, verbs, adjectives and adverbs) which
have an entry in the dictionary, and thus can be related to lkb concepts.
Note that monosemous words will be related to just one concept, whereas
polysemous words may be attached to several. As a result of the disam-
biguation process, every lkb concept receives a score. Then, for each target
word to be disambiguated, we just choose its associated concept in G with
maximal score.

In order to apply Personalized PageRank over the lkb graph, the context
words are first inserted into the graph G as nodes, and linked with directed
edges to their respective concepts. Then, the Personalized PageRank of the
graph G is computed by concentrating the initial probability mass uniformly
over the newly introduced word nodes. As the words are linked to the con-
cepts by directed edges, they act as source nodes injecting mass into the
concepts they are associated with, which thus become relevant nodes, and
spread their mass over the lkb graph. Therefore, the resulting Personalized
PageRank vector can be seen as a measure of the structural relevance of lkb
concepts in the presence of the input context.

This method has one problem: if one of the target words has two senses
which are related to each other by semantic relations, those senses would
reinforce each other, and could thus dampen the effect of the other senses
in the context. With this observation in mind authors have used a variant
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where, for each target word Wi, the initial probability mass is concentrated
in the senses of the words surrounding Wi, but not in the senses of the target
word itself, avoiding to bias the initial score of concepts associated to target
word Wi. Agirre and Soroa (2009) show that this variant gets the best results.

Given the fact that finding out the predominant sense seems a powerful
option, we decided to try two further variants of the Personalized PageRank
wsd algorithm. Instead of returning a different sense for each occurrence,
we also evaluated the results of selecting the sense which is chosen most
frequently by Personalized PageRank for the target word (PPRank.maxsense
variant). Another alternative is to join all contexts of the target word into a
single large context and then disambiguate the target word using this large
context in a single run (PPRank.all-in-one variant).

VII.3.3 Personalized PageRank (PPR) using related
words

Instead of disambiguating the target word using the occurrence context, we
could follow (Koeling et al., 2005) and disambiguate the target word using the
set of related words as collected from the target corpus (cf. Section II.1.2).
We would thus annotate all the occurrences of the target word in the test
corpus with the same sense. For instance, in the Sports corpus, instead
of disambiguating the word coach using each of its occurrences as context
(e.g. “Has never won a league title as a coach but took Parma to success
in Europe ...”), we would disambiguate coach using its most related words
according to the thesaurus (e.g. manager, captain, player, team, striker, ...).
In this work we use the automatically constructed thesauri built by Koeling
et al. (2005), one for each corpus of the evaluation dataset, i.e. Sports,
Finance and general. Given a target noun w, Koeling et al. obtained a
set of co-occurrence triples 〈w, r, x〉 and associated frequencies, where r is a
grammatical relation and x the co-occurring word in that relation. For every
pair of nouns, they computed their distributional similarity comparing their
respective triples using the measure suggested by Lin (1998). Finally, the 50
most similar nouns are retrieved for each target noun.
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VII.4 Evaluation Framework and results

We used the evaluation dataset published in Koeling et al. (2005), which
consists of examples from the Sports and Finance sections of the Reuters
corpus, and Bnc. The selected 41 words are quite polysemous and thus
difficult to disambiguate, with an average polysemy of 6.7 senses, ranging
from 2 to 13 senses.

(Koeling et al., 2005) did not clarify how did they select the “correct”
sense, and we decided to choose the sense selected by the majority of taggers.
In case of ties we discarded the occurrence from the test set. This, and the
fact that Koeling et al. discarded one of the target words, make our figures
slightly different from those in (Koeling et al., 2005).

VII.4.1 Experimental results

As evaluation measure we use recall, the number of correct occurrences di-
vided by the total number of occurrences. Recall is more informative than
accuracy, as some methods failed to return results for a handful of occur-
rences. Table VII.1 shows the results of the different wsd approaches on
the different corpora (expressed in three main columns). The confidence
interval is also shown, as computed using bootstrap resampling with 95%
confidence.The systems in the table are divided in four groups.

The first rows report the baseline approaches, such as the random base-
line, the most frequent sense as attested in SemCor and the results of the
static PageRank. In the second group of rows, the results for supervised sys-
tems, k-nn and svm, are shown. Next, we show the Personalized PageRank
over occurrence context in its three variants (cf. Section VII.3.2). Below we
show the approaches based on related words, including the results of Koeling
et al. and the combination of applying our algorithm to the related words
and each context (th+ctx ). Finally, we show the most frequent sense accord-
ing to the test data, which can be seen as an upperbound of our algorithm.
We will now consider several issues in turn.

Baselines and supervised systems: The results show that SemCor
mfs is very low, close to the random baseline and far from the Test mfs,
especially for the domain-specific corpora but also on the general Bnc cor-
pus. Note that the most frequent sense in the test data may be considered
as an upperbound for domain adaptation, as it requires tagging examples



148 Knowledge-based domain-specific WSD

Similar Different
Systems Bnc Sp. Fin. Bnc Sp. Fin.
SemCor mfs 54.7 65.5 79.0 9.7 3.8 8.4
k-nn 57.1 64.6 69.9 24.6 18.5 25.4
Context PPR 50.0 34.9 64.2 36.0 35.9 35.0
Related PPR 38.1 53.1 73.7 24.8 50.9 49.5

Table VII.2: Results for those words with similar (and different) sense dis-
tributions. Best results in bold.

from each target domain. The supervised systems scarcely improve over the
SemCor mfs, which is consistent with state-of-the-art results over all-words
datasets (Snyder and Palmer, 2004; Pradhan et al., 2007). They also lie well
below the Test mfs, with a dramatic gap in the two domain corpora. The low
results on the Bnc, even being a general corpora, show that the deployment
of supervised systems is problematic, not only because of domain shifts, but
also when being applied to different corpora, even being both general domain,
as already attested in the literature (Escudero et al., 2000).

Static PageRank: Applying PageRank over the entire WordNet graph
yields low results, very similar to those of SemCor mfs, and below those
of all Personalized PageRank variants that we tried. In fact, Static PageR-
ank seems to be closely related to the SemCor mfs, as we hypothesized in
Section VII.3.1.

Personalized PageRank over context words: Surprisingly, applying
our Personalized PageRank method for each occurrence yields results which
are above the supervised systems in all three corpora, with larger improve-
ments for the domain-specific ones. The results of the strategies for selecting
one single sense as output (maxsense or all-in-one) are mixed, with slight
improvements in Sports and Finance and degradation in the Bnc.

Personalized PageRank over related words: Personalized PageR-
ank over related words obtains the best results overall for Sports and Fi-
nance, and it is thus a preferred strategy to disambiguate domain-specific
words. Interestingly, in the case of the balanced Bnc corpus, the best results
are for Personalized PageRank over the occurrence context. It seems that
using related words is optimal for domain-specific wsd, but not for general
purpose wsd, where a more personalized case-by-case treatment is required
for each occurrence. Finally, the combination of the occurrence context and
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related words does not seem to be productive, as attested by its decrease in
performance.

Comparison to Koeling et al. (2005): Our Personalized PageRank
algorithm over related words performs significantly better than Koeling et al.
(2005) in both Sports and Finance. Our wsd method is closely related to
the WordNet-based similarity method defined in (Hughes and Ramage, 2007).
In this sense, our wsd algorithm is an alternative to the one used in (Koeling
et al., 2005). Instead of computing pairwise similarity and selecting the
sense which yields the maximum additive similarity score with respect to
each related words from the thesaurus, our wsd method implicitly yields
the sense with the maximum similarity score with respect to the full set
of related words in one go. In fact, we initialize PPR with all the related
words in the thesaurus, yielding the sense of the target word with the highest
rank, i.e. the sense which is most closely related to those words. Our better
results are consistent with the word similarity results reported in (Hughes
and Ramage, 2007), which surpass other WordNet-based similarity methods,
including those used by Koeling et al. (2005).

Results for coarse-grained senses: WordNet senses have been crit-
icized for their fine-grainedness. Public evaluation exercises have also used
coarse-grained senses as defined by the semantic files of the senses. In our
case, the best results for Bnc, Sports and Finance measured according to
coarse senses would be of 61.2%, 72.0% and 56.9%, respectively. This is re-
markable given the high polysemy of the target words. The overall results for
Sports and Finance are higher than for Bnc, holding promise for building
high performance domain-specific wsd in specific domains.

Effect of sense distributions: The performance of the supervised sys-
tems could be affected by the very different distribution of word senses in
the training (SemCor) and test dataset (all three corpora), as attested by the
very low performance of the SemCor mfs and the dramatic difference with
respect to the Test mfs. We decided to make two groups of words for each
corpus, according to the similarity of sense distributions measured as the
difference between SemCor mfs and Test mfs. In the Similar distribution
group we included those words with differences below 10 percentage points,
and in the Different distribution group those with larger differences. Note
that for each domain we acquire different set words: for Sports we had 12
Similar words and 29 Different words, for Finance we had 16 and 25, and
for the Bnc 19 and 22, respectively. Table VII.2 shows that for Similar sense
distributions the best results are actually those of the SemCor mfs and the
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Figure VII.1: Learning curves for PPR (Sports) using different numbers of
related words from the thesaurus. Leftmost point corresponds to zero words,
which equals to static PR.

supervised wsd system, while the Personalized PageRank algorithms yield
the best results for Different sense distributions.

Exploring the number of related words: Following (Koeling et al.,
2005) we used the 50 most similar words when doing wsd. Figure VII.1
shows the number of words is an important factor, with best results for 30-
50 words. These results agree with the intuition that a minimum amount of
words is necessary for providing context, but introducing further terms down
the list of related words involves noisier and less related words.

VII.5 Conclusions and future work

This chapter shows that Knowledge-Based wsd systems are a powerful al-
ternative to supervised wsd systems when tagging domain-specific corpora.
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The results range from 51.5% to 59.3% (61.2% to 72% coarse-grained) for 41
domain-related and highly polysemous words. Interestingly, the results are
higher for domain-specific corpus than for the general corpus, raising inter-
esting prospects for improving current wsd systems when applied to specific
domains.

The results also show that our knowledge-based wsd algorithm improves
significantly over previous results on the same dataset. The system and the
data are publicly available in http://ixa2.si.ehu.es/ukb/. Disambiguat-
ing related words from an automatically built thesauri (instead of the actual
occurrence contexts) yields better results on the domain datasets, but not
on the general one.

Our analysis showed that the differences in sense distribution hurt super-
vised systems, and a combination of supervised and knowledge-based systems
which takes this into account seems promising. In particular, our approach
is complementary to supervised domain-adaptation techniques (Chapter V
and Chapter VI). Given the existing difference with respect to the Test mfs,
there is ample room for further improvements.

The dataset we used is a lexical-sample, and our results might depend on
the actual words in the sample. For the future, we would like to confirm our
findings on an all-words domain-specific corpus.
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CHAPTER VIII

Conclusions and future work

In the introductory chapter we stated that Word Sense Disambiguation is
one of the most important problems in nlp semantics. But in order to be
useful, a wsd classifier has to be robust and noise-tolerant to maintain its
performance across texts, and has also to be easy to adapt to new domains.
wsd classifiers based on ml usually suffer from data sparseness, and suffer
in domain shifts.

This dissertation has focused on data sparseness and specially domain
shifts. Although our emphasis has been on developing a technique for do-
main adaptation of supervised systems, we have also experimented with a
knowledge-based algorithm. In order to better understand the issues that
arise when facing domain shifts, we can mention the following closely related
points for word senses: 1) word sense distributions might change dras-
tically, for example, in the sports domain the meaning of coach is more likely
to be someone in charge of training an athlete or a team rather than a specific
type of vehicle; 2) word sense variability decreases in domain-specific
corpora, that is words tend to occur in less senses, where the probability
of the predominant sense is usually higher (high skew) and the rest is lower,
and can disappear; 3) new word senses might arise in domain-specific
corpora, that is, specialized uses of domain words might create new senses.

Similar issues arise with the features used for learning. The words in
context change across domains, as well as syntax and structures of phrases.
Thus, extracted features would be different, and algorithms would general-
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ize differently. In other words, we say that the feature distribution also
changes across domains.

In order to alleviate all the above problems, this dissertation proposed
to use Singular Value Decomposition (svd). svd has been shown to
mitigate the data sparseness problem by finding condensed representations
of the task and reducing significantly the dimensionality of the feature space.
In domain adaptation svd helps to reduce the gap between feature distribu-
tions of both source and target domains throwing the new features into same
distribution. The feature space represented by svd helps the ml algorithm
to induce good models and, thus, select correct word sense, even if the sense
distributions keeps being different in both domains. In order to decrease
the gap between source and target domain, we also apply semi-supervised
learning, introducing unlabeled data in the learning process.

The combination of the different features has been shown to be key factor
to obtain robustness and domain adaptation in wsd. This dissertation has
presented a novel way to combine k-nn classifiers, showing its robustness
across several datasets. In addition, we show that the use of the kernels is
an elegant way and effective way to combine the feature spaces.

This dissertation has followed a clear experimental strategy. We first
started in a general domain, without paying attention to any cross domain
problem. In these experiments, reported in Chapter IV we focused on data
sparseness. The next two sets of experiments were devoted to domain adapta-
tion issues. In Chapter V semi-supervised domain adaptation was addressed,
using solely unlabeled data in order to adapt the system to the new domain.
In Chapter VI supervised domain adaptation experiments were carried out,
where both source and target examples are used to train the wsd classifier.
In addition, unlabeled data was used to improve the adaptation results.

Additional experiments, related to domain-specific wsd, were carried out
in Chapter VII. There we showed how knowledge-based systems can perform
as well as (and even better than) supervised systems, due to the fact that
supervised ml systems depend significantly on the corpus bias. These are
very encouraging results, and the combination of both paradigms can be key
for future developments.

From the experiments on each of the aspects of wsd treated in this dis-
sertation, we were able to extract some conclusions. We will try first to
summarize what we consider the main contributions of this dissertation, and
then we will describe the conclusions derived from each of the studied issues.
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VIII.1 Contribution of our work

We will now describe the main contributions of this work, which were already
advanced in Chapter I, including their relation to chapters in the dissertation:

• SVD decomposition is useful to deal with data sparseness and
domain adaptation (Chapters 4, 5 and 6): We explored the contribu-
tion of features obtained with svd decomposition to wsd performance.
We presented several experiments across different datasets. We studied
the performance of a number of ml algorithms trained on these types
of features and analyzed the effect of the number of dimensions. We
also developed different ways to obtain the svd representation, each
catching different evidences from text. The svd representation is com-
plementary to the classic feature set, and we showed that combining
them is a robust way to improve the results. We used two experimen-
tal scenarios: general domain wsd was tested in Senseval and SemEval
datasets, and domain-specific wsd. Our results obtain the state-of-
the-art over Senseval-like datasets. In domain adaptation, we showed
that svd features are good enough to obtain robustness (on a general
wsd system) and adaptation (on a system trained with examples from
general domain and domain-specific instances).

• Unlabeled data helps find better correlations among features
(Chapters 4, 5 and 6): We studied the usefulness of unlabeled data
to obtain better correlation among the features from labeled instances.
We use unlabeled data to help find higher-order correlations apply-
ing svd to the augmented matrix. This matrix augmentation is also
known as background learning. In order to asses the effect of the un-
labeled data we evaluated wsd systems trained on different amounts
of unlabeled data. We reported several experiments showing that un-
labeled data help up to certain amounts. On the domain adaptation
scenario, we played with unlabeled data from different sources, finding
that unlabeled data must be topically related to the training set in
order to obtain effective svd features. We showed that unlabeled data
helps obtain more reliable features and an it is an important factor in
the domain adaptation scenario.

• Combination of feature spaces is useful (Chapters 4 and 6): the
redundancy and heterogeneity of features can affect negatively. We
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split the original feature set in coherent sets, and explored how to
combine them. In k-nn combination each k-nn system is trained on
a different feature space and casts votes for its first k neighbors. In
kernel-based combination, each kernel’s implicit function is a different
kind of svd mapping. The former method obtain the state-of-the-art
results in Senseval dataset. The latter showed that it is an effective way
to take profit of the general source domain in the supervised domain
adaptation scenario. We show that a combination of rich feature spaces
is a useful and robust manner to obtain good results for wsd.

• Robustness in face of semi-supervised domain adaptation (Chap-
ter 5). Using svd and unlabeled data we obtained a robust system that
performs well across different target domains without labeled data from
the target domains, reducing the domain shift problem for general wsd
system. We found that in order to obtain a robust system the unlabeled
data should be from general domain and be related to the training set.

• Supervised domain adaptation (Chapter 6). We have showed for
the first time that source general domain examples are an useful addi-
tion to target domain examples in wsd, and provide for the best results
domain adaptation. Up to now, the general domain examples were not
shown to be useful. We concluded that the correlations found by svd
and the generalization provided by the combination of svd-based ker-
nels are effective.

In order to make a more complete picture of domain adaptation, we also
explored the performance of knowledge-based models:

• Knowledge-based wsd system may outperform a general wsd
system (Chapter 7): We explored the application of knowledge-based
wsd systems to specific domains, based on a combination of state-of-
the-art graph-based wsd system (Agirre and Soroa, 2009) that uses the
information in WordNet with a distributional thesaurus built from the
target domains. This system outperformed supervised systems trained
on SemCor, showing that knowledge-based wsd systems are a powerful
alternative to supervised wsd systems.
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VIII.2 Conclusions

In order to achieve the results described in the previous section, we follow a
path through different wsd issues, which serves to organize the chapters of
this dissertation. The conclusions derived from our analysis were presented
at the end of each chapter. We will now devote this section to summarize
the main results.

Combination of features spaces and unlabeled data with
wsd (4th chapter)

In this chapter we deal with data sparseness. We tried three ideas to improve
the wsd performance:

• The use of svd to deal with data sparsity and redundancy.

• The use of unlabeled data in order to improve the learning process.

• The combination of various sets of features in order to improve the
classifiers.

We applied svd to two different kinds of matrices. Our experiments show
that the omt technique to apply svd compares favorably to sma, which
has been previously used in (Gliozzo et al., 2005). Although constructing
one matrix per target word (omt) yields the best results, it is a relatively
expensive process, so we did not apply it to the all-words setting. In the all-
words experiment we only tested the single matrix for all (sma) approach,
with good results. The results show that our combined k-nn systems are
state-of-the-art, specially in lexical sample settings, and that the induced
features provide significant improvements.

We performed several sets of experiments in order to explore different
feature spaces and combination. Next we will describe those conclusions
more in detail:

omt , unlabeled data and feature split (first set of experiments). In this
experiments we based on svd features induced from omt matrices, unlabeled
data to provide background knowledge, and splits of original feature spaces
to tackle the sparseness, redundancy and heterogeneity in data. Each of the
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proposals improves the results for a k-nn classifier, and properly combined
they provide we obtained one of the best results for the Senseval-3 lexical-
sample dataset.

We argued that these improvements help to model better the feature
space, which, coupled with a ml algorithm well suited for combination such
as k-nn, explains the good results. This opens new feature modeling possi-
bilities.

sma features set and combinations (Second set of experiments). This
set of experiments explored the split of feature sets in order to obtain better
wsd systems through combinations of classifiers learned over each of the split
feature sets. Our results show that k-nn is able to profit from the combi-
nation of split features (contrary to vsm and svm), and that simple voting
is not enough for that. Instead we propose combining all k-nn subsystems
where each of the k neighbors casts one vote.

We showed that sma features behaved well through different datasets.
The experiments demonstrated that sma and the combination with the origi-
nal features finds different patterns in text, improving consistently the system
performances.

We have performed a thorough evaluation on two datasets (Senseval-3
lexical-sample and all-words), having promising results.

Participation in Semeval-2007 (third set of experiments). In these exper-
iments we confirmed our findings in the previous experiments. First of all, we
built a robust system based on a number of k-nn classifiers , each trained on
a different feature spaces. The classifier was tested in lexical-sample and all-
words tasks. Regarding lexical-sample, we saw that omt features outperform
the rest of the features, and that sma features are useful in combinations.

Semi-supervised domain adaptation (5th chapter)

In this chapter we explore robustness and domain adaptation issues for wsd
using svd and unlabeled data. We focus on the semi-supervised scenario,
where we train on the source corpus (Bnc), test on two target corpora
(Sports and Finance sections of Reuters), and improve the results using
unlabeled data.

Our method yields up to 16.3% error reduction compared to svm and
k-nn on the labeled data alone, showing the first positive results on domain
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adaptation for wsd. In fact, we show that our results are due to the use of a
large, general, unlabeled corpus, and rather than domain-adaptation proper
we show robustness in face of a domain shift. This kind of robustness is even
more cost-effective than semi-supervised domain adaptation, as it does not
require large unlabeled corpora or repeating the computations for each new
target domain.

These experiments show that the omt technique to apply svd that com-
pares favorably to sma. We also show that the unlabeled data needs to be
related to the training data, and that the benefits of our method are larger
when faced with a domain shift (compared to test data coming from the same
domain as the training data).

Supervised domain adaptation (6th chapter)

In this chapter we explored supervised domain adaptation for wsd with pos-
itive results, showing that hand-labels from the general domain (source text)
are useful when training a wsd system that is be applied to specific domains
(target texts). We performed several experiments in three scenarios. In the
first scenario (source scenario), the classifiers were trained on general source
domain data (the Bnc) and tested on the target domains, composed by the
Sports and Finance sections of Reuters. In the second scenario (target
scenario) we set the main baseline for our domain adaptation experiment,
training and testing our classifiers on the target domain data. In the last
scenario (domain adaptation scenario), we combined both source and target
data for training, and test on the target data.

Our results show that our best domain adaptation strategy (using ker-
nel combination of svd features and unlabeled data related to the training
data) yields statistically significant improvements: up to 22% error reduction
compared to svm on the target domain data alone. We also show that our
domain adaptation method only needs 40% of the target data (in addition to
the source data) in order to get the same results as svm on the target alone.

We obtained coherent results in two target scenarios, and consistent im-
provement at all levels of the learning curves, showing the robustness of our
findings. We think that our dataset, which comprises examples for 41 nouns
that are closely related to the target domains, is specially demanding, as one
would expect the performance of a generic wsd system to drop when moving
to the domain corpus, specially for domain-related words, while we could
expect the performance to be similar for generic or unrelated words.
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Knowledge-based domain-specific wsd (7th chapter)

This chapter showed that Knowledge-Based wsd systems are a powerful
alternative to supervised wsd systems when tagging domain-specific corpora.
The results range from 51.5% to 59.3% (61.2% to 72% coarse-grained) for
41 domain-related and highly polysemous words. Interestingly, the results
are higher for domain-specific corpus than for the general corpus, raising
interesting prospects for improving current wsd systems when applied to
specific domains.

The results also showed that our knowledge-based wsd algorithm im-
proves significantly over previous results on the same dataset. Disambiguat-
ing related words from an automatically built thesauri (instead of the actual
occurrence contexts) yields better results on the domain datasets, but not
on the general one.

Our analysis showed that the differences in sense distribution hurt super-
vised systems, and a combination of supervised and knowledge-based systems
which takes this into account seems promising. In particular, our approach
is complementary to supervised domain-adaptation techniques (Chapter V
and Chapter VI). Given the existing difference with respect to the Test mfs,
there is ample room for further improvements.

VIII.3 Future Work

There are some open research lines in this work that can be explored further.
We will describe the main experiments and path to be explored we would
like perform in the future.

• It would be interesting to test our findings in other datasets,
such as DSO or OntoNotes, and see if the positive results are confirmed.
We would also like to study word-by-word behavior, in order to asses
whether target examples are really necessary for words which are less
related to the domain. Following the experiments in Chapter VII we
would like to test whether our results depend on the actual words in
the sample.

• Find valid representations for cross-domain problems. In terms
of features, we think that some kind of features might not depend so
much on the domain. There is previous work that tried to define this
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kind of specific features, where they can be used as a bridge to transfer
the useful knowledge in one domain to another (Blitzer et al., 2006).
Unfortunately, there is no published work that takes wsd as a problem.

• SemEval 2010: All-words Word Sense Disambiguation on a
specific domain. In order to perform a proper analysis of the domain
adaptation issue, we are organizing an all-words task to perform ex-
periments in a domain-specific corpus. This way, we could confirm our
findings in this dissertation. The task is described more in detail in
http://xmlgroup.iit.cnr.it/SemEval2010/.

• Adaptation of Knowledge-based approaches. This is closely re-
lated to Ontology learning, where we would like to adapt an ontology
(or a knowledge base) by pruning and adding concepts belonging to
the specific-domain. This way, better wsd could be achieved.

• Combination of Knowledge-based and supervised approaches.
In general terms, wsd has a long history, and it seems that supervised
approaches have reached to a plateau state. Chapter VII has shown
the weakness of supervised algorithms, as the difference in the sense
distribution hurts supervised systems. A combination of supervised and
knowledge-based systems which take into account the sense distribution
seems promising.

• Indirect evaluation of wsd systems. Important advances have been
introduced in wsd task since early 80’s in terms of recall and precision,
but still there is loads of work to integrate as useful module in other
task such as ir or mt. We would like to investigate how this semantic
knowledge could be integrated further in nlp and hlt applications.
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APPENDIX A

Word sense distribution from

Domain-Specific Sussex Corpus

BNC dataset sense distribution

bank.n => 1 ---> 67 - 70.5263157894737 %

bank.n => 2 ---> 12 - 12.6315789473684 %

bank.n => 7 ---> 6 - 6.31578947368421 %

bank.n => 5 ---> 4 - 4.21052631578947 %

bank.n => 4 ---> 3 - 3.15789473684211 %

bank.n => unclear ---> 2 - 2.10526315789474 %

bank.n => 3 ---> 1 - 1.05263157894737 %

total of examples = 95

total of senses = 7

bill.n => 1 ---> 40 - 40.4040404040404 %

bill.n => 2 ---> 39 - 39.3939393939394 %

bill.n => 7 ---> 11 - 11.1111111111111 %

bill.n => unclear ---> 3 - 3.03030303030303 %

bill.n => 4 ---> 2 - 2.02020202020202 %

bill.n => unlisted-sense ---> 2 - 2.02020202020202 %

bill.n => 3 ---> 1 - 1.01010101010101 %

bill.n => 5 ---> 1 - 1.01010101010101 %
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total of examples = 99

total of senses = 8

bond.n => 2 ---> 43 - 45.7446808510638 %

bond.n => 3 ---> 31 - 32.9787234042553 %

bond.n => 1 ---> 15 - 15.9574468085106 %

bond.n => 6 ---> 2 - 2.12765957446809 %

bond.n => unclear ---> 2 - 2.12765957446809 %

bond.n => 10 ---> 1 - 1.06382978723404 %

total of examples = 94

total of senses = 6

check.n => 6 ---> 11 - 33.3333333333333 %

check.n => 10 ---> 8 - 24.2424242424242 %

check.n => 2 ---> 5 - 15.1515151515152 %

check.n => 4 ---> 3 - 9.09090909090909 %

check.n => 11 ---> 2 - 6.06060606060606 %

check.n => 8 ---> 1 - 3.03030303030303 %

check.n => unlisted-sense ---> 1 - 3.03030303030303 %

check.n => 7 ---> 1 - 3.03030303030303 %

check.n => 5 ---> 1 - 3.03030303030303 %

total of examples = 33

total of senses = 9

chip.n => 7 ---> 72 - 78.2608695652174 %

chip.n => 4 ---> 9 - 9.78260869565217 %

chip.n => 1 ---> 5 - 5.43478260869565 %

chip.n => unlisted-sense ---> 3 - 3.26086956521739 %

chip.n => unclear ---> 2 - 2.17391304347826 %

chip.n => 8 ---> 1 - 1.08695652173913 %

total of examples = 92

total of senses = 6

club.n => 2 ---> 55 - 59.1397849462366 %

club.n => unclear ---> 13 - 13.9784946236559 %

club.n => 7 ---> 9 - 9.67741935483871 %

club.n => 1 ---> 8 - 8.60215053763441 %

club.n => 4 ---> 4 - 4.3010752688172 %
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club.n => 5 ---> 3 - 3.2258064516129 %

club.n => unlisted-sense ---> 1 - 1.0752688172043 %

total of examples = 93

total of senses = 7

coach.n => 1 ---> 43 - 45.7446808510638 %

coach.n => 5 ---> 27 - 28.7234042553192 %

coach.n => 4 ---> 12 - 12.7659574468085 %

coach.n => unclear ---> 5 - 5.31914893617021 %

coach.n => 3 ---> 4 - 4.25531914893617 %

coach.n => 2 ---> 3 - 3.19148936170213 %

total of examples = 94

total of senses = 6

competition.n => 1 ---> 37 - 39.7849462365591 %

competition.n => 2 ---> 34 - 36.5591397849462 %

competition.n => 3 ---> 13 - 13.9784946236559 %

competition.n => unclear ---> 5 - 5.37634408602151 %

competition.n => 4 ---> 4 - 4.3010752688172 %

total of examples = 93

total of senses = 5

conversion.n => 9 ---> 42 - 47.7272727272727 %

conversion.n => 4 ---> 11 - 12.5 %

conversion.n => 6 ---> 9 - 10.2272727272727 %

conversion.n => 1 ---> 7 - 7.95454545454545 %

conversion.n => unclear ---> 6 - 6.81818181818182 %

conversion.n => 2 ---> 4 - 4.54545454545455 %

conversion.n => 3 ---> 3 - 3.40909090909091 %

conversion.n => 8 ---> 3 - 3.40909090909091 %

conversion.n => unlisted-sense ---> 3 - 3.40909090909091 %

total of examples = 88

total of senses = 9

country.n => 2 ---> 42 - 43.75 %

country.n => 1 ---> 30 - 31.25 %

country.n => 4 ---> 18 - 18.75 %

country.n => 3 ---> 2 - 2.08333333333333 %
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country.n => unclear ---> 2 - 2.08333333333333 %

country.n => unlisted-sense ---> 1 - 1.04166666666667 %

country.n => 5 ---> 1 - 1.04166666666667 %

total of examples = 96

total of senses = 7

crew.n => 1 ---> 48 - 51.6129032258064 %

crew.n => 2 ---> 19 - 20.4301075268817 %

crew.n => unclear ---> 12 - 12.9032258064516 %

crew.n => 4 ---> 8 - 8.60215053763441 %

crew.n => 3 ---> 4 - 4.3010752688172 %

crew.n => unlisted-sense ---> 2 - 2.1505376344086 %

total of examples = 93

total of senses = 6

delivery.n => 1 ---> 71 - 73.9583333333333 %

delivery.n => 2 ---> 9 - 9.375 %

delivery.n => 3 ---> 6 - 6.25 %

delivery.n => unclear ---> 3 - 3.125 %

delivery.n => 5 ---> 3 - 3.125 %

delivery.n => 6 ---> 2 - 2.08333333333333 %

delivery.n => 4 ---> 2 - 2.08333333333333 %

total of examples = 96

total of senses = 7

division.n => 2 ---> 25 - 33.3333333333333 %

division.n => 7 ---> 14 - 18.6666666666667 %

division.n => 3 ---> 13 - 17.3333333333333 %

division.n => 4 ---> 7 - 9.33333333333333 %

division.n => 6 ---> 5 - 6.66666666666667 %

division.n => 12 ---> 4 - 5.33333333333333 %

division.n => unclear ---> 2 - 2.66666666666667 %

division.n => 8 ---> 2 - 2.66666666666667 %

division.n => 1 ---> 2 - 2.66666666666667 %

division.n => 5 ---> 1 - 1.33333333333333 %

total of examples = 75

total of senses = 10
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fan.n => 3 ---> 39 - 40.625 %

fan.n => 2 ---> 27 - 28.125 %

fan.n => 1 ---> 17 - 17.7083333333333 %

fan.n => unlisted-sense ---> 13 - 13.5416666666667 %

total of examples = 96

total of senses = 4

fishing.n => 1 ---> 53 - 60.2272727272727 %

fishing.n => 2 ---> 27 - 30.6818181818182 %

fishing.n => unclear ---> 6 - 6.81818181818182 %

fishing.n => unlisted-sense ---> 2 - 2.27272727272727 %

total of examples = 88

total of senses = 4

goal.n => 2 ---> 46 - 46.4646464646465 %

goal.n => 1 ---> 45 - 45.4545454545455 %

goal.n => 3 ---> 5 - 5.05050505050505 %

goal.n => 4 ---> 2 - 2.02020202020202 %

goal.n => unclear ---> 1 - 1.01010101010101 %

total of examples = 99

total of senses = 5

half.n => 1 ---> 77 - 81.0526315789474 %

half.n => 2 ---> 15 - 15.7894736842105 %

half.n => unlisted-sense ---> 2 - 2.10526315789474 %

half.n => unclear ---> 1 - 1.05263157894737 %

total of examples = 95

total of senses = 4

level.n => 1 ---> 42 - 54.5454545454545 %

level.n => 4 ---> 12 - 15.5844155844156 %

level.n => 2 ---> 9 - 11.6883116883117 %

level.n => 3 ---> 8 - 10.3896103896104 %

level.n => 8 ---> 4 - 5.19480519480519 %

level.n => unclear ---> 2 - 2.5974025974026 %

total of examples = 77

total of senses = 6
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manager.n => 1 ---> 71 - 71.7171717171717 %

manager.n => 2 ---> 26 - 26.2626262626263 %

manager.n => unlisted-sense ---> 1 - 1.01010101010101 %

manager.n => unclear ---> 1 - 1.01010101010101 %

total of examples = 99

total of senses = 4

market.n => 1 ---> 38 - 61.2903225806452 %

market.n => 3 ---> 12 - 19.3548387096774 %

market.n => 4 ---> 7 - 11.2903225806452 %

market.n => 2 ---> 4 - 6.45161290322581 %

market.n => unclear ---> 1 - 1.61290322580645 %

total of examples = 62

total of senses = 5

package.n => 1 ---> 43 - 48.8636363636364 %

package.n => 3 ---> 32 - 36.3636363636364 %

package.n => 2 ---> 11 - 12.5 %

package.n => unclear ---> 2 - 2.27272727272727 %

total of examples = 88

total of senses = 4

performance.n => 4 ---> 18 - 20.6896551724138 %

performance.n => 5 ---> 18 - 20.6896551724138 %

performance.n => 2 ---> 17 - 19.5402298850575 %

performance.n => 3 ---> 12 - 13.7931034482759 %

performance.n => 1 ---> 11 - 12.6436781609195 %

performance.n => unclear ---> 11 - 12.6436781609195 %

total of examples = 87

total of senses = 6

phase.n => 2 ---> 69 - 75 %

phase.n => 1 ---> 8 - 8.69565217391304 %

phase.n => unclear ---> 8 - 8.69565217391304 %

phase.n => unlisted-sense ---> 3 - 3.26086956521739 %

phase.n => 3 ---> 3 - 3.26086956521739 %

phase.n => 4 ---> 1 - 1.08695652173913 %

total of examples = 92
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total of senses = 6

pitch.n => unlisted-sense ---> 41 - 63.0769230769231 %

pitch.n => 1 ---> 12 - 18.4615384615385 %

pitch.n => 5 ---> 4 - 6.15384615384615 %

pitch.n => 6 ---> 2 - 3.07692307692308 %

pitch.n => 4 ---> 2 - 3.07692307692308 %

pitch.n => unclear ---> 2 - 3.07692307692308 %

pitch.n => 2 ---> 2 - 3.07692307692308 %

total of examples = 65

total of senses = 7

receiver.n => 3 ---> 45 - 47.3684210526316 %

receiver.n => 2 ---> 22 - 23.1578947368421 %

receiver.n => 4 ---> 14 - 14.7368421052632 %

receiver.n => 1 ---> 14 - 14.7368421052632 %

total of examples = 95

total of senses = 4

record.n => 3 ---> 27 - 33.75 %

record.n => 5 ---> 15 - 18.75 %

record.n => 4 ---> 14 - 17.5 %

record.n => 1 ---> 11 - 13.75 %

record.n => 7 ---> 5 - 6.25 %

record.n => unclear ---> 5 - 6.25 %

record.n => 6 ---> 2 - 2.5 %

record.n => 8 ---> 1 - 1.25 %

total of examples = 80

total of senses = 8

reserve.n => 5 ---> 40 - 48.780487804878 %

reserve.n => 2 ---> 21 - 25.609756097561 %

reserve.n => 6 ---> 5 - 6.09756097560976 %

reserve.n => 1 ---> 5 - 6.09756097560976 %

reserve.n => unclear ---> 5 - 6.09756097560976 %

reserve.n => 7 ---> 3 - 3.65853658536585 %

reserve.n => 3 ---> 2 - 2.4390243902439 %

reserve.n => unlisted-sense ---> 1 - 1.21951219512195 %
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total of examples = 82

total of senses = 8

return.n => 5 ---> 22 - 27.5 %

return.n => 6 ---> 20 - 25 %

return.n => 2 ---> 20 - 25 %

return.n => unclear ---> 5 - 6.25 %

return.n => 4 ---> 4 - 5 %

return.n => 10 ---> 4 - 5 %

return.n => 7 ---> 3 - 3.75 %

return.n => 9 ---> 1 - 1.25 %

return.n => 13 ---> 1 - 1.25 %

total of examples = 80

total of senses = 9

right.n => 3 ---> 34 - 38.6363636363636 %

right.n => 1 ---> 32 - 36.3636363636364 %

right.n => 5 ---> 10 - 11.3636363636364 %

right.n => 6 ---> 7 - 7.95454545454545 %

right.n => unlisted-sense ---> 2 - 2.27272727272727 %

right.n => 2 ---> 2 - 2.27272727272727 %

right.n => 7 ---> 1 - 1.13636363636364 %

total of examples = 88

total of senses = 7

running.n => 4 ---> 44 - 60.2739726027397 %

running.n => 3 ---> 11 - 15.0684931506849 %

running.n => 2 ---> 10 - 13.6986301369863 %

running.n => unclear ---> 3 - 4.10958904109589 %

running.n => 5 ---> 3 - 4.10958904109589 %

running.n => unlisted-sense ---> 2 - 2.73972602739726 %

total of examples = 73

total of senses = 6

score.n => 3 ---> 33 - 37.0786516853933 %

score.n => 2 ---> 20 - 22.4719101123595 %

score.n => 1 ---> 15 - 16.8539325842697 %

score.n => 4 ---> 5 - 5.61797752808989 %
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score.n => 10 ---> 5 - 5.61797752808989 %

score.n => 6 ---> 3 - 3.37078651685393 %

score.n => unclear ---> 3 - 3.37078651685393 %

score.n => 5 ---> 3 - 3.37078651685393 %

score.n => 9 ---> 1 - 1.12359550561798 %

score.n => unlisted-sense ---> 1 - 1.12359550561798 %

total of examples = 89

total of senses = 10

share.n => 1 ---> 56 - 61.5384615384615 %

share.n => 2 ---> 24 - 26.3736263736264 %

share.n => 3 ---> 9 - 9.89010989010989 %

share.n => unclear ---> 2 - 2.1978021978022 %

total of examples = 91

total of senses = 4

star.n => 6 ---> 40 - 43.010752688172 %

star.n => 5 ---> 16 - 17.2043010752688 %

star.n => 3 ---> 11 - 11.8279569892473 %

star.n => unclear ---> 9 - 9.67741935483871 %

star.n => 2 ---> 6 - 6.45161290322581 %

star.n => 4 ---> 6 - 6.45161290322581 %

star.n => 1 ---> 4 - 4.3010752688172 %

star.n => 7 ---> 1 - 1.0752688172043 %

total of examples = 93

total of senses = 8

strike.n => 1 ---> 72 - 83.7209302325581 %

strike.n => unlisted-sense ---> 7 - 8.13953488372093 %

strike.n => 2 ---> 4 - 4.65116279069767 %

strike.n => unclear ---> 2 - 2.32558139534884 %

strike.n => 4 ---> 1 - 1.16279069767442 %

total of examples = 86

total of senses = 5

striker.n => 1 ---> 94 - 94 %

striker.n => 5 ---> 3 - 3 %

striker.n => 4 ---> 2 - 2 %
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striker.n => 3 ---> 1 - 1 %

total of examples = 100

total of senses = 4

target.n => 5 ---> 45 - 51.7241379310345 %

target.n => unclear ---> 14 - 16.0919540229885 %

target.n => 1 ---> 11 - 12.6436781609195 %

target.n => 2 ---> 10 - 11.4942528735632 %

target.n => 3 ---> 4 - 4.59770114942529 %

target.n => 4 ---> 3 - 3.44827586206897 %

total of examples = 87

total of senses = 6

tie.n => 1 ---> 37 - 40.2173913043478 %

tie.n => 2 ---> 36 - 39.1304347826087 %

tie.n => unlisted-sense ---> 8 - 8.69565217391304 %

tie.n => 3 ---> 6 - 6.52173913043478 %

tie.n => 6 ---> 2 - 2.17391304347826 %

tie.n => unclear ---> 2 - 2.17391304347826 %

tie.n => 5 ---> 1 - 1.08695652173913 %

total of examples = 92

total of senses = 7

title.n => 4 ---> 29 - 48.3333333333333 %

title.n => 2 ---> 19 - 31.6666666666667 %

title.n => 6 ---> 8 - 13.3333333333333 %

title.n => unlisted-sense ---> 1 - 1.66666666666667 %

title.n => 3 ---> 1 - 1.66666666666667 %

title.n => 7 ---> 1 - 1.66666666666667 %

title.n => unclear ---> 1 - 1.66666666666667 %

total of examples = 60

total of senses = 7

top.n => 1 ---> 31 - 50 %

top.n => 10 ---> 9 - 14.5161290322581 %

top.n => 2 ---> 8 - 12.9032258064516 %

top.n => 3 ---> 5 - 8.06451612903226 %

top.n => 5 ---> 5 - 8.06451612903226 %



189

top.n => unclear ---> 2 - 3.2258064516129 %

top.n => 9 ---> 2 - 3.2258064516129 %

total of examples = 62

total of senses = 7

transfer.n => 1 ---> 32 - 41.5584415584416 %

transfer.n => 6 ---> 29 - 37.6623376623377 %

transfer.n => unclear ---> 7 - 9.09090909090909 %

transfer.n => 3 ---> 5 - 6.49350649350649 %

transfer.n => 2 ---> 4 - 5.19480519480519 %

total of examples = 77

total of senses = 5

will.n => 2 ---> 23 - 44.2307692307692 %

will.n => 3 ---> 20 - 38.4615384615385 %

will.n => 1 ---> 6 - 11.5384615384615 %

will.n => unclear ---> 3 - 5.76923076923077 %

total of examples = 52

total of senses = 4

Sports dataset sense distribution

bank.n => 1 ---> 68 - 87.1794871794872 %

bank.n => 7 ---> 6 - 7.69230769230769 %

bank.n => 2 ---> 3 - 3.84615384615385 %

bank.n => 4 ---> 1 - 1.28205128205128 %

total of examples = 78

total of senses = 5

bill.n => 2 ---> 28 - 44.4444444444444 %

bill.n => 1 ---> 22 - 34.9206349206349 %

bill.n => 4 ---> 11 - 17.4603174603175 %

bill.n => unlisted-sense ---> 1 - 1.58730158730159 %

bill.n => 3 ---> 1 - 1.58730158730159 %

total of examples = 63

total of senses = 6
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bond.n => 2 ---> 39 - 73.5849056603774 %

bond.n => 3 ---> 7 - 13.2075471698113 %

bond.n => 4 ---> 6 - 11.3207547169811 %

bond.n => unclear ---> 1 - 1.88679245283019 %

total of examples = 53

total of senses = 5

check.n => 1 ---> 27 - 50 %

check.n => 4 ---> 9 - 16.6666666666667 %

check.n => 12 ---> 9 - 16.6666666666667 %

check.n => 6 ---> 7 - 12.962962962963 %

check.n => 11 ---> 2 - 3.7037037037037 %

total of examples = 54

total of senses = 6

chip.n => 8 ---> 75 - 87.2093023255814 %

chip.n => 4 ---> 4 - 4.65116279069767 %

chip.n => unlisted-sense ---> 4 - 4.65116279069767 %

chip.n => 6 ---> 1 - 1.16279069767442 %

chip.n => 1 ---> 1 - 1.16279069767442 %

chip.n => 7 ---> 1 - 1.16279069767442 %

total of examples = 86

total of senses = 7

club.n => 2 ---> 78 - 82.9787234042553 %

club.n => 1 ---> 8 - 8.51063829787234 %

club.n => 5 ---> 5 - 5.31914893617021 %

club.n => 4 ---> 2 - 2.12765957446809 %

club.n => unclear ---> 1 - 1.06382978723404 %

total of examples = 94

total of senses = 6

coach.n => 1 ---> 94 - 95.9183673469388 %

coach.n => unclear ---> 2 - 2.04081632653061 %

coach.n => 2 ---> 2 - 2.04081632653061 %

total of examples = 98

total of senses = 4
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competition.n => 2 ---> 92 - 94.8453608247423 %

competition.n => 3 ---> 3 - 3.09278350515464 %

competition.n => 1 ---> 1 - 1.03092783505155 %

competition.n => unclear ---> 1 - 1.03092783505155 %

total of examples = 97

total of senses = 5

conversion.n => 3 ---> 100 - 100 %

total of examples = 100

total of senses = 2

country.n => 2 ---> 62 - 72.9411764705882 %

country.n => 1 ---> 15 - 17.6470588235294 %

country.n => 3 ---> 7 - 8.23529411764706 %

country.n => unlisted-sense ---> 1 - 1.17647058823529 %

total of examples = 85

total of senses = 5

crew.n => 4 ---> 70 - 79.5454545454545 %

crew.n => 2 ---> 8 - 9.09090909090909 %

crew.n => unclear ---> 7 - 7.95454545454545 %

crew.n => 1 ---> 3 - 3.40909090909091 %

total of examples = 88

total of senses = 5

delivery.n => 6 ---> 97 - 97 %

delivery.n => 1 ---> 2 - 2 %

delivery.n => unclear ---> 1 - 1 %

total of examples = 100

total of senses = 4

division.n => 7 ---> 69 - 98.5714285714286 %

division.n => unclear ---> 1 - 1.42857142857143 %

total of examples = 70

total of senses = 3

fan.n => 2 ---> 94 - 95.9183673469388 %

fan.n => 3 ---> 4 - 4.08163265306122 %
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total of examples = 98

total of senses = 3

fishing.n => 1 ---> 32 - 91.4285714285714 %

fishing.n => 2 ---> 3 - 8.57142857142857 %

total of examples = 35

total of senses = 3

goal.n => 2 ---> 90 - 90 %

goal.n => 1 ---> 4 - 4 %

goal.n => 3 ---> 4 - 4 %

goal.n => unclear ---> 2 - 2 %

total of examples = 100

total of senses = 5

half.n => 2 ---> 69 - 74.1935483870968 %

half.n => 1 ---> 22 - 23.6559139784946 %

half.n => unlisted-sense ---> 1 - 1.0752688172043 %

half.n => unclear ---> 1 - 1.0752688172043 %

total of examples = 93

total of senses = 5

level.n => unlisted-sense ---> 35 - 42.6829268292683 %

level.n => 1 ---> 14 - 17.0731707317073 %

level.n => 2 ---> 13 - 15.8536585365854 %

level.n => 4 ---> 12 - 14.6341463414634 %

level.n => 3 ---> 5 - 6.09756097560976 %

level.n => unclear ---> 2 - 2.4390243902439 %

level.n => 7 ---> 1 - 1.21951219512195 %

total of examples = 82

total of senses = 8

manager.n => 2 ---> 86 - 90.5263157894737 %

manager.n => 1 ---> 8 - 8.42105263157895 %

manager.n => unclear ---> 1 - 1.05263157894737 %

total of examples = 95

total of senses = 4
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market.n => 2 ---> 35 - 43.75 %

market.n => 1 ---> 32 - 40 %

market.n => 3 ---> 6 - 7.5 %

market.n => unlisted-sense ---> 3 - 3.75 %

market.n => 4 ---> 2 - 2.5 %

market.n => unclear ---> 2 - 2.5 %

total of examples = 80

total of senses = 7

package.n => 1 ---> 87 - 93.5483870967742 %

package.n => 2 ---> 5 - 5.37634408602151 %

package.n => unclear ---> 1 - 1.0752688172043 %

total of examples = 93

total of senses = 4

performance.n => 5 ---> 80 - 84.2105263157895 %

performance.n => unclear ---> 8 - 8.42105263157895 %

performance.n => 2 ---> 4 - 4.21052631578947 %

performance.n => 4 ---> 2 - 2.10526315789474 %

performance.n => 1 ---> 1 - 1.05263157894737 %

total of examples = 95

total of senses = 6

phase.n => 2 ---> 99 - 99 %

phase.n => unclear ---> 1 - 1 %

total of examples = 100

total of senses = 3

pitch.n => unlisted-sense ---> 59 - 70.2380952380952 %

pitch.n => 2 ---> 22 - 26.1904761904762 %

pitch.n => 7 ---> 3 - 3.57142857142857 %

total of examples = 84

total of senses = 4

receiver.n => 5 ---> 92 - 92 %

receiver.n => 2 ---> 5 - 5 %

receiver.n => 1 ---> 3 - 3 %

total of examples = 100
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total of senses = 4

record.n => 3 ---> 63 - 68.4782608695652 %

record.n => 2 ---> 16 - 17.3913043478261 %

record.n => 5 ---> 12 - 13.0434782608696 %

record.n => 7 ---> 1 - 1.08695652173913 %

total of examples = 92

total of senses = 5

reserve.n => 3 ---> 75 - 82.4175824175824 %

reserve.n => 2 ---> 8 - 8.79120879120879 %

reserve.n => unclear ---> 5 - 5.49450549450549 %

reserve.n => 5 ---> 2 - 2.1978021978022 %

reserve.n => 6 ---> 1 - 1.0989010989011 %

total of examples = 91

total of senses = 6

return.n => 5 ---> 23 - 29.4871794871795 %

return.n => 2 ---> 19 - 24.3589743589744 %

return.n => 11 ---> 12 - 15.3846153846154 %

return.n => 12 ---> 9 - 11.5384615384615 %

return.n => 13 ---> 6 - 7.69230769230769 %

return.n => 10 ---> 4 - 5.12820512820513 %

return.n => unclear ---> 2 - 2.56410256410256 %

return.n => 6 ---> 1 - 1.28205128205128 %

return.n => 4 ---> 1 - 1.28205128205128 %

return.n => unlisted-sense ---> 1 - 1.28205128205128 %

total of examples = 78

total of senses = 11

right.n => 3 ---> 38 - 58.4615384615385 %

right.n => 1 ---> 18 - 27.6923076923077 %

right.n => 7 ---> 5 - 7.69230769230769 %

right.n => 6 ---> 2 - 3.07692307692308 %

right.n => unclear ---> 2 - 3.07692307692308 %

total of examples = 65

total of senses = 6
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running.n => unlisted-sense ---> 20 - 25.3164556962025 %

running.n => 5 ---> 17 - 21.5189873417722 %

running.n => 2 ---> 15 - 18.9873417721519 %

running.n => 1 ---> 11 - 13.9240506329114 %

running.n => 4 ---> 9 - 11.3924050632911 %

running.n => 3 ---> 4 - 5.06329113924051 %

running.n => unclear ---> 3 - 3.79746835443038 %

total of examples = 79

total of senses = 8

score.n => 3 ---> 69 - 83.1325301204819 %

score.n => 10 ---> 12 - 14.4578313253012 %

score.n => 4 ---> 1 - 1.20481927710843 %

score.n => unclear ---> 1 - 1.20481927710843 %

total of examples = 83

total of senses = 5

share.n => 3 ---> 46 - 47.9166666666667 %

share.n => 1 ---> 38 - 39.5833333333333 %

share.n => 2 ---> 12 - 12.5 %

total of examples = 96

total of senses = 4

star.n => 2 ---> 74 - 81.3186813186813 %

star.n => 6 ---> 14 - 15.3846153846154 %

star.n => 4 ---> 2 - 2.1978021978022 %

star.n => unclear ---> 1 - 1.0989010989011 %

total of examples = 91

total of senses = 5

strike.n => unlisted-sense ---> 54 - 59.3406593406593 %

strike.n => 1 ---> 24 - 26.3736263736264 %

strike.n => 3 ---> 11 - 12.0879120879121 %

strike.n => 4 ---> 1 - 1.0989010989011 %

strike.n => unclear ---> 1 - 1.0989010989011 %

total of examples = 91

total of senses = 6
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striker.n => 1 ---> 97 - 97 %

striker.n => unclear ---> 3 - 3 %

total of examples = 100

total of senses = 3

target.n => 5 ---> 70 - 81.3953488372093 %

target.n => 2 ---> 10 - 11.6279069767442 %

target.n => unclear ---> 4 - 4.65116279069767 %

target.n => 1 ---> 2 - 2.32558139534884 %

total of examples = 86

total of senses = 5

tie.n => unlisted-sense ---> 34 - 40.4761904761905 %

tie.n => 6 ---> 25 - 29.7619047619048 %

tie.n => 3 ---> 22 - 26.1904761904762 %

tie.n => unclear ---> 2 - 2.38095238095238 %

tie.n => 1 ---> 1 - 1.19047619047619 %

total of examples = 84

total of senses = 6

title.n => 4 ---> 98 - 100 %

total of examples = 98

total of senses = 2

top.n => 5 ---> 56 - 96.551724137931 %

top.n => 1 ---> 2 - 3.44827586206897 %

total of examples = 58

total of senses = 3

transfer.n => 6 ---> 74 - 91.358024691358 %

transfer.n => 2 ---> 5 - 6.17283950617284 %

transfer.n => 1 ---> 1 - 1.23456790123457 %

transfer.n => unclear ---> 1 - 1.23456790123457 %

total of examples = 81

total of senses = 5

will.n => 2 ---> 23 - 62.1621621621622 %

will.n => 1 ---> 13 - 35.1351351351351 %
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will.n => 3 ---> 1 - 2.7027027027027 %

total of examples = 37

total of senses = 4

Finance dataset sense distribution

bank.n => 1 ---> 95 - 100 %

total of examples = 95

total of senses = 2

bill.n => 1 ---> 67 - 75.2808988764045 %

bill.n => 2 ---> 16 - 17.9775280898876 %

bill.n => 3 ---> 4 - 4.49438202247191 %

bill.n => unclear ---> 2 - 2.24719101123596 %

total of examples = 89

total of senses = 5

bond.n => 2 ---> 96 - 96.969696969697 %

bond.n => unclear ---> 3 - 3.03030303030303 %

total of examples = 99

total of senses = 3

check.n => 1 ---> 19 - 44.1860465116279 %

check.n => 4 ---> 15 - 34.8837209302326 %

check.n => 6 ---> 9 - 20.9302325581395 %

total of examples = 43

total of senses = 4

chip.n => 7 ---> 51 - 77.2727272727273 %

chip.n => unclear ---> 9 - 13.6363636363636 %

chip.n => 6 ---> 3 - 4.54545454545455 %

chip.n => unlisted-sense ---> 2 - 3.03030303030303 %

chip.n => 9 ---> 1 - 1.51515151515152 %

total of examples = 66

total of senses = 6

club.n => 2 ---> 92 - 93.8775510204082 %
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club.n => 3 ---> 2 - 2.04081632653061 %

club.n => unclear ---> 2 - 2.04081632653061 %

club.n => 4 ---> 1 - 1.02040816326531 %

club.n => 7 ---> 1 - 1.02040816326531 %

total of examples = 98

total of senses = 6

coach.n => 5 ---> 35 - 61.4035087719298 %

coach.n => 1 ---> 12 - 21.0526315789474 %

coach.n => 3 ---> 7 - 12.280701754386 %

coach.n => 4 ---> 2 - 3.50877192982456 %

coach.n => unclear ---> 1 - 1.75438596491228 %

total of examples = 57

total of senses = 6

competition.n => 1 ---> 90 - 93.75 %

competition.n => 4 ---> 2 - 2.08333333333333 %

competition.n => unclear ---> 2 - 2.08333333333333 %

competition.n => 3 ---> 1 - 1.04166666666667 %

competition.n => 2 ---> 1 - 1.04166666666667 %

total of examples = 96

total of senses = 6

conversion.n => 8 ---> 62 - 70.4545454545455 %

conversion.n => 9 ---> 14 - 15.9090909090909 %

conversion.n => unclear ---> 6 - 6.81818181818182 %

conversion.n => 6 ---> 4 - 4.54545454545455 %

conversion.n => 3 ---> 1 - 1.13636363636364 %

conversion.n => 2 ---> 1 - 1.13636363636364 %

total of examples = 88

total of senses = 7

country.n => 2 ---> 91 - 92.8571428571429 %

country.n => 1 ---> 5 - 5.10204081632653 %

country.n => 4 ---> 1 - 1.02040816326531 %

country.n => 3 ---> 1 - 1.02040816326531 %

total of examples = 98

total of senses = 5
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crew.n => 1 ---> 81 - 84.375 %

crew.n => 2 ---> 9 - 9.375 %

crew.n => unclear ---> 5 - 5.20833333333333 %

crew.n => 4 ---> 1 - 1.04166666666667 %

total of examples = 96

total of senses = 5

delivery.n => unclear ---> 70 - 72.1649484536082 %

delivery.n => 1 ---> 20 - 20.6185567010309 %

delivery.n => 3 ---> 5 - 5.15463917525773 %

delivery.n => 4 ---> 2 - 2.06185567010309 %

total of examples = 97

total of senses = 5

division.n => 2 ---> 70 - 76.0869565217391 %

division.n => 6 ---> 11 - 11.9565217391304 %

division.n => 4 ---> 5 - 5.43478260869565 %

division.n => 3 ---> 4 - 4.34782608695652 %

division.n => 7 ---> 1 - 1.08695652173913 %

division.n => unclear ---> 1 - 1.08695652173913 %

total of examples = 92

total of senses = 7

fan.n => 3 ---> 15 - 39.4736842105263 %

fan.n => 2 ---> 12 - 31.5789473684211 %

fan.n => 1 ---> 11 - 28.9473684210526 %

total of examples = 38

total of senses = 4

fishing.n => 2 ---> 81 - 89.010989010989 %

fishing.n => 1 ---> 10 - 10.989010989011 %

total of examples = 91

total of senses = 3

goal.n => 1 ---> 100 - 100 %

total of examples = 100

total of senses = 2
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half.n => 1 ---> 99 - 100 %

total of examples = 99

total of senses = 2

level.n => 1 ---> 75 - 85.2272727272727 %

level.n => 3 ---> 6 - 6.81818181818182 %

level.n => unclear ---> 5 - 5.68181818181818 %

level.n => 2 ---> 2 - 2.27272727272727 %

total of examples = 88

total of senses = 5

manager.n => 1 ---> 91 - 94.7916666666667 %

manager.n => 2 ---> 4 - 4.16666666666667 %

manager.n => unclear ---> 1 - 1.04166666666667 %

total of examples = 96

total of senses = 4

market.n => 2 ---> 52 - 70.2702702702703 %

market.n => 1 ---> 19 - 25.6756756756757 %

market.n => 3 ---> 3 - 4.05405405405405 %

total of examples = 74

total of senses = 4

package.n => 1 ---> 90 - 91.8367346938776 %

package.n => 2 ---> 7 - 7.14285714285714 %

package.n => 3 ---> 1 - 1.02040816326531 %

total of examples = 98

total of senses = 4

performance.n => 2 ---> 64 - 87.6712328767123 %

performance.n => 5 ---> 4 - 5.47945205479452 %

performance.n => 4 ---> 2 - 2.73972602739726 %

performance.n => unclear ---> 2 - 2.73972602739726 %

performance.n => 1 ---> 1 - 1.36986301369863 %

total of examples = 73

total of senses = 6
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phase.n => 2 ---> 82 - 97.6190476190476 %

phase.n => unlisted-sense ---> 1 - 1.19047619047619 %

phase.n => unclear ---> 1 - 1.19047619047619 %

total of examples = 84

total of senses = 4

pitch.n => 4 ---> 37 - 84.0909090909091 %

pitch.n => 2 ---> 4 - 9.09090909090909 %

pitch.n => unlisted-sense ---> 3 - 6.81818181818182 %

total of examples = 44

total of senses = 4

receiver.n => 2 ---> 84 - 89.3617021276596 %

receiver.n => 4 ---> 6 - 6.38297872340426 %

receiver.n => 3 ---> 2 - 2.12765957446809 %

receiver.n => 1 ---> 1 - 1.06382978723404 %

receiver.n => 5 ---> 1 - 1.06382978723404 %

total of examples = 94

total of senses = 6

record.n => 3 ---> 80 - 80.8080808080808 %

record.n => 5 ---> 14 - 14.1414141414141 %

record.n => 7 ---> 3 - 3.03030303030303 %

record.n => 4 ---> 1 - 1.01010101010101 %

record.n => unclear ---> 1 - 1.01010101010101 %

total of examples = 99

total of senses = 6

reserve.n => 2 ---> 71 - 98.6111111111111 %

reserve.n => unclear ---> 1 - 1.38888888888889 %

total of examples = 72

total of senses = 3

return.n => 6 ---> 32 - 40 %

return.n => 10 ---> 17 - 21.25 %

return.n => 5 ---> 12 - 15 %

return.n => 2 ---> 8 - 10 %

return.n => 1 ---> 4 - 5 %
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return.n => 4 ---> 4 - 5 %

return.n => unclear ---> 2 - 2.5 %

return.n => 13 ---> 1 - 1.25 %

total of examples = 80

total of senses = 9

right.n => 1 ---> 48 - 70.5882352941177 %

right.n => 5 ---> 15 - 22.0588235294118 %

right.n => 6 ---> 4 - 5.88235294117647 %

right.n => unlisted-sense ---> 1 - 1.47058823529412 %

total of examples = 68

total of senses = 5

running.n => 4 ---> 22 - 40 %

running.n => 3 ---> 16 - 29.0909090909091 %

running.n => unlisted-sense ---> 13 - 23.6363636363636 %

running.n => unclear ---> 3 - 5.45454545454545 %

running.n => 2 ---> 1 - 1.81818181818182 %

total of examples = 55

total of senses = 6

score.n => 4 ---> 60 - 68.1818181818182 %

score.n => 1 ---> 7 - 7.95454545454545 %

score.n => 5 ---> 6 - 6.81818181818182 %

score.n => 9 ---> 5 - 5.68181818181818 %

score.n => 3 ---> 4 - 4.54545454545455 %

score.n => 10 ---> 4 - 4.54545454545455 %

score.n => unclear ---> 1 - 1.13636363636364 %

score.n => 2 ---> 1 - 1.13636363636364 %

total of examples = 88

total of senses = 9

share.n => 1 ---> 64 - 65.3061224489796 %

share.n => 2 ---> 26 - 26.530612244898 %

share.n => 3 ---> 8 - 8.16326530612245 %

total of examples = 98

total of senses = 4
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star.n => 6 ---> 38 - 40.8602150537634 %

star.n => 2 ---> 38 - 40.8602150537634 %

star.n => 3 ---> 6 - 6.45161290322581 %

star.n => 5 ---> 6 - 6.45161290322581 %

star.n => 4 ---> 4 - 4.3010752688172 %

star.n => unclear ---> 1 - 1.0752688172043 %

total of examples = 93

total of senses = 7

strike.n => 1 ---> 100 - 100 %

total of examples = 100

total of senses = 2

striker.n => 3 ---> 93 - 95.8762886597938 %

striker.n => unlisted-sense ---> 4 - 4.12371134020619 %

total of examples = 97

total of senses = 3

target.n => 5 ---> 86 - 93.4782608695652 %

target.n => 2 ---> 3 - 3.26086956521739 %

target.n => unclear ---> 2 - 2.17391304347826 %

target.n => 1 ---> 1 - 1.08695652173913 %

total of examples = 92

total of senses = 5

tie.n => 2 ---> 99 - 99 %

tie.n => 1 ---> 1 - 1 %

total of examples = 100

total of senses = 3

title.n => 6 ---> 16 - 40 %

title.n => 2 ---> 8 - 20 %

title.n => 1 ---> 8 - 20 %

title.n => 3 ---> 2 - 5 %

title.n => unclear ---> 2 - 5 %

title.n => 5 ---> 2 - 5 %

title.n => 7 ---> 1 - 2.5 %

title.n => 4 ---> 1 - 2.5 %
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total of examples = 40

total of senses = 9

top.n => 5 ---> 60 - 88.2352941176471 %

top.n => unlisted-sense ---> 7 - 10.2941176470588 %

top.n => 1 ---> 1 - 1.47058823529412 %

total of examples = 68

total of senses = 4

transfer.n => 6 ---> 73 - 83.9080459770115 %

transfer.n => 1 ---> 9 - 10.3448275862069 %

transfer.n => 3 ---> 2 - 2.29885057471264 %

transfer.n => unclear ---> 1 - 1.14942528735632 %

transfer.n => 2 ---> 1 - 1.14942528735632 %

transfer.n => 5 ---> 1 - 1.14942528735632 %

total of examples = 87

total of senses = 7

will.n => 2 ---> 33 - 94.2857142857143 %

will.n => 1 ---> 2 - 5.71428571428571 %

total of examples = 35

total of senses = 3



APPENDIX B

Set of original features

Local collocations:

unigram

post_J_lem

post_J_wf

post_N_lem

post_N_wf

post_R_lem

post_R_wf

post_V_lem

post_V_wf

prev_J_lem

prev_J_wf

prev_N_lem

prev_N_wf

prev_R_lem

prev_R_wf

prev_V_lem

prev_V_wf

big_lem_cont_+1

big_lem_cont_-1
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big_lem_func_+1

big_lem_func_-1

big_pos_+1

big_pos_-1

big_wf_cont_+1

big_wf_cont_-1

big_wf_func_+1

big_wf_func_-1

trig_lem_cont_+1

trig_lem_cont_-1

trig_lem_cont_0

trig_lem_func_+1

trig_lem_func_-1

trig_lem_func_0

trig_pos_+1

trig_pos_-1

trig_pos_0

trig_wf_cont_+1

trig_wf_cont_-1

trig_wf_cont_0

trig_wf_func_+1

trig_wf_func_-1

trig_wf_func_0

Syntactic dependencies:

DominatingNoun

NounModifier

Object

ObjectTo

ObjectToPreposition

Preposition

Sibling

SubjectTo

Bag-of-words features:
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win_cont_lem_4w

win_cont_lem_context

pedersen_bigr

Domain features:

Domains_A

Domains_F


