Matxin: Moving towards language independence

Aingeru Mayor, Francis Tyers

IXA Taldea
Euskal Herriko Unibertsitatea
aingeru@ehu.es

Dept. Lleng. i Sist. Informtics, Universitat d'Alacant ftyers@prompsit.com

2009.eko urriaren 29

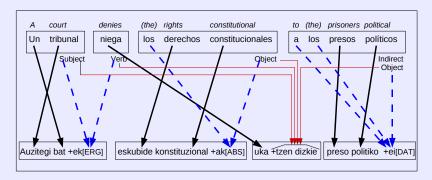
Introduction

- Matxin RBMT system
 - Developed by the IXA group
 - First publicly available MT system for translating into Basque
 - Initial aim: translate into Basque
 - Architecture designed to be independent of both source and target languages
- Matxin 1.0, es→eu
 - Open-source version available for free download (GPL), with a reduced bilingual lexicon:
 - http://matxin.sourceforge.net
 - Full version available for testing online: http://www.opentrad.org

Introduction

- The system is being adapted to new language pairs
 - Development team: en→eu
 - Independent initiative: br→en
- The experience of adapting to other languages
 - reveals problems in the current architecture and implementation
 - gives ideas of how to improve the system with respect to its language independence

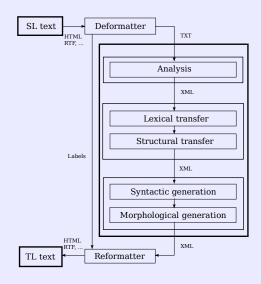
Index


- 1 Matxin: Rule-based machine translation
 - System characteristics
 - The translation process
 - Evaluation
- 2 Extending the system to other language pairs
 - Analysis
 - Rules for handling the translation data structure

Index

- 1 Matxin: Rule-based machine translation
 - System characteristics
 - The translation process
 - Evaluation
- Extending the system to other language pairs
 - Analysis
 - Rules for handling the translation data structure

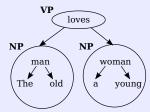
Translating from Spanish to Basque, a complex task


Un tribunal niega los derechos constitucionales a los presos políticos

Characteristics

- RBMT
 - Difficulties for SMT
 - Morphologically-rich language
 - Limited digital resources
- Classic transfer-based model
 - analysis, transfer and generation
- Design guided by the translation linguistic tasks
- Linguistic data separated from algorithms
- Monolingual modules as independent as possible from bilingual modules

Architecture



Reusability and use of standards

- We have reused previously developed
 - modules: Spanish analyser, morphological Basque generator, de-formatter and re-formatter, lexical transfer, etc.
 - linguistic resources: dictionaries and corpus
- The modules and the linguistic data created could be reused
 - Spanish dependency analyser, dictionary of prepositions, verbal chunk transfer, etc.
- Consequences of reuse: resource and module heterogeneity
- To ensure interoperability: necessary to use standards
 - Dictionaries: coded in a format based on XML according to the *Apertium* specification
 - Translation data structure: based on XML

Translation data structure

- Processed by the transfer and generation modules
- Used for the communication between modules
- Based in a hybrid syntactic structure
 - the constituents are labelled
 - the dependency relations are expressed:
 - between the words of each of the constituents
 - between the constituents

Translation data structure. DTD

- The DTD describes
 - main elements of the translation process
 - sentences: the basic translation unit
 - chunks: broadly equivalent to a constituent
 - nodes: a word or a multiword term
 - attributes
 - linguistic information and also document format
 - dependency relations
 - one element containing another element, indicates that it comes below in its dependency structure

Translation data structure. DTD

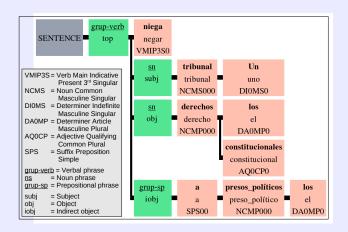
```
<!ELEMENT SENTENCE (CHUNK+)>
<! ATTLIST SENTENCE
   ord
          CDATA
                    <!--Order in the whole text-->
   ref
          CDATA
                   <!--Corresponding SL sentence-->
   alloc CDATA
                    <!--Position of the 1st character-->
>
<!ELEMENT CHUNK (NODE, CHUNK*)>
<! ATTLIST CHUNK
   ord
         CDATA
                   <!--Order in the sentence-->
   ref
          CDATA
                   <!--Corresponding SL chunk-->
   alloc CDATA
                    <!--Position of the 1st character-->
   type
         CDATA
                    <!--Chunk type-->
          CDATA
                    <!--Syntactic information-->
   si
   focus CDATA
                    <!--Focus-->
          CDATA
                    <!--Preposition-->
   prep
   trans CDATA
                    <!--Transitivity-->
   subper CDATA
                    <!--Subject's person-->
   <!...>
>
```

Translation data structure. DTD

```
<!ELEMENT NODE (NODE*)>
<!ATTLIST NODE
          CDATA
                    <!--Order in the chunk-->
   ord
   ref
          CDATA
                    <!--Corresponding SL node-->
   alloc CDATA
                    <!--Position of the 1st character-->
   form
          CDATA
                    <!--Form-->
   lem
          CDATA
                    <!--Lemma-->
          CDATA
                    <!--Morphological information-->
   mi
   pos
          CDATA
                    <!--Part-of-speech-->
   suf
          CDATA
                    <!--Information on the suffix-->
   det
          CDATA
                    <!--Determination-->
          CDATA
                    <!--Number-->
   num
   per
          CDATA
                 <!--Person-->
          CDATA
                    <!--Location-information-->
   loc
   <!...>
>
```

Analysis

- FreeLing:
 - Developed at the UPC
 - Open-source
 - Morphological analysis, part-of-speech tagging, partial-parsing and dependency analysis

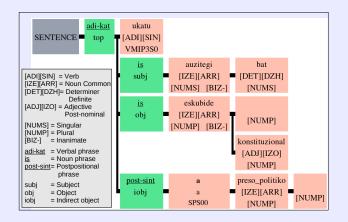

Output of the analysis

Un tribunal niega los derechos constitucionales a los presos políticos

```
<SENTENCE ord='1' alloc='0'>
 <CHUNK ord='2' alloc='12' type='grup-verb' si='top'>
    <NODE ord='1' alloc='12' form='niega' lem='negar' mi='VMIP3S0'>
    <CHUNK ord='1' alloc='0' type='sn' si='subj'>
     <NODE ord='2' alloc='3' form='tribunal' lem='tribunal' mi='NCMS000'>
        < NODE ord='1' alloc='0' form='Un' lem='uno' mi='DIOMSO'/>
     </{\tt NODE}>
    </CHUNK>
    <CHUNK ord='3' alloc='18' type='sn' si='obj' focus='true'>
      <NODE ord='2' alloc='22' form='derechos' lem='derecho' mi='NCMP000'>
        <NODE ord='1' alloc='18' form='los' lem='el' mi='DAOMPO'/>
       <NODE ord='3' alloc='31' form='constitucionales' lem='constitucional' mi='AQOCPO'/>
     </{\tt NODE}>
    </CHUNK>
    <CHUNK ord='4' alloc='48' type='grup-sp' si='iobj'>
     <NODE ord='1' alloc='48' form='a' lem='a' mi='SPS00'>
        <NODE ord='3' alloc='54' form='presos_politicos' lem='preso_politico' mi='NCMP000'>
         <NODE ord='2' alloc='50' form='los' lem='el' mi='DAOMPO'/>
       </NODE>
     </{\tt NODE}>
    </CHUNK>
 </CHUNK>
</SENTENCE>
```

Output of the analysis

Un tribunal niega los derechos constitucionales a los presos políticos

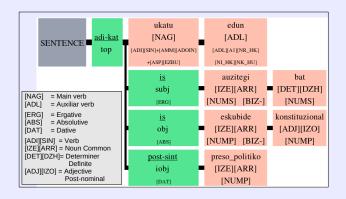


Lexical transfer

- Search in the lexicon
 - Input: source node's lemma and morphological information
 - Output: target equivalent's lemma, part-of-speech, location information, person, number, morphological composition and other features
- In some cases lexical transfer is not required:
 - Nodes containing prepositions
 - Nodes corresponding to verbal chunks which are not the root

Output of the lexical transfer

Un tribunal niega los derechos constitucionales a los presos políticos



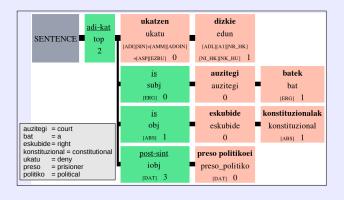
Structural transfer

- Operations inside the chunk:
 - Moving information from node to chunk
 - Obleting nodes not containing lexical information
- Transfer of prepositions and syntactic functions
- Operations between chunks:
 - Determining the person attribute for the subject and direct object
 - 2 Moving information from chunk to chunk
 - 3 Deleting chunks without nodes
- Transfer of verbal chunks
- Adaptation operations

Output of the structural transfer

Un tribunal niega los derechos constitucionales a los presos políticos

Syntactic generation


- Ordering the nodes within the chunk
 - A precedence rule has been coded for each type of chunk
- ② In chunks with postpositional information (generally not verbal chunks), this information is added to the last node in the chunk
- Ordering the chunks within the sentence
 - Determining the relative order for each pair of parent-child chunks
 - 2 Determining the absolute order of the chunks in the sentence

Morphological generation

- Only words including morphological information for generation will be processed
 - In verbal chunks: all the nodes
 - In the rest: only the last node
- Morfeus, the morphological processor for Basque created by the IXA group

Output of the generation

Un tribunal niega los derechos constitucionales a los presos políticos

Evaluation

- Human-targeted Translation Edit Rate, HTER
 - HTER = 40%
- Not yet suitable for unrestricted use in text dissemination.

Evaluation

- Evaluation in the framework of the virtual expert AnHitz
 - 30%: 'very good', 'good' or 'quite good'
 - 39%: 'comprehensible'.
- Useful for content assimilation (for understanding a text)

Index

- Matxin: Rule-based machine translation
 - System characteristics
 - The translation process
 - Evaluation
- 2 Extending the system to other language pairs
 - Analysis
 - Rules for handling the translation data structure

Freeling: pros...

- FreeLing is fairly straightforward to add a new language
- It works well for languages with low or medium inflection written in the western Latin alphabet (English, Spanish)
- Language data available for
 - (with chunking and dependency parsing): Asturian, Catalan, English and Spanish
 - (without it): Welsh, Galician, Italian and Portuguese

Freeling: ...and cons

- Problems with:
 - Morphologically complex languages (Basque, Sámi) or languages with productive compounding (Icelandic, Norwegian)
 - The morphology of a language is described by way of a full-form list
 - When each word can have many inflected forms, the size of the full-form list becomes unmanageable
 - Characters outside of latin1 (Welsh)

Alternatives

- Morphological analysis
 - Free toolkits for implementing finite-state morphologies
 - appropriate for complex morphologies: foma, hfst
 - not appropriate for complex morphologies: lttoolbox
- Dependecy analysis
 - Desirable to make it possible the use of Constraint Grammar
 - VISL Constraint Grammar
 - Freely-available rule-based parsers available (Faroese, North Sámi)

Rules for handling the translation data structure

- Each module of the transfer and generation phases
 - takes as input the translation data structure
 - walks its elements
 - applying a set of rules or running some operations on them
 - Some specific tasks are done by external modules:
 - Search in the bilingual lexicon
 - Translation of prepositions and syntactic functions
 - Translation of verbal chunks
 - Morphological generation
- The rules for each of the modules have different formats
 - Most of them are implemented as tab-delimited files

Examples of the current rules

Rule for interchunk movements (Structural transfer)

```
OriginChunk
Condition /Attrib. DestinationChunk
Condition /Attrib. direction writeMode

si='subj' /per type='verb-ch' /subjPer up overwrite
```

• Rule for interchunk ordering (Syntactic generation)

```
parentChunkType(x1) childChunkType(x2) condition order

verb-chain *? focus=true x2.x1
```

Other problems

- A few linguistic decisions are expressed in the code
 - To append semantic information to nouns, the tag for noun
 [IZE] is hard-coded in the lexical transfer module
 - The deletion of nodes that do not have any lexical information, and chunks that do not have any node is coded directly in the modules of the structural transfer
- No validation mechanism for the rules
- All of these characteristics make it difficult to modify the rules or to extend the system to new language pairs

Proposed rule formalism

- We have designed a single XML-based format for all the rules
- Existing rules (and decisions coded in the modules) have been converted by hand (65 rules)
- The interpreter that will apply the rules has not been yet developed

Proposed rule formalism: DTD

- Each rule is made up of two parts
 - Pattern match
 - Set of actions
- DTD:

```
<!ELEMENT rule (match, actions)>
<!ATTLIST rule id CDATA #REQUIRED>
<!ELEMENT match (def+)>
<!ELEMENT def>
<!ELEMENT actions (act+)>
<!ELEMENT act>
```

Proposed rule formalism

- Pattern match
 - Configuration to be searched for in the data structure
 - Elements defined by XPath based expressions
- Set of actions
 - Action(s) to apply to the elements defined in the pattern match
 - Include main operations
 - assignment, deletion, substitution and concatenation
 - and calls to external functions
 - searching in the lexicon, using the morphological processor...
- The interpreter will
 - evaluate the XPath expressions defined in the pattern match
 - collect the references of the elements,
 - apply the actions specified in the rules to them.

Proposed rule formalism: Examples (I)

```
<!--- Copy person-information from subject to verb-chunk>
<rul><rule id='1'>
  <match>
    <def> C1 := //CHUNK[@type='verb-chunk']</def>
    <def> C2 := ./CHUNK[@si='subj'] </def>
  </match>
  <actions>
    <act> C1/@subjper := C2/@per </act>
  </actions>
</rule>
<!--- Order verb and focus chunk>
<rule id='2'>
  <match>
    <def> C1 := //CHUNK[@type='verb-chunk']</def>
    <def> C2 := ./CHUNK[@focus='true'] </def>
  </match>
  <actions>
    <act> C2/@relord := 'left-jointly' </act>
  </actions>
</ri>
```

Proposed rule formalism: Examples (II)

```
<!--- Delete nodes without lexical value>
<rul><rule id='3'>
  <match>
    <def> N := //NODE[not(@lem)] </def>
  </match>
  <actions>
    <act> delete(N) </act>
  </actions>
</rule>
<!--- Search semantic information for nouns>
<rule id='4'>
  <match>
    <def> N := //NODE[@pos='[IZE][ARR]] </def>
  </match>
  <actions>
    <act> N/@sem := &semDict(N/@lem) </act>
  </actions>
</rule>
```

Proposed rule formalism

- It guarantees that all the linguistic information is coded in declarative rules
- It makes much more easier
 - to add or modify the rules
 - to create new sets of rules for new language pairs

Conclusion

- The experience of adapting *Matxin* to new language pairs has revealed problems
- We have proposed some solutions
 - More flexible source language analysis
 - A unified rule formalism for handling the translation data structure in the transfer and generation phases
- These solutions will make much more easier to modify the system and to adapt it for new language pairs

Matxin: Moving towards language independence

Aingeru Mayor, Francis Tyers

IXA Taldea
Euskal Herriko Unibertsitatea
aingeru@ehu.es

Dept. Lleng. i Sist. Informtics, Universitat d'Alacant ftyers@prompsit.com

2009.eko urriaren 29