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Abstract

This paper explores the use of two graph
algorithms for unsupervised induction and
tagging of nominal word senses based on
corpora. Our main contribution is the op-
timization of the free parameters of those
algorithms and its evaluation against pub-
licly available gold standards. We present
a thorough evaluation comprising super-
vised and unsupervised modes, and both
lexical-sample and all-words tasks. The
results show that, in spite of the infor-
mation loss inherent to mapping the in-
duced senses to the gold-standard, the
optimization of parameters based on a
small sample of nouns carries over to all
nouns, performing close to supervised sys-
tems in the lexical sample task and yield-
ing the second-best WSD systems for the
Senseval-3 all-words task.

1 Introduction

Word sense disambiguation (WSD) is a key
enabling-technology. Supervised WSD tech-
niques are the best performing in public evalu-
ations, but need large amounts of hand-tagged
data. Existing hand-annotated corpora like Sem-
Cor (Miller et al., 1993), which is annotated with
WordNet senses (Fellbaum, 1998) allow for a
small improvement over the simple most frequent
sense heuristic, as attested in the all-words track of
the last Senseval competition (Snyder and Palmer,
2004). In theory, larger amounts of training data
(SemCor has approx. 700K words) would improve
the performance of supervised WSD, but no cur-
rent project exists to provide such an expensive re-
source.

Supervised WSD is based on the “fixed-list of
senses” paradigm, where the senses for a tar-
get word are a closed list coming from a dic-

tionary or lexicon. Lexicographers and seman-
ticists have long warned about the problems of
such an approach, where senses are listed sepa-
rately as discrete entities, and have argued in fa-
vor of more complex representations, where, for
instance, senses are dense regions in a contin-
uum (Cruse, 2000).

Unsupervised WSD has followed this line of
thinking, and tries to induce word senses directly
from the corpus. Typical unsupervised WSD sys-
tems involve clustering techniques, which group
together similar examples. Given a set of induced
clusters (which represent word uses or senses1),
each new occurrence of the target word will be
compared to the clusters and the most similar clus-
ter will be selected as its sense.

Most of the unsupervised WSD work has been
based on the vector space model, where each
example is represented by a vector of features
(e.g. the words occurring in the context), and
the induced senses are either clusters of ex-
amples (Schütze, 1998; Purandare and Peder-
sen, 2004) or clusters of words (Pantel and Lin,
2002). Recently, Véronis (Véronis, 2004) has pro-
posed HyperLex, an application of graph models
to WSD based on the small-world properties of
cooccurrence graphs. Graph-based methods have
gained attention in several areas of NLP, including
knowledge-based WSD (Mihalcea, 2005; Navigli
and Velardi, 2005) and summarization (Erkan and
Radev, 2004; Mihalcea and Tarau, 2004).

The HyperLex algorithm presented in (Véronis,
2004) is entirely corpus-based. It builds a cooccur-
rence graph for all pairs of words cooccurring in
the context of the target word. Véronis shows that
this kind of graph fulfills the properties of small
world graphs, and thus possesses highly connected

1Unsupervised WSD approaches prefer the term ’word
uses’ to ’word senses’. In this paper we use them inter-
changeably to refer to both the induced clusters, and to the
word senses from some reference lexicon.



components (hubs) in the graph. These hubs even-
tually identify the main word uses (senses) of the
target word, and can be used to perform word
sense disambiguation. These hubs are used as a
representation of the senses induced by the sys-
tem, the same way that clusters of examples are
used to represent senses in clustering approaches
to WSD (Purandare and Pedersen, 2004).

One of the problems of unsupervised systems
is that of managing to do a fair evaluation.
Most of current unsupervised systems are evalu-
ated in-house, with a brief comparison to a re-
implementation of a former system, leading to a
proliferation of unsupervised systems with little
ground to compare among them.

In preliminary work (Agirre et al., 2006), we
have shown that HyperLex compares favorably
to other unsupervised systems. We defined a
semi-supervised setting for optimizing the free-
parameters of HyperLex on the Senseval-2 En-
glish Lexical Sample task (S2LS), which con-
sisted on mapping the induced senses onto the
official sense inventory using the training part of
S2LS. The best parameters were then used on the
Senseval-3 English Lexical Sample task (S3LS),
where a similar semi-supervised method was used
to output the official sense inventory.

This paper extends the previous work in sev-
eral aspects. First of all, we adapted the PageR-
ank graph-based method (Brin and Page, 1998)
for WSD and compared it with HyperLex.

We also extend the previous evaluation scheme,
using measures in the clustering community which
only require a gold standard clustering and no
mapping step. This allows for having a purely
unsupervised WSD system, and at the same time
comparing supervised and unsupervised systems
according to clustering criteria.

We also include the Senseval-3 English All-
words testbed (S3AW), where, in principle, unsu-
pervised and semi-supervised systems have an ad-
vantage over purely supervised systems due to the
scarcity of training data. We show that our sys-
tem is competitive with supervised systems, rank-
ing second.

This paper is structured as follows. We first
present two graph-based algorithms, HyperLex
and PageRank. Section 3 presents the two evalu-
ation frameworks. Section 4 introduces parameter
optimization. Section 5 shows the experimental
setting and results. Section 6 analyzes the results

and presents related work. Finally, we draw the
conclusions and advance future work.

2 A graph algorithm for corpus-based
WSD

The basic steps for our implementation of Hyper-
Lex and its variant using PageRank are common.
We first build the cooccurrence graph, then we se-
lect the hubs that are going to represent the senses
using two different strategies inspired by Hyper-
Lex and PageRank. We are then ready to use the
induced senses to do word sense disambiguation.

2.1 Building cooccurrence graphs
For each word to be disambiguated, a text corpus
is collected, consisting of the paragraphs where
the word occurs. From this corpus, a cooccur-
rence graph for the target word is built. Vertices
in the graph correspond to words2 in the text (ex-
cept the target word itself). Two words appear-
ing in the same paragraph are said to cooccur, and
are connected with edges. Each edge is assigned
a weight which measures the relative frequency of
the two words cooccurring. Specifically, let wij be
the weight of the edge3 connecting nodes i and j,
then wij = 1 − max[P (i | j), P (j | i)], where
P (i | j) =

freqij

freqj
and P (j | i) =

freqij

freqi
.

The weight of an edge measures how tightly
connected the two words are. Words which always
occur together receive a weight of 0. Words rarely
cooccurring receive weights close to 1.

2.2 Selecting hubs: HyperLex vs. PageRank
Once the cooccurrence graph is built, Véronis pro-
poses a simple iterative algorithm to obtain its
hubs. At each step, the algorithm finds the ver-
tex with highest relative frequency4 in the graph,
and, if it meets some criteria, it is selected as a hub.
These criteria are determined by a set of heuristic
parameters, that will be explained later in Section
4. After a vertex is selected to be a hub, its neigh-
bors are no longer eligible as hub candidates. At
any time, if the next vertex candidate has a relative
frequency below a certain threshold, the algorithm
stops.

Another alternative is to use the PageRank algo-
rithm (Brin and Page, 1998) for finding hubs in the

2Following Véronis, we only work on nouns.
3The cooccurrence graph is undirected, i.e. wij = wji
4In cooccurrence graphs, the relative frequency of a vertex

and its degree are linearly related, and it is therefore possible
to avoid the costly computation of the degree.



coocurrence graph. PageRank is an iterative algo-
rithm that ranks all the vertices according to their
relative importance within the graph following a
random-walk model. In this model, a link between
vertices v1 and v2 means that v1 recommends v2.
The more vertices recommend v2, the higher the
rank of v2 will be. Furthermore, the rank of a ver-
tex depends not only on how many vertices point
to it, but on the rank of these vertices as well.

Although PageRank was initially designed to
work with directed graphs, and with no weights
in links, the algorithm can be easily extended
to model undirected graphs whose edges are
weighted. Specifically, let G = (V, E) be an undi-
rected graph with the set of vertices V and set of
edges E. For a given vertex vi, let In(vi) be the set
of vertices pointing to it5. The rank of vi is defined
as:

P (vi) = (1− d) + d
∑

j∈In(vi)

wji∑
k∈In(vj)

wjk

P (vj)

where wij is the weight of the link between ver-
tices vi and vj , and 0 ≤ d ≤ 1. d is called the
damping factor and models the probability of a
web surfer standing at a vertex to follow a link
from this vertex (probability d) or to jump to a ran-
dom vertex in the graph (probability 1 − d). The
factor is usually set at 0.85.

The algorithm initializes the ranks of the ver-
tices with a fixed value (usually 1

N
for a graph with

N vertices) and iterates until convergence below a
given threshold is achieved, or, more typically, un-
til a fixed number of iterations are executed. Note
that the convergence of the algorithms doesn’t de-
pend on the initial value of the ranks.

After running the algorithm, the vertices of the
graph are ordered in decreasing order according to
its rank, and a number of them are chosen as the
main hubs of the word. The hubs finally selected
depend again of some heuristics and will be de-
scribed in section 4.

2.3 Using hubs for WSD

Once the hubs that represent the senses of the word
are selected (following any of the methods pre-
sented in the last section), each of them is linked
to the target word with edges weighting 0, and
the Minimum Spanning Tree (MST) of the whole
graph is calculated and stored.

5As G is undirected, the in-degree of a vertex v is equal
to its out-degree.

The MST is then used to perform word sense
disambiguation, in the following way. For every
instance of the target word, the words surrounding
it are examined and looked up in the MST. By con-
struction of the MST, words in it are placed under
exactly one hub. Each word in the context receives
a set of scores s, with one score per hub, where all
scores are 0 except the one corresponding to the
hub where it is placed. If the scores are organized
in a score vector, all values are 0, except, say, the
i-th component, which receives a score d(hi, v),
which is the distance between the hub hi and the
node representing the word v. Thus, d(hi, v) as-
signs a score of 1 to hubs and the score decreases
as the nodes move away from the hub in the tree.

For a given occurrence of the target word, the
score vectors of all the words in the context are
added, and the hub that receives the maximum
score is chosen.

3 Evaluating unsupervised WSD systems

All unsupervised WSD algorithms need some ad-
dition in order to be evaluated. One alternative, as
in (Véronis, 2004), is to manually decide the cor-
rectness of the hubs assigned to each occurrence
of the words. This approach has two main disad-
vantages. First, it is expensive to manually verify
each occurrence of the word, and different runs of
the algorithm need to be evaluated in turn. Sec-
ond, it is not an easy task to manually decide if
an occurrence of a word effectively corresponds
with the use of the word the assigned hub refers
to, specially considering that the person is given a
short list of words linked to the hub. Besides, it is
widely acknowledged that people are leaned not to
contradict the proposed answer.

A second alternative is to evaluate the system
according to some performance in an application,
e.g. information retrieval (Schütze, 1998). This is
a very attractive idea, but requires expensive sys-
tem development and it is sometimes difficult to
separate the reasons for the good (or bad) perfor-
mance.

A third alternative would be to devise a method
to map the hubs (clusters) returned by the system
to the senses in a lexicon. Pantel and Lin (2002)
automatically mapped the senses to WordNet, and
then measured the quality of the mapping. More
recently, tagged corpora have been used to map
the induced senses, and then compare the sys-
tems over publicly available benchmarks (Puran-



dare and Pedersen, 2004; Niu et al., 2005; Agirre
et al., 2006), which offers the advantage of com-
paring to other systems, but converts the whole
system into semi-supervised. See Section 5 for
more details on these systems. Note that the map-
ping introduces noise and information loss, which
is a disadvantage when comparing to other sys-
tems that rely on the gold-standard senses.

Yet another possibility is to evaluate the induced
senses against a gold standard as a clustering task.
Induced senses are clusters, gold standard senses
are classes, and measures from the clustering lit-
erature like entropy or purity can be used. In this
case the manually tagged corpus is taken to be the
gold standard, where a class is the set of examples
tagged with a sense.

We decided to adopt the last two alternatives,
since they allow for comparison over publicly
available systems of any kind.

3.1 Evaluation of clustering: hubs as clusters

In this setting the selected hubs are treated as
clusters of examples and gold standard senses are
classes. In order to compare the clusters with the
classes, hand annotated corpora are needed (for in-
stance Senseval). The test set is first tagged with
the induced senses. A perfect clustering solution
will be the one where each cluster has exactly the
same examples as one of the classes, and vice
versa. The evaluation is completely unsupervised.

Following standard cluster evaluation prac-
tice (Zhao and Karypis, 2005), we consider three
measures: entropy, purity and Fscore. The entropy
measure considers how the various classes of ob-
jects are distributed within each cluster. In gen-
eral, the smaller the entropy value, the better the
clustering algorithm performs. The purity mea-
sure considers the extent to which each cluster
contained objects from primarily one class. The
larger the values of purity, the better the cluster-
ing algorithm performs. The Fscore is used in a
similar fashion to Information Retrieval exercises,
with precision and recall defined as the percent-
age of correctly “retrieved” examples for a clus-
ter (divided by total cluster size), and recall as the
percentage of correctly “retrieved” examples for a
cluster (divided by total class size). For a formal
definition refer to (Zhao and Karypis, 2005). If the
clustering is identical to the original classes in the
datasets, FScore will be equal to one which means
that the higher the FScore, the better the clustering

is.

3.2 Evaluation as supervised WSD: mapping
hubs to senses

(Agirre et al., 2006) presents a straightforward
framework that uses hand-tagged material in or-
der to map the induced senses into the senses used
in a gold standard . The WSD system first tags the
training part of some hand-annotated corpus with
the induced hubs. The hand labels are then used
to construct a matrix relating assigned hubs to ex-
isting senses, simply counting the times an occur-
rence with sense sj has been assigned hub hi. In
the testing step we apply the WSD algorithm over
the test corpus, using the hubs-to-senses matrix to
select the sense with highest weights. See (Agirre
et al., 2006) for further details.

4 Tuning the parameters

The behavior of the original HyperLex algorithm
was influenced by a set of heuristic parameters,
which were set by Véronis following his intuition.
In (Agirre et al., 2006) we tuned the parameters us-
ing the mapping strategy for evaluation. We set a
range for each of the parameters, and evaluated the
algorithm for each combination of the parameters
on a fixed set of words (S2LS), which was differ-
ent from the final test sets (S3LS and S3AW). This
ensures that the chosen parameter set can be used
for any noun, and is not overfitted to a small set of
nouns.

In this paper, we perform the parameter tuning
according to four different criteria, i.e., best su-
pervised performance and best unsupervised en-
tropy/purity/FScore performance. At the end, we
have four sets of parameters (those that obtained
the best results in S2LS for each criterion), and
each set is then selected to be run against the S3LS
and S3AW datasets.

The parameters of the graph-based algorithm
can be divided in two sets: those that affect how
the cooccurrence graph is built (p1–p4 below), and
those that control the way the hubs are extracted
from it (p5–p8 below).

p1 Minimum frequency of edges (occurrences)
p2 Minimum frequency of vertices (words)
p3 Edges with weights above this value are removed
p4 Context containing fewer words are not processed
p5 Minimum number of adjacent vertices in a hub
p6 Max. mean weight of the adjacent vertices of a hub
p7 Minimum frequency of hubs
p8 Number of selected hubs



Vr opt Pr fr (p7) and Pr fx (p8)
Vr Range Best Range Best

p1 5 1-3 1 1-3 2
p2 10 2-4 3 2-4 3
p3 .9 .3-.7 .4 .4-.5 .5
p4 4 4 4 4 4
p5 6 1-7 1 – –
p6 .8 .6-.95 .95 – –
p7 .001 .0009-.003 .001 .0015-.0025 .0016
p8 – – – 50-65 55

Table 1: Parameters of the HyperLex algorithm

Both strategies to select hubs from the coocur-
rence graph (cf. Sect. 2.2) share parameters p1–
p4. The algorithm proposed by Véronis uses p5–
p6 as requirements for hubs, and p7 as the thresh-
old to stop looking for more hubs: candidates with
frequency below p7 are not eligible to be hubs.

Regarding PageRank the original formulation
does not have any provision for determining which
are hubs and which not, it just returns a weighted
list of vertices. We have experimented with two
methods: a threshold for the frequency of the hubs
(as before, p7), and a fixed number of hubs for ev-
ery target word (p8). For a shorthand we use Vr for
Veronis’ original formulation with default param-
eters, Vr opt for optimized parameters, and Pr fr
and Pr fx respectively for the two ways of using
PageRank.

Table 1 lists the parameters of the HyperLex al-
gorithm, with the default values proposed for them
in the original work (second column), the ranges
that we explored, and the optimal values according
to the supervised recall evaluation (cf. Sect. 3.1).
For Vr opt we tried 6700 combinations. PageRank
has less parameters, and we also used the previous
optimization of Vr opt to limit the range of p4, so
Pr fr and Pr fx get respectively 180 and 288 com-
binations.

5 Experiment setting and results

To evaluate the HyperLex algorithm in a standard
benchmark, we will first focus on a more exten-
sive evaluation of S3LS and then see the results
in S3AW (cf. Sec. 5.4). Following the design
for evaluation explained in Section 3, we use the
standard train-test split for the supervised evalua-
tion, while the unsupervised evaluation only uses
the test part.

Table 2 shows the results of the 4 variants of
our algorithm. Vr stands for the original Vero-
nis algorithm with default parameters, Vr opt to
our optimized version, and Pr fr and Pr fx to the

Sup. Unsupervised
Rec. Entr. Pur. FS

Vr 59.9 50.3 58.2 44.1
Vr opt 64.6 18.3 78.5 35.0
Pr fr 64.5 18.7 77.2 34.3
Pr fx 62.2 25.4 72.2 33.3
1ex-1hub 40.1 0.0 100.0 14.5
MFS 54.5 53.2 52.8 28.3
S3LS-best 72.9 19.9 67.3 63.8
kNN-all 70.6 21.2 64.0 60.6
kNN-BoW 63.5 22.6 61.1 57.1
Cymfony (10%-S3LS) 57.9 25.0 55.7 52.0
Prob0 (MFS-S3) 54.2 28.8 49.3 46.0
clr04 (MFS-Sc) 48.8 25.8 52.5 46.2
Ciaosenso (MFS-Sc) 48.7 28.0 50.3 48.8
duluth-senserelate 47.5 27.2 51.1 44.9

Table 2: Results for the nouns in S3LS using the 4 meth-
ods (Vr, Vr opt, Pr fr and Pr fx). Each of the methods was
optimized in S2LS using the 4 evaluation criteria (Supervised
recall, Entropy, Purity and Fscore) and evaluated on S3LS ac-
cording to the respective evaluation criteria (in the columns).
Two baselines, plus 3 supervised and 5 unsupervised systems
are also shown. Bold is used for best results in each category.

two variants of PageRank. In the columns we find
the evaluation results according to our 4 criteria.
For supervised evaluation we indicate only recall,
which in our case equals precision, as the cover-
age is 100% in all cases (values returned by the
official Senseval scorer). We also include 2 base-
lines, a system returning a single cluster (that of
the most frequent sense, MFS), and another re-
turning one cluster for each example (1ex-1hub).
The last rows list the results for 3 supervised and
5 unsupervised systems (see Sect. 5.1). We will
comment on the result of this table from different
perspectives.

5.1 Supervised evaluation

In this subsection we will focus in the first four
evaluation rows in Table 2. All variants of the al-
gorithm outperform by an ample margin the MFS
and the 1ex-1hub baselines when evaluated on
S3LS recall. This means that the method is able
to learn useful hubs. Note that we perform this su-
pervised evaluation just for comparison with other
systems, and to prove that we are able to provide
high performance WSD.

The default parameter setting (Vr) gets the
worst results, followed by the fixed-hub imple-
mentation of PageRank (Pr fx). Pagerank with
frequency threshold (Pr fr) and the optimized
Veronis (Vr opt) obtain a 10 point improvement
over the MFS baseline with very similar results
(the difference is not statistically significant ac-
cording to McNemar’s test at 95% confidence



level).

Table 2 also shows the results of three super-
vised systems. These results (and those of the
other unsupervised systems in the table) where ob-
tained from the Senseval website, and the only
processing we did was to filter nouns. S3LS-best
stands for the the winner of S3LS (Mihalcea et al.,
2004), which is 8.3 points over our method. We
also include the results of two of our in-house sys-
tems. kNN-all is a state-of-the-art system (Agirre
et al., 2005) using wide range of local and top-
ical features, and only 2.3 points below the best
S3LS system. kNN-BoW which is the same super-
vised system, but restricted to bag-of-words fea-
tures only, which are the ones used by our graph-
based systems. The table shows that Vr opt and
Pr fr are one single point from kNN-BoW, which
is an impressive result if we take into account the
information loss of the mapping step and that we
tuned our parameters on a different set of words.

The last 5 rows of Table 2 show several un-
supervised systems, all of which except Cym-
fony (Niu et al., 2005) and (Purandare and Ped-
ersen, 2004) participated in S3LS (check (Mihal-
cea et al., 2004) for further details on the systems).
We classify them according to the amount of “su-
pervision” they have: some have access to most-
frequent information (MFS-S3 if counted over
S3LS, MFS-Sc if counted over SemCor), some use
10% of the S3LS training part for mapping (10%-
S3LS). Only one system (Duluth) did not use in
any way hand-tagged corpora.

The table shows that Vr opt and Pr fr are more
than 6 points above the other unsupervised sys-
tems, but given the different typology of unsuper-
vised systems, it’s unfair to draw definitive con-
clusions from a raw comparison of results. The
system coming closer to ours is that described in
(Niu et al., 2005). They use hand tagged corpora
which does not need to include the target word to
tune the parameters of a rather complex clustering
method which does use local features. They do use
the S3LS training corpus for mapping. For every
sense of the target word, three of its contexts in
the train corpus are gathered (around 10% of the
training data) and tagged. Each cluster is then re-
lated with its most frequent sense. The mapping
method is similar to ours, but we use all the avail-
able training data and allow for different hubs to
be assigned to the same sense.

Another system similar to ours is (Purandare

and Pedersen, 2004), which unfortunately was
evaluated on Senseval 2 data and is not included
in the table. The authors use first and second or-
der bag-of-word context features to represent each
instance of the corpus. They apply several cluster-
ing algorithms based on the vector space model,
limiting the number of clusters to 7. They also
use all available training data for mapping, but
given their small number of clusters they opt for a
one-to-one mapping which maximizes the assign-
ment and discards the less frequent clusters. They
also discard some difficult cases, like senses and
words with low frequencies (10% of total occur-
rences and 90, respectively). The different test set
and mapping system make the comparison diffi-
cult, but the fact that the best of their combina-
tions beats MFS by 1 point on average (47.6% vs.
46.4%) for the selected nouns and senses make us
think that our results are more robust (nearly 10%
over MFS).

5.2 Clustering evaluation
The three columns corresponding to fully unsu-
pervised evaluation in Table 2 show that all our
3 optimized variants easily outperform the MFS
baseline. The best results are in this case for the
optimized Veronis, followed closely by Pagerank
with frequency threshold.

The comparison with the supervised and unsu-
pervised systems shows that our system gets better
entropy and purity values, but worse FScore. This
can be explained by the bias of entropy and purity
towards smaller and more numerous clusters. In
fact the 1ex-1hub baseline obtains the best entropy
and purity scores. Our graph-based system tends
to induce a large number of senses (with averages
of 60 to 70 senses). On the other hand FScore pe-
nalizes the systems inducing a different number of
clusters. As the supervised and unsupervised sys-
tems were designed to return the same (or similar)
number of senses as in the gold standard, they at-
tain higher FScores. This motivated us to compare
the results of the best parameters across evaluation
methods.

5.3 Comparison across evaluation methods
Table 3 shows all 16 evaluation possibilities for
each variant of the algorithm, depending of the
evaluation criteria used in S2LS (in the rows)
and the evaluation criteria used in S3LS (in the
columns). This table shows that the best results (in
bold for each variant) tend to be in the diagonal,



that is, when the same evaluation criterion is used
for optimization and test, but it is not decisive. If
we take the first row (supervised evaluation) as the
most credible criterion, we can see that optimiz-
ing according to entropy and purity get similar and
sometimes better result (Pr fr and Pr fx). On the
contrary the Fscore yields worse results by far.

This indicates that a purely unsupervised sys-
tem evaluated according to the gold standard
(based on entropy or purity) yields optimal param-
eters similar to the supervised (mapped) version.
This is an important result, as it shows that the
quality in performance does not come from the
mapping step, but from the algorithm and opti-
mal parameter setting. The table shows that op-
timization on purity and entropy criteria do corre-
late with good performance in the supervised eval-
uation.

The failure of FScore based optimization, in our
opinion, indicates that our clustering algorithm
prefers smaller and more numerous clusters, com-
pared to the gold standard. FScore prefers cluster-
ing solutions that have a similar number of clusters
to that of the gold standard, but it is unable to drive
the optimization or our algorithm towards good re-
sults in the supervised evaluation.

All in all, the best results are attained with
smaller and more numerous hubs, a kind of micro-
senses. This effect is the same for all three vari-
ants tried and all evaluation criteria, with Fscore
yielding less clusters. At first we were uncom-
fortable with this behavior, so we checked whether
HyperLex was degenerating into a trivial solution.
This was the main reason to include the 1ex-1hub
baseline, which simulates a clustering algorithm
returning one hub per example, and its precision
was 40.1, well below the MFS baseline. We also
realized that our results are in accordance with
some theories of word meaning, e.g. the “indef-
initely large set of prototypes-within-prototypes”
envisioned in (Cruse, 2000). Ted Pedersen has
also observed a similar behaviour in his vector-
space model clustering experiments (PC). We now
think that the idea of having many micro-senses
is attractive for further exploration, specially if we
are able to organize them into coarser hubs in fu-
ture work.

5.4 S3AW task

In the Senseval-3 all-words task (Snyder and
Palmer, 2004) all words in three document ex-

Sup. Unsupervised
Alg. Opt. Rec. Entr. Pur. FS
Vr Sup 64.6 18.4 77.9 30.0

Ent 64.6 18.3 78.3 29.1
Pur 63.7 19.0 78.5 30.8
Fsc 60.4 38.2 63.5 35.0

Pr fr Sup 64.5 20.8 76.1 28.6
Ent 64.6 18.7 77.7 27.2
Pur 64.7 19.3 77.2 27.6
Fsc 61.2 36.0 65.2 34.3

Pr fx Sup 62.2 28.2 69.3 29.5
Ent 63.1 25.4 72.2 28.4
Pur 63.1 25.4 72.2 28.4
Fsc 54.5 32.9 66.5 33.3

Table 3: Cross-evaluation comparison. In the rows the eval-
uation method for optmizing over S2LS is shown, and in the
columns the result over S3LS according to the different eval-
uation methods.

recall
kuaw 70.9
Pr fr 70.7
Vr opt 70.1
GAMBL 70.1
MFS 69.9
LCCaw 68.6

Table 4: Results for the nouns in S3AW, compared to the
most frequent baseline and the top three supervised systems

cerpts need to be disambiguated. Given the
scarce amount of training data available in Sem-
cor (Miller et al., 1993), supervised systems barely
improve upon the simple most frequent heuris-
tic. In this setting the unsupervised evaluation
schemes are not feasible, as many of the target
words occur only once, so we used the map-
ping strategy with Semcor to produce the required
WordNet senses in the output.

Table 4 shows the results for our systems with
the best parameters according to the supervised
criterion on S2LS, plus the top three S3AW super-
vised systems and the most frequent sense heuris-
tic. In order to focus the comparison, we only kept
noun occurrences of all systems and filtered out
multiwords, target words with two different lem-
mas and unknown tags, leaving a total of 857 oc-
currences of nouns. We can see that Pr fr is only
0.2 from the S3AW winning system, demonstrat-
ing that our unsupervised graph-based systems
that use Semcor for mapping are nearly equivalent
to the most powerful supervised systems to date.
In fact, the differences in performance for the sys-
tems are not statistically significant (McNemar’s
test at 95% significance level).



6 Conclusions and further work

This paper has explored the use of two graph algo-
rithms for corpus-based disambiguation of nomi-
nal senses. We have shown that the parameter op-
timization learnt over a small set of nouns signifi-
cantly improves the performance for all nouns, and
produces a system which (1) in a lexical-sample
setting (Senseval 3 dataset) is 10 points over the
Most-Frequent-Sense baseline, 1 point over a su-
pervised system using the same kind of informa-
tion (i.e. bag-of-words features), and 8 points be-
low the best supervised system, and (2) in the all-
words setting is à la par the best supervised sys-
tem. The performance of PageRank is statistically
the same as that of HyperLex, with the advantage
of PageRank of using less parameters.

In order to compete on the same test set as su-
pervised systems, we do use hand-tagged data, but
only to do the mapping from the induced senses
into the gold standard senses. In fact, we believe
that using our WSD system as a purely unsuper-
vised system (i.e. returning just hubs), the per-
fomance would be higher, as we would avoid the
information loss in the mapping. We would like
to test this on Information Retrieval, perhaps on a
setting similar to that of (Schütze, 1998), which
would allow for an indirect evaluation of the qual-
ity and a comparison with supervised WSD system
on the same grounds.

We have also shown that the optimization ac-
cording to purity and entropy values (which does
not need the supervised mapping step) yields very
good parameters, comparable to those obtained in
the supervised optimization strategy. This indi-
cates that we are able to optimize the algorithm
in a completely unsupervised fashion for a small
number of words, and then carry over to tag new
text with the induced senses.

Regarding efficiency, our implementation of
HyperLex is extremely fast. Trying the 6700 com-
binations of parameters takes 5 hours in a 2 AMD
Opteron processors at 2GHz and 3Gb RAM. A
single run (building the MST, mapping and tag-
ging the test sentences) takes only 16 sec. For this
reason, even if an on-line version would be in prin-
ciple desirable, we think that this batch version is
readily usable as a standalone word sense disam-
biguation system.

Both graph-based methods and vector-based
clustering methods rely on local information, typ-
ically obtained by the occurrences of neighbor

words in context. The advantage of graph-
based techniques over over vector-based cluster-
ing might come from the fact that the former are
able to measure the relative importance of a vertex
in the whole graph, and thus combine both local
and global cooccurrence information.

For the future, we would like to look more
closely the micro-senses induced by HyperLex,
and see if we can group them into coarser clus-
ters. We would also like to integrate different
kinds of information, specially the local or syn-
tactic features so successfully used by supervised
systems, but also more heterogeneous information
from knowledge bases.

Graph models have been very successful in
some settings (e.g. the PageRank algorithm of
Google), and have been rediscovered recently
for natural language tasks like knowledge-based
WSD, textual entailment, summarization and de-
pendency parsing. Now that we have set a ro-
bust optimization and evaluation framework we
would like to test other such algorithms (e.g.
HITS (Kleinberg, 1999)) in the same conditions.
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