
Euskal Herriko Unibertsitatea/ Universidad del Páıs Vasco
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I. CHAPTER

Introduction

People like to control things and situations. They feel good when they are able to conquer
new environments, when they become masters in worlds that were once arcane. The process
of domination requires some effort and gives some rewards. For instance, little children like to
hear the same story or watch the same video once and again until they totally learn it, and even
after that, they feel happy getting back to it for a while. For adults similar things happen, we
like to play sports at which we are good (and we get better doing it), and we like to know more
details about domains in which we are experts (like arts or again, sports).

Both babies and adults feel rewarded when they start to talk and understand a language new
to them. This feeling ends when the language is mastered, and then they do not think much
of it. It becomes another ordinary controlled world; like walking, cooking, or playing cards. A
new problem begins for us when we try to represent and model these conquered places. When
we move to an environment that we have known for all our lifetime as (in my case) the Basque
language, it seems that not much can escape to our control. We understand almost everything
that it is said, and we can say whatever we feel inside. It looks like we would not have much
trouble writing rules, or representations describing “how we do it”. Some countries even have
institutions devoted to prescribe how the language should be used, and for almost all languages
there are listings of the meanings of the words and expressions that we use (dictionaries). It
seems like we could try to write some code to mechanize the language understanding/producing
process in a computer.

However, we certainly cannot do that. Language can be seen as a discrete combinatorial
system (Manning and Schütze, 1999), which means that from a fixed number of elements (words)
combined, we can obtain infinite outcomes (sentences). Whatever path we take to solve the
problem, the complexity arises immediately. These kind of problems, when humans try to go a
step further and formalize the ways they interact with the worlds they control, are those faced
by Artificial Intelligence (AI) research. Natural Language Processing (NLP) is one of those
problems, and many researchers fall in love with this field precisely because “Natural Language”
is the main tool we use to control one exciting world: the communication with other humans.
The process that is happening at this moment when you go along these lines.

Thus, we can take any sentence as an example of communication between humans using
Language as the code. If we could model the rules that lie behind the process, amazing appli-
cations could be created. Instead of a standard viewer, this text could be read with a Natural
Language Understanding (NLU) tool1. The tool would understand the commands we give in
English (in place of having to look for them in the menu), and also would understand the text
that is written, allowing us to make queries like:

1. Can you get me a short version of this dissertation, of 20 pages more or less?

1The NLU acronym is used in this book to refer to a software that would be able to perform processing,
representation, and inference of the text that receives as input, imitating human capabilities. We will refer to
NLP tools for programs that perform some of the intermediate tasks that would aid the hypothetical NLU tool.
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2. Where did the writer say something about parallel corpora?

3. Can you translate the whole document into Basque?

If you would ask these questions to a person that has read this dissertation carefully, he would
understand the queries very easily, and, with more effort, he would have the ability to perform the
requested tasks (assuming he knows English and Basque). For the hypothetical NLU tool, these
tasks are still a long way ahead. As we said previously, this is a very appealing field for many
researchers, and a big effort has been put in NLP. However, the more sophisticated applications
that we can find in the market, such as Machine Translation (MT) Tools, Question Answering
Systems, or Natural Language Interfaces to Databases, do not show real understanding of human
communication. For the NLU tool that would answer questions 1-3, the kind of reasoning
required would be very complex to model. When processing the questions and the text of this
book, the problem has been traditionally separated on these subtasks (Allen, 1995):

• Morphological analysis: how words are constructed from more basic meaning units called
morphemes.

• Syntactic analysis: how words can be put together to form correct sentences. It determines
what structural role each word plays in the sentence, and the phrase structure.

• Semantic analysis: the meaning of words and and how these meanings combine in the
sentences.

• Pragmatic analysis: how sentences are used in different situations and how this affects the
interpretation.

• Discourse analysis: how the immediately preceding sentences affect the interpretation of
the next sentence.

• World knowledge: the general knowledge about the structure of the world that language
users must have in order to fully understand the sentence.

Each of these subtasks receives a big number of researchers eager to test their approaches
on them, using empirical approaches, or introspective rule-based methods. Each subtask can
be divided into many others, for instance, for identifying phrases in a sentence, it would be
important to know whether the words are verbs, nouns, or from other parts of speech (PoS).
The hope is that these low-level tools constitute building blocks that will serve for the NLU
applications of the future.

I.1 Word Sense Disambiguation (WSD)

I belong to a group (IXA2) interested in the processing of natural language, and that makes us get
involved in many different aspects of this process. Personally, I find lexical ambiguity resolution
a very interesting subtask of the big picture of NLU. This problem consists on determining
the sense on which a word is used in a text, and in the NLP field is known as Word Sense
Disambiguation (WSD). As many other NLP tasks, this problem is not noticeable until you
start to think on modeling it. People solves WSD constantly with many ambiguous words in
each sentence. For instance, if we recall the first question we would give to the NLU tool “Can
you get me a short version of this dissertation, of 20 pages more or less?”, and focus on the
word pages, every English speaker knows its meaning in the sentence. Moreover, if they were
to look in a dictionary for more information, they would search for the lemma page as a noun.
Below, we can see the list of meanings they would obtain from the WordNet lexical database
(Fellbaum, 1998):

a. page – (especially one side of a leaf)

b. Page, Sri Frederick Handley Page – (English industrialist who pioneered in the design and
manufacture of aircraft (1885-1962))

2http://ixa.si.ehu.es
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c. Page, Thomas Nelson Page – (United States diplomat and writer about the Old South
(1853-1922))

d. page, pageboy – (a boy who is employed to run errands)

e. page – (a youthful attendant at official functions or ceremonies such as legislative functions
and weddings)

f. page, varlet – (in medieval times a youth acting as a knight’s attendant as the first stage
in training for knighthood)

We know that the intended meaning in the sentence is the first on the list, but how could a
program guess? There are many steps we have to make in order to process a text, but let us
continue with the word pages, as it is. There are tools nowadays (lemmatizers or stemmers, and
PoS taggers) that can tell us with good precision that page is the lemma of pages, and that it
functions as a noun in the context of the question. This is not easy to do, as pages could be
also a verb form; in order to do that, the PoS tagger has to know the contexts on which the
word form appears, and solve the ambiguity. We will assume that we can use those tools (and
others to come) as building blocks in order to walk towards the tool this dissertation is about:
an automatic WSD tool.

Following with the example, those nice lemmatizer and PoS taggers tell us that in question
(1) we have a noun spelled pages, and that its root is page. Now, the NLU tool would need to
know something more about this word in order to answer the question. What does page mean?
Let us go back to the dictionary definitions. From the above list, we can discard b) and c),
because they are in uppercase, suggesting that they are proper nouns, and pages is in lowercase;
but how can we tell among the others?

As we will see throughout this dissertation, the problem is to build a model in a way that
allows us to recognize the senses of the words in any of the infinite sentences that can be uttered.
Focusing on the explicit disambiguation of word senses linked to a dictionary is not the only way
to achieve understanding. Some authors describe the limitations of this fixed setting (Kilgarriff
and Tugwell, 2002), and argue that a more dynamic approach (including a lexicographer in the
loop) should be taken in order to represent the word meanings in a corpus. But whatever way
we choose to obtain deep understanding of the text with automatic means, we think that the
robust NLU interface should, in the end, be able to tell which one (or ones) from a given list of
senses is (are) the closest to the intended meaning of pages in the context. In this dissertation,
we will focus on the explicit WSD approach, with a fixed list of senses. We think that
this line of research can provide fruitful insight into the deeper problem of NLU.

I.2 Approaches to WSD

Now that we have a fixed list of four noun senses to choose for the word pages, how do we
approach the problem? One way to do it is to identify the senses the word can have in a
dictionary or lexical resource (as we did for page), and construct a model of each sense. We
can classify the WSD methods that follow this approach according to the knowledge they use
to build the sense models:

• Based on hand-tagged corpora: the sentences where the different senses of the word are
used.

• Machine Readable Dictionary (MRD) based: the information in the dictionary entries for
each sense.

• Ontology based: the knowledge stored in an ontology, with its semantic relations with other
senses.

• Other approaches: normally a combination of the previous sources, or other less explored
sources (hand-built rules, for example).
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Once we have information about the list of senses, the sentence that we are trying to under-
stand is somehow compared to our sense-models. E.g. in order to know the sense of pages in
the question “Can you get me a short version of this dissertation, of 20 pages more or less?”,
we will compare the information we can extract from this sentence and contrast it with the data
we have for each sense of page via corpora, MRDs, ontologies, or other means.

In order to represent the context of the occurrence we want to disambiguate, we extract
features from the example. The features provide us the pieces of information that we will rely
on to discriminate among the senses. We employ different tools to obtain them. For instance,
some features that we could extract from question (1) for the target word pages are the following:

• Word-to-the-left “20” (Local feature)

• Lemma-bigram-in-context “short version” (Topical feature)

• “page” Head-of-PP-modifying “version” (Grammatical feature)

• Text type scientific article (Domain feature)

Some of the features will only require simple tools like tokenizers or stemmers to be extracted.
Other tools that parse the sentences for grammatical dependencies, or that classify the text into
domains are not as easy to obtain. As they are still object of research, we have to assume that
some error will be introduced when we use these kind of features. However they will hopefully
provide useful information about the context.

The selection of features is very important, as they have to reflect the relevant information
in the contexts, and yet they have to be generic enough to be applied to a variety of cases. We
will devote further attention to feature types in chapters III and IV.

As we said, state-of-the-art systems could be classified according to the knowledge source they
use in order to learn their models. Another coarse distinction is usually applied between the
systems that rely on hand-tagged corpora (supervised systems), and those that do not require
this resource (unsupervised systems). The former are called supervised because they need the
supervision of a person that identifies the words in a sentence as pertaining to a sense or another.
This distinction is important because the effort to tag the senses is high, and it would be costly
to obtain tagged examples for all word senses and all languages, as some estimations show
(Ng, 1997; Mihalcea and Chklovski, 2003). In this dissertation, we will focus on supervised
ML systems. However, we will try to find alternatives to alleviate the hand-tagging cost in
chapter VI.

I.3 State of the art in WSD

An important reference of the state of the art in WSD is the initiative for the Evaluation of
Systems for the Semantic Analysis of Text, known as Senseval3. This competition held its third
workshop on July, 2004 (the first edition took place in 1998, and the second in 2001). Senseval
has been growing in languages, tasks, and participants over the years. We will dedicate more
space to Senseval in chapter II. At this point we want to stress that regarding disambiguation
performance, the results in the literature and in Senseval show that supervised ML is the most
effective paradigm. Nevertheless, current systems obtain around 70% accuracy (Snyder
and Palmer, 2004), which is not enough for practical applications. Some reasons that could
explain these low scores are the following:

1. The definition of the problem is wrong. As we said, some authors claim that defining the
meaning of a word as a discrete list of senses does not model correctly its behavior (Kilgarriff
and Tugwell, 2002). There are suggestions that the instances of a word would be better
represented as clusters when they have similar meanings, always in relation to a task or
corpora (Kilgarriff, 1997). This issue has not been tackled here, and the classical discrete
model has been adopted. This is the model followed by all of the current supervised WSD
systems.

3http://www.senseval.org
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2. Sense inventory and granularity. In the last few years WordNet has been widely adopted
as the sense-inventory of choice in the WSD community (Fellbaum, 1998), and WordNets
for different languages have been developed4. This resource has been applied in many of
the Senseval tasks for English, and also for other languages like Basque, Italian, Spanish,
etc. WordNet gives the possibility of comparing the results of different research groups,
and offers a big conceptual network that can aid the disambiguation process, as well as
manually tagged corpora. However, the sense inventory is clearly too fine-grained for many
tasks and this makes the disambiguation very difficult. E.g. surely the 45 senses of give are
not needed in a MT task, where not every sense will have a different translation for another
language.

3. ML algorithms are not adequately applied to the problem. Methods coming from the ML
community have been widely applied to the WSD problem: Naive Bayes, Decision Lists,
AdaBoost, Support Vector Machines (SVM), etc. However, the comparative results show
that even the most sophisticated methods have not been able to make a qualitative jump
and get close to the solution of the problem. Actually, for each different word, different
algorithms and features achieve the best results. Some voices claim that the optimization of
ML methods, parameters, and feature types per word should help solve the problem (Hoste
et al., 2002).

4. The feature sets used to model the language are too limited. Traditionally simple feature sets
consisting in bigrams, trigrams, and “bags of words” have been used to model the contexts
of the target words. But in order to be robust, the ML methods should rely in as much
information from the texts as possible. Features obtained with complex analysis of the text
(morphological, syntactic, semantic, domain, etc.) and the combination of different types
of features could be used.

5. The sparse data problem. In NLP most of the events occur rarely, even when large quantities
of training data are available. This problem is specially noticeable in WSD, where hand-
tagged data is difficult to obtain. Besides, fine-grained analysis of the context requires it
to be represented with thousands of features, some of them very rare, but which can be
very informative. Therefore the estimation of rare-occurring features is crucial to have high
performance, and smoothing techniques can be useful in this process.

6. Necessity of extra training data. Existing hand-tagged corpora do not seem enough for
current state-of-the-art systems. Hand-tagged data is difficult and costly to obtain. Es-
timations of the required tagging effort are not optimistic, and methods to obtain data
automatically have not reached the same quality of hand-tagged data so far. Besides, the
results reported usually in the literature are given for those words that have training exam-
ples, but a WSD tool should cover all the words in the vocabulary.

7. Portability. The porting of the WSD systems to be tested on a different corpora than the
one used for training also presents difficulties. Previous work (Ng et al., 1999; Escudero
et al., 2000c) has shown that there is a loss of performance when training on one corpora and
testing on another. This has happened with automatically-tagged corpora, and also with
corpora hand-tagged by independent teams of researchers. The problem could be alleviated
using tuning methods, or taking into account the genre/domain of the corpora.

These issues represent a wide research space, and researchers from different fields have
studied them from different perspectives. Our approach was to test empirically different ways
to overcome some of the above problems:

(1,2) Regarding the first two points on the list on how will we define a word sense, we
concentrated on the “discrete sense list” approach and chose the WordNet sense inventory
whenever possible. As we said, WordNet has the advantage of being widely used in the

4http://www.globalwordnet.org/gwa/wordnet table.htm



6 Introduction

community, and it offers important resources, as the Semcor all-words hand-tagged corpora
(Miller et al., 1993) and the conceptual hierarchy. Besides, this resource has been a meeting
point for many research groups, by means of the Senseval settings, and also because of other
collaborative projects: EuroWordNet (Vossen, 1998), Meaning (Atserias et al., 2004), Germanet
(Kunze and Lemnitzer, 2002), etc.

(3) The third issue on the list refers to the ML methods to apply. Early in this work,
the state of the art in WSD showed that there was little difference in the performance of
different ML algorithms. A method based on Decision Lists (DL) (Yarowsky, 1994) obtained
the best performance in the Senseval-1 competition; this algorithm offered some advantages
over other statistical methods like Naive Bayes (NB): as DLs are based on the best single
evidence, in opposition to classification based on the combination of contextual evidences,
multiple non-independent features can be included in the system without having to model the
dependencies. This factor would allow to explore feature-types coming from different analysis
of the text (morphological, syntactic, semantic, etc.).

(4) We decided to apply the DL algorithm in order to focus on the 4th issue in the list
(different types of features to model the context), instead of trying different ML methods. Our
first hypothesis was that there was important information in the contexts of the words that was
useful for learning, and that the integration of these features would contribute significantly to
the resolution of the WSD problem.

As our work was going on, many approaches from the ML community were applied to WSD
(AdaBoost, SVM, ...), and other methods, like the Vector Space Model (VSM), proved to be
well suited for the task, performing significantly better than DLs. Thus, to be able to test our
approaches with state-of-the-art methods, and compare our performance with other systems
(cf. in the Senseval competitions), we incorporated some of these algorithms to our experiments.

(5) Regarding the sparse data problem in WSD, we also explored smoothing techniques
to improve the estimation of the features in the training data using different ML meth-
ods. For our study, we were inspired by a method presented in (Yarowsky, 1995a). We
implemented a method where the smoothed probabilities were obtained by grouping the ob-
servations by raw frequencies and feature types; and also by interpolation of the observed points.

(6,7) In order to make supervised WSD a realistic goal, our hypothesis was that the problem
of the knowledge acquisition bottleneck (6th issue above) could be alleviated by automatic
means. We analyzed the “monosemous relatives” method by Leacock et al. (1998), and tested
it using the web as untagged corpus and the Senseval competition data for evaluation. We
observed the difficulty of introducing new examples in a hand-tagged corpus, which took us to
study the effect of the domain/genre of the corpora we use for learning and testing (7th problem
in our list).

I.4 Contributions of the dissertation

Thus, our aim was to shed light on the needs of a WSD tool, and try to contribute to move the
field forward. We explored two main hypotheses in this dissertation:

1. The use of richer features (syntactic, semantic, or domain features) can provide relevant
information of the contexts, and it should improve significantly baseline methods that are
trained on classic features.

2. The automatic acquisition of examples by means of WordNet relatives can alleviate the
knowledge acquisition bottleneck, and improve over other unsupervised (or minimally su-
pervised) approaches.

We proposed different ways to explore these issues, developing approaches not previously
described in the literature. All in all, we think that our main contributions on these initial
hypotheses are the following:
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• Syntactic features (chapter IV): We explored the contribution of an extensive set of
syntactic features to WSD performance. We presented several experiments and analyses on
these features. The study included two different ML methods (DL and AdaBoost (AB)),
and a precision/coverage trade-off system using these feature types. The results show that
basic and syntactic features contain complementary information, and that they are useful for
WSD. The contribution of this type of features is specially noticeable for the AB algorithm
in the standard setting, and for DLs when applying the precision/coverage trade-off.

• Semantic features (chapter IV): We applied two approaches to study the contribution
of semantic features using the WordNet hierarchy and the Semcor all-words corpus. On
the one hand, we constructed new feature types based on the synsets surrounding the
target word, the hypernyms of these synsets (at different levels), and also their semantic
files. On the other hand, we learned different models of selectional preferences for verbs,
using the relations extracted from the Semcor corpus by Minipar. Our main conclusions
were that the “bag-of-synsets” approach does not seem to benefit much from the WordNet
hierarchy. Instead, selectional preference acquisition offers promising results with a view to
their integration with other feature types.

• Automatic acquisition of examples (chapter VI): We evaluated up to which point
we can automatically acquire examples for word senses and train supervised WSD systems
on them. The method we applied is based on the monosemous relatives of the target words
(Leacock et al., 1998), and we studied some parameters that affect the quality of the ac-
quired corpus, such as the distribution of the number of training instances per each word
sense (bias). We built three systems with different supervision requirements: fully super-
vised (automatic examples added to hand-tagged corpora), minimally supervised (requiring
information about sense distributions), and unsupervised (without hand-tagged examples).
We showed that the fully supervised system combining our web corpus with the examples
in Semcor improves over the same system trained on Semcor alone (specially for nouns
with few examples in Semcor). Regarding the minimally supervised and fully unsupervised
systems, we demonstrated that they perform well better than the other systems of the same
category presented in the Senseval-2 lexical-sample competition. Our system can be trained
for all nouns in WordNet, using the data collected from the web.

• Genre/topic shift (chapter VII): We studied the strength of the “one sense per collo-
cation” hypothesis (Yarowsky, 1993) using different corpora for training and testing. Our
goal was to measure the importance of introducing examples from different sources in WSD
performance. We focused on the domain/genre factor, and performed our experiments in
the DSO corpus, which comprises sentences extracted from two different corpora: the bal-
anced BC, and the WSJ corpus containing press articles. Our experiments show that the
one sense per collocation hypothesis is weaker for fine-grained word sense distinctions, and
that it does hold across corpora, but that collocations vary from one corpus to other, fol-
lowing genre and topic variations. This would explain the low performance for WSD across
corpora. In fact, we showed that when two independent corpora share a related genre/topic,
the WSD results are better.

Other interesting results that came out from our work on this dissertation are the following:

• High-precision WSD tool for English (chapter IV): We tested on Senseval-2 data
different systems that could provide high precision at the cost of coverage. The results were
promising, as two methods based on DLs reached 93% precision at 7% coverage (decision-
threshold method), and 86% precision at 26% coverage (feature selection method). Syntactic
features are specially helpful for feature selection.

• Supervised WSD tool for English (chapter V): We developed a supervised system
based on the combination of different ML methods and in smoothing techniques, described
in chapter V. In the Senseval-3 English lexical-sample task, it ranked 5th among 47 submis-
sions, only 0.6% lower than the best system. This system also participated in the all-words
task, as a component of the “Meaning” system, which ranked 5th among 26 systems.
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• Supervised WSD tool for Basque (chapter V): We have adapted our models to
Basque, which is an agglutinative language and presents new challenges when defining the
feature set. We have tested this tool on the Senseval-3 Basque lexical-sample task data,
and it outperforms the results of other systems that took part in the event.

• Unsupervised WSD tool for English (chapter VI): We built an unsupervised system
relying on automatically obtained examples, which shows promising results for alleviating
the knowledge acquisition bottleneck. It has been tested on the Senseval-2 English lexical-
sample task, presenting the best performance among systems of this kind.

There are also some resources (available for research) that have been developed as a result
of our work:

• Selectional preferences (chapter IV): Using the syntactic dependencies (object and
subject) extracted from Semcor, we constructed and evaluated selectional preferences for
verb and noun classes in WordNet. This database, consisting on weighted relations between
synsets, is available by means of a Meaning license, or by personal request.

• Sense tagged corpus (chapter VI): We constructed automatically a sense-tagged corpus
for all nouns in WordNet. This resource is publicly available, and can be downloaded from
http://ixa2.si.ehu.es/pub/sensecorpus.

Finally, during this research, we have published our results in different articles. The complete
list is given in appendix A.

I.5 Structure of the dissertation

In summary, this is the structure of this dissertation, and the issues addressed by each chapter:

• First chapter. This introduction.

• Second chapter. State of the art: resources, systems, and evaluation. This chapter will
be devoted to the description of different methods and research lines that are presenting
promising results in the WSD task. First, we will describe the main resources that are
employed for WSD, including lexical databases, corpora, and some well-known learning
algorithms. The main sections will be dedicated to the Senseval competitions and the
participating systems.

• Third chapter. Baseline WSD system: DL and basic features. In this chapter, we will
study the DL algorithm, trained on “classic” feature types and currently available hand-
tagged data; all in an extensive set of experiments. The tests and results will serve as a
reference for the following chapters, which focus on different aspects of the disambiguation
task.

• Fourth chapter. New feature types: syntactic and semantic knowledge. In this chapter
we will analyze richer feature sets: syntactic features, semantic features, and selectional
preferences. We will study the contribution of different feature types to the disambiguation
process, relying on two different ML methods. We will also explore the contribution of new
features to a high precision WSD system.

• Fifth chapter. Sparse data problem and smoothing techniques. Different smoothing
techniques will be applied to a set of ML algorithms. The goal of this chapter will be to
obtain better estimations of features for improved WSD, helping to alleviate the sparse data
problem. We will also analyze the behavior of different ML methods and their combination
in order to improve performance.

• Sixth chapter. Automatic acquisition of sense-tagged examples. Application of the
“monosemous relatives” method (Leacock et al., 1998) for automatically acquiring sense-
tagged examples. These examples, and an automatic ranking of senses obtained with the
method by McCarthy et al. (2004) will be used to build different systems to be evaluated
on the Senseval-2 dataset.
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• Seventh chapter. Portability and genre/topic of corpora. The goal of this chapter was
to measure the importance of introducing examples from different sources in WSD perfor-
mance. We focused on the “one sense per collocation” hypothesis, and the effect of the
genre and topic of the training and testing datasets.

• Eighth chapter. Conclusions and future work. This last chapter summarizes the main
conclusions of the dissertation and sketches the further work on the opened research lines.



10 Introduction



II. CHAPTER

State of the art: resources, systems, and evaluation

In this chapter we will present the state of the art for WSD. As we will see, this is a task that
has received a great deal of attention from many researchers in NLP during the years. Because
an extensive survey of all these works is out of the scope of this dissertation, we will organize the
chapter as follows. First we will briefly introduce previous work on WSD, and also justify our
organization of the analysis of the literature. The next section will describe the main resources
that are applied to WSD research: on the one hand, lexical databases and dictionaries that are
used as sense repository; on the other hand, publicly available corpora that is employed by the
systems for learning. The next section will be devoted to present some well-known algorithms
that have been applied to WSD, and which will be employed in different experiments throughout
this dissertation. After that, we will present measures and significance tests that are used to
evaluate WSD systems. The final three sections of this chapter will be dedicated to the Senseval
competitions and the participating systems, focusing on the English tasks.

II.1 Introduction

There has been a vast corpus of work on WSD since the fifties. The history of NLP is very
much linked to this task, which was first treated independently in 1955 (Yngve, 1955). This
happened in the days of the big investment for MT in the United States of America. The lexical
ambiguity problem arose immediately, as it happens when we try to construct applications that
require deep understanding of the texts. In fact, evident errors appear when this problem is
not addressed in some way, and the folklore of early AI keeps stories like the biblical English
sentence The spirit is strong, but the flesh is weak being translated from English to Russian,
and back to English. According to the story, the resulting sentence turned out to be The vodka
is good, but the meat is rotten. This can seem a bit exaggerated, but even nowadays, if we use
a commercial MT tool, these kind of errors will appear1

The notorious complexity of lexical disambiguation was one of the arguments that were raised
against NLP funding in the early days of AI. One famous example came from Bar-Hillel’s work
(Bar-Hillel, 1960), who claimed that it was impossible for a machine to disambiguate correctly
between two main senses of the word pen (the writing device, or the enclosed space) in the
sentence “the box is in the pen”. A few years after that, the ALPAC report was released
(ALPAC, 1966), exposing the weakness of the work on MT, and stopping funding for NLP. The
work on NLP was then re-oriented to knowledge representation and semantic networks, and
there is where WSD had its space until the eighties, when the availability of large corpora and
the advent of Internet changed the trend to empirical approaches again.

In recent years, extensive literature on WSD has been developed. Even if WSD is not a
final NLP application, but an intermediate task such as PoS tagging or parsing, there are some
factors that make it attractive to researchers:

1For instance, if we use the on-line demo of Systran 5.0 (http://www.systransoft.com) to translate the example
to Spanish, and back to English, we will come out with “The alcohol is strong, but the meat is weak”. We tried
Russian first, and the result was the cryptic sentence “The spirit of sil’n, but the flesh is weak.”.
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• The problem can be modeled as another classification task, and approaches from the ML
community can be applied.

• It is easy to evaluate new systems against existing goldstandards.

• The work with word senses is very much linked to the cognitive process of representing
concepts and knowledge.

• Solving the lexical disambiguation problem should have an immediate effect in NLP tools,
and create new ones.

• The impulse that the WordNet resource and the Senseval competitions are giving to this
task, joining the efforts of many groups of researchers in this area.

Thus, general NLP books dedicate separate chapters to WSD (Manning and Schütze, 1999;
Jurafsky and Martin, 2000; Dale et al., 2000). There are also special issues on WSD in NLP
journals (Ide and Veronis, 1998; Edmonds and Kilgarriff, 2002); and books devoted specifically
to this issue (Ravin and Leacock, 2001; Stevenson, 2003; Agirre and Edmonds, forthcoming).
Traditionally, as we have seen in chapter I, WSD systems are classified attending to the type
of knowledge they rely on to build their models (hand-tagged corpora, raw corpora, MRDs,
ontologies, or combination of those sources). Another distinction that is usually made, for in-
stance in the Senseval competitions, is between supervised and unsupervised methods. However,
nowadays it is difficult to present a strict classification. For example, in Senseval we can see
systems that do not learn directly from the examples, but use their prior distribution; also sys-
tems that use only a minimal number of examples to link the classes they induce to the sense
inventory; and even semi-automatic architectures that rely on lexicographers providing clues for
disambiguation by hand.

As this field covers a huge space, the development of an exhaustive survey of WSD is out of
the scope of this dissertation, and we have to focus on the aspects of the problem that interest us
most, those that have been listed on the introduction chapter. We will pay special attention to
the most successful systems for WSD, both in the literature and in the Senseval competitions:
supervised ML techniques. However, other promising approaches for WSD will be presented
together with the corresponding motivations in relation to our work. For a full account of the
field please turn to the above references.

The Senseval workshops are the best reference to see where the field is moving, and they will
serve us to organize this chapter. At the moment of writing this dissertation, the third edition
in Barcelona was just finished. Fruitful discussion resulted from the analysis of the results in
the workshop, with leading researchers on the field sharing their views2. We will present the
state-of-the-art in WSD following the path of the three Senseval competitions celebrated until
this day (1998, 2001, and 2004), focusing on the supervised systems in the English lexical-sample
and all-words tasks.

As we will see, the best results in the last Senseval were achieved by systems that rely in
different ML techniques (kernel-based, optimization, and voting), and in most cases include
rich information from the context, like dependency relations or domain information. After we
present the basic resources, evaluation measures, and single algorithms, we will describe the
top-performing systems for English in the different Senseval editions. Other approaches and
tasks that are related in some manner to our work (from Senseval or not) will be described in
the “related work” sections of the different chapters. We will briefly mention here the works
covered in other chapters:

• Fourth chapter: This chapter, involving the baseline setting of the dissertation, will
introduce experiments by other research groups on the following subjects: local vs topical
features, learning curves, and performance on an all-words corpus.

2The following mailing list (Senseval-discuss) provides additional information:
http://listserv.hum.gu.se/mailman/listinfo/senseval-discuss.
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Corpus
WordNet
version

DSO 1.5 (Pre)
Semcor 1.6
Senseval-2 all-words 1.7 (Pre)
Senseval-2 lexical-sample 1.7 (Pre)
Senseval-3 all-words 1.7.1
Senseval-3 lexical-sample (except verbs) 1.7.1

Table II.1: Publicly available hand-tagged corpora and WordNet versions for English. (Pre)
indicates that a preliminary version of WordNet was utilized at the moment of tagging.

• Fifth chapter: This chapter is devoted to WSD literature that relies on a context rep-
resentation model that goes beyond the classic set of features. Works that use syntactic
dependencies, selectional preferences, or domain information will be analyzed.

• Sixth chapter: An inherent problem of WSD is the lack of tagged examples per sense.
This chapter revises work that try to obtain the most of sparse features by means of different
techniques to smooth probabilities. Architectures that use combinations of single algorithms
by voting are also presented here.

• Seventh chapter: In this chapter, research on ways to alleviate the knowledge acqui-
sition bottleneck will be presented. Works on automatic acquisition of tagged examples,
active learning, and bootstrapping are included in this section. As this line of investigation
aims at using the minimal human supervision, other unsupervised works with successful
performance in the Senseval competition are introduced.

• Eighth chapter: This chapter is dedicated to studies on training and testing in different
corpora. Here we will see tuning methods to overcome the usual decrease in performance,
and also ways to adapt the sense inventory to the domain of the text.

II.2 Lexical databases and dictionaries

In this section we will introduce the main lexical repositories that have been used in the Senseval
editions to provide the sense inventories for English and Basque. These resources have been used
for our experiments throughout the dissertation.

WordNet lexical database

WordNet (Fellbaum, 1998) is a lexical database developed at Princeton University3. This seman-
tic network is connected with paradigmatic relations, such as synonymy, hyperonymy, antonymy,
and entailment. All English open-class words are included in this resource. The concepts are
represented by synsets, which store the words that are synonymous in some context, e.g. {bank,
cant, camber }4 .The main relation that structures this database is hyperonymy, which gives a
hierarchical organization to WordNet for verbs and nouns (adjectives and adverbs are organized
differently).

WordNet is widely used in NLP research, specially for WSD. The sense distinctions in Word-
Net have become a commonplace for WSD research since they were adopted in the Senseval-2
competition; although the sense inventory has been criticized for its fine-grainedness, specially
for verbs.

There have been different versions of WordNet during the years, and mappings between
versions (Daude et al., 2000) have been developed in order to use different resources (such as
hand-tagged corpora and WordNets in other languages). The current version (August, 2004) is
2.0 . Table II.1 shows the corpora used for WSD that have been tagged with different WordNet
versions. These corpora will be described in detail in section II.3.

3The original WordNet is sometimes referred as “Princeton WordNet”, to distinguish it from other extensions
of this approach.

4The synsets are usually represented by the word list between brackets.
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As we mentioned in the introduction, WordNets for different languages have been developed
and linked to the original Princeton WordNet. Many languages have adopted the WordNet
sense inventory to organize Senseval tasks, and therefore hand-tagged data has been built for
other languages, keeping the connection to English. The linking of WordNets offers interesting
prospects, making possible to experiment with multilingual information, as different projects
have shown (Atserias et al., 2004; Vossen, 1998). The Basque WordNet5 is one of the resources
being built and connected to Princeton WordNet (version 1.6) . This resource was used as sense
inventory for the Basque lexical-sample task in Senseval-3 (cf. section II.3). Some of the words
chosen for Basque were translations of the words in the English lexical-sample task.

HECTOR lexical database

HECTOR (Atkins, 1993) is a research project for the development of a database linked to a
dictionary and a hand-tagged corpus. The dictionary entries were built by lexicographers in
a corpus-driven approach. The results for a sample of words were used in the first Senseval
edition. A pilot of the British National Corpus6 (BNC), comprising 17 million words was chosen
to retrieve the examples to tag.

Euskal Hiztegia Basque dictionary

Euskal Hiztegia (Sarasola, 1996) was chosen for the first edition of the Senseval Basque task
(which was held in Senseval-2). At the time, this monolingual dictionary was the one available
in MRD form for Basque. The dictionary has 30,715 entries and 41,699 main senses.

II.3 Corpora

This section is devoted to the main sources of hand-tagged corpora that are used to build
supervised WSD systems. We will introduce widely-used resources that are available for research.
For many years, these resources were limited to a few projects for English (see Semcor and DSO
below). However, in recent years the Senseval initiative has made a qualitative jump, providing
hand-tagged data for different languages and tasks.

Semcor corpus

Semcor (Miller et al., 1993) consists on a subset of the Brown Corpus (BC) plus the novel The
Red Badge of Courage. It contains a number of texts comprising about 200,000 words where all
content words have been manually tagged with senses from WordNet 1.6 . It has been produced
by the same team that created WordNet. Semcor has been cited as having scarce data to train
supervised learning algorithms (Miller et al., 1994). More details on this corpus can be found
in the experiments performed in chapters III and IV, or in (Francis and Kucera, 1982).

DSO corpus

The Defense Science Organization (DSO) corpus was differently designed (Ng and Lee, 1996).
191 polysemous words (nouns and verbs) of high frequency were selected from the Wall Street
Journal (WSJ) and Brown Corpus (BC). A total of 192,800 occurrences of these words were
tagged with WordNet 1.5 senses7, more than 1,000 instances per word in average. The examples
from the BC comprise 78,080 occurrences of word senses, and the examples from the WSJ consist
on 114,794 occurrences.

It is important to note that the BC is balanced, and the texts are classified according to some
predefined categories (the complete list is shown in table II.2). The BC manual (Francis and
Kucera, 1964) does not detail the criteria followed to set the categories:

The samples represent a wide range of styles and varieties of prose... The list of main
categories and their subdivisions was drawn up at a conference held at Brown University
in February 1963.

5The Basque WordNet is available at http://ixa3.si.ehu.es/wei3.html
6http://www.natcorp.ox.ac.uk/
7A previous version of WordNet 1.5 was used at the moment of tagging, and there are slight differences with

the final 1.5 version.
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Informative prose
A. Press: Reportage
B. Press: Editorial
C. Press: Reviews (theater, books, music, dance)
D. Religion
E. Skills and Hobbies
F. Popular Lore
G. Belles Lettres, Biography, Memoirs, etc.
H. Miscellaneous
J. Learned

Imaginative prose
K. General Fiction
L. Mystery and Detective Fiction
M. Science Fiction
N. Adventure and Western Fiction
P. Romance and Love Story
R. Humor

Table II.2: List of categories of texts from the Brown Corpus, divided into informative prose
(top) and imaginative prose (bottom).

Regarding the WSJ corpus, all the texts come from press articles. More details on DSO can
be found in the experiments in chapters III, IV, and VII.

Senseval-1 English lexical-sample corpus

This corpus (Kilgarriff and Rosenzweig, 2000) consists on 8,512 test instances and 13,276 training
instances for 35 words (nouns, verbs, and adjectives). The instances are tagged with HECTOR
senses (cf. section II.2), and their polisemy ranges from 2 to 15 senses. The examples are
extracted from a pilot of the BNC. The list of words and the number of testing examples per
word can be seen in the appendix (cf. table B.1).

Senseval-2 English lexical-sample corpus

This corpus (Kilgarriff, 2001) consists on 73 target words (nouns, verbs, and adjectives), with
4,328 testing instances, and 8,611 training instances. The examples come from the BNC
(mostly), and from the WSJ. The chosen sense inventory was a previous version of WordNet 1.7
(1.7 pre-release), specially distributed for this competition. The complete list of words is given
in the appendix (cf. table B.2). A peculiarity of this hand-tagged corpus is that the examples
for a given target word include multiword senses, phrasal verbs, and proper nouns. In order
to process these cases, we can include them as regular sense–tagged examples, we can remove
them, or we can try to detect them by pre-processing (cf. section III.3.2).

Senseval-2 English all-words corpus

The test data for this task (Palmer et al., 2001) consists on 5,000 words of text from three
WSJ articles representing different domains from the Penn TreeBank II. The sense inventory
used for tagging is the WordNet 1.7 pre-release. All content words are sense-tagged, including
multi-word constructions. Experiments on this corpora are described in chapter III.

Senseval-2 Basque lexical-sample corpus

The complete corpus (Agirre et al., 2001) consists on 5,284 hand-tagged occurrences of 40 words
(nouns, verbs, and adjectives), from which 2/3 were separated for training and the rest for
evaluation. The sense inventory was obtained from Euskal Hiztegia (cf. section II.2). The
instances have been extracted from two corpora: a balanced corpus, and articles from the
newspaper Egunkaria. Some instances are tagged with multiwords. The list of words, with their
frequency and polisemy degree, can be seen in the appendix (cf. table B.3). Experiments on
this data are described in chapter III.
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Senseval-3 English lexical-sample corpus

This corpus (Mihalcea et al., 2004) was built relying on the Open Mind Word Expert system
(Mihalcea and Chklovski, 2003). Sense tagged examples were collected from web users by means
of this application. The source corpora was BNC, although early versions included data from
the Penn TreeBank corpus, the Los Angeles Times collection, and Open Mind Common Sense.
As sense inventory WordNet 1.7.1. was chosen for nouns and adjectives, and the dictionary
Wordsmyth8 for verbs. The main reason to rely in another inventory for verbs was the fine-
grainedness of WordNet. The results for verbs are usually poor, and they wanted to test the
effect of using a coarser inventory.

57 words (nouns, verbs, and adjectives) were tagged in 7,860 instances for training and 3,944
for testing (see list in the appendix, table B.4). Experiments on this corpus are described in
chapter V.

Senseval-3 English all-words corpus

As in Senseval-2, the test data for this task consisted on 5,000 words of text (Snyder and Palmer,
2004). The data was extracted from two WSJ articles and one excerpt from the BC. The texts
represent three different domains: editorial, news story, and fiction. Overall, 2,212 words were
tagged with WordNet 1.7.1. senses (2,081 if we do not include multiwords).

Senseval-3 Basque lexical-sample corpus

For this corpus (Agirre et al., 2004), 40 words (nouns, verbs, and adjectives) were tagged in
7,362 instances (2/3 were distributed for training, the rest for evaluation). The chosen sense
inventory was the Basque WordNet, which is linked to the version 1.6 of Princeton WordNet (cf.
section II.2). Examples tagged with multiword senses were included. Together with this data,
they also distribute 62,498 untagged examples of the 40 words, obtained from the Internet.

The hand-tagged corpora is extracted from three sources: a balanced corpus, the newspa-
per Egunkaria, and the Internet. The corpus distribution includes linguistic processing, such
as lemmatization, PoS tagging, and identification of case markers (Basque is an agglutinative
language). Instances that are tagged with multiwords are kept. The complete list of words and
their frequencies can be seen in the appendix (cf. table B.5). Experiments on this corpus are
described in chapter V.

II.4 Learning algorithms

We will present here different methods that are used widely for supervised WSD, alone or in
combination. Most of our experiments are performed using the first algorithm (Decision Lists),
but the other methods will also be applied in different parts of this dissertation.

As we mentioned in section I.2, in order to represent the context of the word occurrence we
want to disambiguate, we extract features (f) from the example using different tools. Then, the
ML methods below return a weight for each sense (weight(sk)), and the sense with maximum
weight is selected.

II.4.1 Most Frequent Sense baseline (MFS)

This simple baseline method is frequently applied in WSD literature. It consists on counting
the number of examples for each sense in training data, and assigning the most frequent to all
the examples in testing. In case of ties, the algorithm chooses at random. Despite its simplicity,
this approach is difficult to beat for all-words systems that do not rely on hand-tagged data.

II.4.2 Decision Lists (DL)

A Decision List consists of a set of ordered rules of the form (feature-value, sense, weight). In
this setting, the Decision Lists algorithm works as follows: the training data is used to estimate
the features, which are weighted with a log-likelihood measure (Yarowsky, 1995b) indicating the
likelihood of a particular sense given a particular feature value. The list of all rules is sorted by
decreasing values of this weight. When testing new examples, the decision list is checked, and
the feature with highest weight that matches the test example selects the winning word sense.

8http://www.wordsmyth.net/
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The original formula (Yarowsky, 1995b) can be adapted in order to handle classification
problems with more tan two classes. In this case, the weight of sense sk when feature f occurs
in the context is computed as the logarithm of the probability of sense sk given feature f divided
by the sum of the probabilities of the other senses given feature f . That is, the weight of sk is
obtained by the following formula:

weight(sk) = arg max
f

log(
P (sk|f)

∑

j 6=k P (sj |f)
) (II.1)

These probabilities can be estimated using the maximum likelihood estimate, and some kind
of smoothing so as to avoid the problem of 0 counts. Different approaches for smoothing have
been explored in chapter V. As default, a very simple solution has been adopted, which consists
of replacing the denominator by 0.1 when the frequency is zero. This value was determined
empirically in previous experiments.

In some cases, for a given feature, there is only one occurrence, or the weight for all the senses
is lower than zero. Another decision if whether to include these features in the decision list or
not. We call this parameter pruning, and in most of the experiments we will apply pruning, that
is, we will discard these features. In the experiments where we need higher coverage we will not
use pruning, and we will indicate it explicitly.

II.4.3 Naive Bayes (NB)

The Naive Bayes (NB) method is based on the conditional probability of each sense sk given the
features fi in the context. It assumes independence of the features, which is not real, but it has
been shown to perform well in diverse settings (Mooney, 1996; Ng, 1997; Leacock et al., 1998).
The sense sk that maximizes the probability in formula II.2 is returned by the algorithm.

weight(sk) = P (sk)
∏m

i=1 P (fi|sk) (II.2)

The values P (sk) and P (fi|sk) are estimated from training data, using relative frequencies.
It requires smoothing in order to prevent the formula from returning zero because of a single
feature. A method that has been used in some previous work with this algorithm (Ng, 1997;
Escudero et al., 2000b) is to replace zero counts with P (sk)/N , where N is the number of
examples in training. We used this method as default smoothing. This algorithm has been
applied in section IV.9 with semantic features, and in the experiments on smoothing in chapter V.

II.4.4 Vector Space Model (VSM)

For the Vector Space Model (VSM) method, we represent each occurrence context as a vector,
where each feature will have a 1 or 0 value to indicate the occurrence/absence of the feature.

For each sense in training, one centroid vector is obtained ( ~Csk
). These centroids are compared

with the vectors that represent testing examples (~f), by means of the cosine similarity function
(formula II.3). The closest centroid assigns its sense to the testing example. No smoothing is
required to apply this algorithm, but it is possible to use smoothed values instead of 1s and 0s,
as we will see in chapter V.

weight(sk) = cos( ~Csk
, ~f) =

~Csk
. ~f

| ~Csk
||~f |

(II.3)

II.4.5 Support Vector Machines (SVM)

Regarding Support Vector Machines (SVM), we utilized SVM-Light, a public distribution of
SVM by Joachims (1999), in order to test the SVM method (Vapnik, 1995) in our setting.
The basic idea of the algorithm is to use the training data to learn a linear hyperplane that
separates the positive examples from the negative examples. The location of this hyperplane
in the space is the point where the distance to the closest positive and negative examples (the
margin) is maximum. In some cases, it is not possible to obtain an hyperplane that divides the
space linearly, or it is worthy to allow some errors in training data to construct a more efficient
hyperplane. This can be achieved with the “soft margin” variant of the method, which permits
a trade-off between training errors and the maximization of the margin. The “soft margin”
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variant requires the estimation of a parameter (denoted as C). We estimated the C using a
greedy process in cross-validation on the training data. The weight for each sense is given by
the distance to the hyperplane that supports the classes, that is, the sense sk versus the rest of
senses (“one vs all” approach). This method has been applied in chapter V.

II.4.6 AdaBoost (AB)

AdaBoost (AB) is a general method for obtaining a highly accurate classification rule by linearly
combining many weak classifiers, each of which may be only moderately accurate (Freund and
Schapire, 1997). For our experiments, a generalized version of the AB algorithm has been used,
(Schapire and Singer, 1999), which works with very simple domain partitioning weak hypotheses
(decision stumps) with confidence rated predictions. This particular boosting algorithm is able to
work efficiently in very high dimensional feature spaces, and has been applied, with significant
success, to a number of NLP disambiguation tasks, including WSD (Escudero et al., 2000a).
Regarding parametrization, the smoothing parameter has been set to the default value (Schapire
and Singer, 1999), and AB has been run for a fixed number of rounds (200) for each word. No
optimization of these parameters has been done at word level. When testing, the sense with
the highest prediction is assigned. This method has been applied with syntactic features in
chapter IV.

II.5 Evaluation

In order to evaluate how well do the systems perform, hand-tagged corpora is used as gold
standard, and different measures are calculated comparing the answers of the system to this gold
standard. Depending on the corpora we use, two approaches have been taken for evaluation.

• One training/test partition: one part of the corpus is used for learning, and the rest for eval-
uation. This approach is applied with the Senseval datasets, and in cross-corpora tagging
experiments.

• Cross-validation: the corpora is split in N parts of similar size, and this process is repeated
for each of the pieces in turn: the chosen part is used as gold-standard, and the remaining
(N-1) parts for training the system. The final result is the average of the N executions. We
can partition the corpora randomly, or in a stratified way, that is, trying to keep the same
proportion of word senses in each of the folds. Cross-validation is used when working on
Semcor or DSO.

II.5.1 Measures

In order to measure the goodness of WSD methods, we use the following measures: precision,
recall, coverage, and F1 (harmonic average between precision and recall), all ranging from 0 to
1. Given N (number of test instances), A (number of instances which have been tagged), and C
(number of instances which have been correctly tagged):

- precision = C/A

- recall = C/N

- coverage = A/N

- F1 = (2 ∗ precision ∗ recall)/(precision + recall) = (2 ∗ C)/(A + N)

When multiple senses are chosen, we use a modified measure of precision, equivalent to
choosing at random in ties. Instead of counting 1 when any of the winning senses is correct,
we count only a fraction. That is, we substitute C with C’ in the above formula, where C’ is
computed as follows:

C ′ =
∑

i∈test instances

C(i) where C(i) =

{

1 if instance i correct
0 otherwise
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The results will be given in percentage points. Except for the initial experiments, the results
will be rounded to the first decimal number, to be able to differentiate when differences are
small. In the initial experiments only integer values are provided.

In the Senseval competition a similar evaluation schema is applied. There are slight differences
when there are multiple correct labels and multiple answers. The Senseval scoring software
incorporates some ideas from (Resnik and Yarowsky, 1997).

Finally, in most of the tables, the results averaged by PoS or overall are shown. In order to
obtain these values, the number of examples for each word is always used to micro-average the
results. For example, if we have only two adjectives in a word-set (e.g. all (200 occurrences, 90%
precision) and long (100 occurrences, 60% precision)), in order to obtain the average precision
for adjectives, we proceed as follows:

avg. precision for adjs. =
prec.(all) ∗ freq(all) + prec.(long) ∗ freq(long)

freq(all) + freq(long)

=
90 ∗ 200 + 60 ∗ 100

200 + 100
= 80.0

II.5.2 Significance tests

When comparing the performance of two algorithms, there are statistical tests that help us to
know whether the precision or recall difference we observe is significant. A comparison of these
methods can be found in (Dietterich, 1998). We will apply two of these tests in some of our
experiments:

• McNemar’s test: it is employed when there is only one execution of the algorithm, that is,
when the training and testing data do not change. The method is based on a χ2 test for
goodness-of-fit that compares the distribution of correct/incorrect counts expected under
the null hypothesis (same error rate for both algorithms) to the observed counts.

• Cross-validated paired Student t test: it is applied when the evaluation is based on cross-
validation. In this case, the null hypothesis is that the difference in the error of each classifier
for each partition is drawn independently from a normal distribution. The Student’s t
statistic gives us the value of the actual distribution and the threshold to reject/accept the
null hypothesis.

II.6 WSD systems in Senseval-1

The first edition of Senseval took place in 1998 at Herstmonceux Castle, England (Kilgarriff,
1998). For the first time, the research community made a joint effort to define the procedure
and methodology for the evaluation of such a controversial task as WSD. The goal was to follow
the example of other successful competitive evaluations, like MUC (Message Understanding
Conference) or TREC (Text Retrieval Conference). In this first edition, extensive discussion
was carried out on issues as the lexicon, the tagging methodology, the evaluation procedure, or
even the appropriateness of defining WSD in the way it was. Finally, three tasks were arranged
that consisted in tagging a predefined set of words (lexical-sample) for three languages: English,
French, and Italian. A total of 25 systems from 23 research groups made it to the final schedule.

The systems that competed in Senseval-1 relied on ML methods (using the available training
data to extract features), or in lexical resources such as WordNet. Prior to the event, there
were two types of systems being developed for WSD (supervised and unsupervised), and it was
not clear which would achieve better performance. During the competition, many combined
approaches were presented, relying both in hand-tagged corpora and other lexical resources,
looking for robustness rather than “purity”. However, clearly the top-scoring systems were
those relying on hand-tagged data for training their models.

Focusing on the English lexical-sample task, which had the highest participation, the results
of the best systems ranged between 74%-78% recall for fine-grained scoring, while a baseline
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method based on (Lesk, 1986) achieved 69% recall. We will describe briefly this baseline method,
and the three top-scoring systems for this task9.

Lesk-corpus (Lesk, 1986)

Method based on the overlapping between the target context, and the definitions plus the tagged
examples for each sense. Although simple, the use of training examples to construct the model
makes it difficult to beat, specially for unsupervised approaches.

JHU (Yarowsky, 2000)

This system, which had the best score after re-submission with 78.1% recall, was a supervised
algorithm based on hierarchies of DLs. The method tries to take advantage of the conditional
branching at the top levels of the Decision Tree approach, while avoiding the data fragmentation
problem. It relies on a rich set of features (collocational, morphological, and syntactic) to classify
the examples. It also associates weights to the different types of features.

Durham (Hawkins and Nettleton, 2000)

The system called “Durham” was the best scoring after the first submission of systems, attaining
77.1% recall. It consisted on a hybrid approach relying on three types of knowledge: stochastic
(frequency of senses in training data), rule-based (clue words from the training context), and sub-
symbolic (contextual similarity between concepts). One of the main drawbacks of this system
was the requirement of hand-work in order to obtain clue words from the context of the target
words.

Tilburg (Veenstra et al., 2000)

This team applied a Memory Based Learning (MBL) method to retrieve the closest match to the
test example from the training instances; then the sense of the training instance is assigned. This
method achieved 75.1% recall. This ML approach does not require to perform a generalization
step with the hand-tagged data. In this case, automatic feature-weighting was applied in the
similarity metric, and a word expert was built for each target word in Senseval. The word experts
were constructed by exhaustive search on training data by 10 fold cross-validation, attending to
these factors:

• Variant of the learning algorithm

• Parameter setting

• Feature construction setting

II.7 WSD systems in Senseval-2

The second edition of Senseval (Edmonds and Cotton, 2001) was held in Toulouse (France), in
July 2001. It was organized under the auspices of ACL-SIGLEX, and the workshop took place
just before the main ACL-2001 Conference. For Senseval-2, there were three types of tasks on
12 languages:

• Lexical-sample task: a predefined set of words is chosen, and only instances corresponding
to those words are tagged. Most of the languages chose this approach in order to build their
tasks.

• All-words task: all content words in a sample of running text are tagged.

• Translation: this is a kind of lexical-sample task where the senses are defined by means of
translations to another language. This approach was only applied for Japanese.

A total of 93 systems from 34 groups participated in the different tasks. The majority
competed in the English lexical-sample and all-words tasks. As we saw in sectionII.3, the
WordNet 1.7 (pre-release) sense inventory was chosen for English.

9There was the option to resubmitting the results after correcting bugs, and therefore there were 2 official
scores. In any case, the three best systems remained the same.
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Position Precision Recall Coverage System
1 64.2 64.2 100.0 JHU (R)
2 63.8 63.8 100.0 SMUls
3 62.9 62.9 100.0 KUNLP
4 61.7 61.7 100.0 Stanford - CS224N
5 61.3 61.3 100.0 Sinequa-LIA - SCT
6 59.4 59.4 100.0 TALP
7 57.1 57.1 100.0 Duluth 3
8 56.8 56.8 99.9 UMD - SST
9 57.3 56.4 98.3 BCU - ehu-dlist-all
10 55.4 55.4 100.0 Duluth 5
11 55.0 55.0 100.0 Duluth C
12 54.2 54.2 100.0 Duluth 4
13 53.9 53.9 100.0 Duluth 2
14 53.4 53.4 100.0 Duluth 1
15 52.3 52.3 100.0 Duluth A
16 50.8 50.8 99.9 Duluth B
17 49.8 49.8 99.9 UNED - LS-T
18 42.1 41.1 97.7 Alicante
19 66.5 24.9 37.4 IRST
20 82.9 23.3 28.0 BCU - ehu-dlist-best

Table II.3: Table of the supervised systems in the Senseval-2 English lexical-sample task sorted
by recall (version 1.5, published 28 Sep. 2001). Fine-grained scoring. R: resubmitted system.

In the English lexical-sample the best system (JHU) scored 64.2%10, for 51.2% of the Lesk
baseline (described below). Table II.3 shows the results for the lexical-sample task. The position,
precision, recall, and coverage of each of the 20 competing systems is given. The organization
implemented some baseline systems as reference. These are the more representative: Lesk-corpus
(51.2% recall, see previous section for description), MFS (47.6% recall), and Random (14.1%
recall).

The results of this table show that the performance is much lower than in Senseval-1, where
the best systems scored in a 75%-78% recall range, and the Lesk baseline reached 69% recall.
The main reason for this seems to be the fine-grainedness of the WordNet senses, specially in the
case of verbs. As expected, the supervised systems were those performing best. There were some
teams that introduced methods from the ML literature for the first time to WSD: AdaBoost
(TALP), SVM (UMD-SST), or Maximum Entropy (Alicante). However, the top-scores in this
task were for supervised systems that relied on the following characteristics:

• Voting of heterogeneous systems (JHU, Stanford-CS224).

• Rich features: syntactic relations (JHU), Named Entities (SMU), WordNet Semantic Codes
(LIA-Sinequa), and WN Domains (TALP).

• Feature selection (SMU) and weighting (JHU).

• Automatically extended training-set (SMU).

JHU and SMUls (which also participated in all-words) will be described in this section af-
ter this introduction to Senseval-2. Our own system BCU-ehu-dlist-all11 is presented in sec-
tion III.5.8. The unsupervised systems that took part in this task are described in section VI.6.2,
where we compare them to our unsupervised methods. The Senseval-2 lexical sample data has
been used to test several WSD methods since it was released, we will present some of the most
successful (attending to performance) in section V.2.

Regarding the English all-words task, the results are shown in table II.4. The top-scoring
methods in the all-words task were also supervised systems, which relied mostly on Semcor for

10There was the option of resubmittion to correct some bugs. This decision was adopted because of the tight
schedule of the process.

11We also submitted another system (BCU-ehu-dlist-best), which relied on a precision/coverage threshold, in
a fashion similar to the methods we will see in section IV.7.
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Position Precision Recall Coverage System
1 69.0 69.0 100.0 SMUaw
2 63.6 63.6 100.0 CNTS-Antwerp
3 61.8 61.8 100.0 Sinequa-LIA - HMM
4 57.5 56.9 98.9 UNED - AW-U2
5 55.6 55.0 98.9 UNED - AW-U
6 47.5 45.4 95.5 UCLA - gchao2
7 47.4 45.3 95.5 UCLA - gchao3
8 41.6 45.1 108.5 CL Research - DIMAP
9 50.0 44.9 89.7 UCLA - gchao
10 36.0 36.0 99.9 Universiti Sains Malaysia 2
11 74.8 35.7 47.7 IRST
12 34.5 33.8 97.8 Universiti Sains Malaysia 1
13 33.6 33.6 99.9 Universiti Sains Malaysia 3
14 57.2 29.1 50.7 BCU - ehu-dlist-all
15 44.0 20.0 45.3 Sheffield
16 56.6 16.9 29.8 Sussex - sel-ospd
17 54.5 16.9 31.0 Sussex - sel-ospd-ana
18 59.8 14.0 23.3 Sussex - sel
19 32.8 03.8 11.6 IIT 2
20 29.4 03.4 11.6 IIT 3
21 28.7 03.3 11.6 IIT 1

Table II.4: Table of the supervised systems in the Senseval-2 English all-words task sorted by
recall (version 1.5, published 28 Sep. 2001). Fine-grained scoring.

training (SMUaw used also WordNet examples and an automatically generated corpus). We
can see that the best system (SMUaw) scored 69%, with a gain of more than 5% over the 2nd
system (Ave-Antwerp). A baseline that would assign the 1st sense in WN would score 57%. An
indicator of the difficulty of this task is that only 4 out of 21 systems were able to overcome
the 1st sense baseline. We will describe the top-3 from the list in the following description of
Senseval-2 systems. Our own system (BCU-ehu-dlist-all) is presented in section III.5.8.

JHU (Yarowsky et al., 2001)

This was the best scoring system in the lexical-sample task with 64.2% recall; with an archi-
tecture consisting on voting-based classifier combination. A rich set of features was extracted
from the context, including syntactic relations (object, subject, noun/adjective modifier, ...)
extracted by means of heuristic patterns and regular expressions over the PoS tags around the
target word.

Four algorithms were included in the voting ensemble: vector cosine similarity (similar to
the VSM described in section II.4.4), Bayesian models (word-based and lemma-based), and
DLs. Different voting schemes were tested in cross-validation before submission: probability
interpolation, rank-averaged, equal weight, performance-weighted, and thresholded.

SMUls and SMUaw (Mihalcea and Moldovan, 2001)

These systems were applied to the lexical-sample task (ranking 2nd, with 63.8% recall), and the
all-words task (winner, with 69% recall). The architecture has two main components: Instance
Based Learning (IBL)12, when there is specific training data for the target words (lexical-sample
task), and pattern learning when there are few examples (all-words task). The system has a
pre-processing phase, where Named Entities (NE) and Collocations are detected.

For pattern learning, the examples are obtained from Semcor, WN examples, and GenCor
(automatically generated corpora, described in Mihalcea (2002)). The patterns are extracted
from the local context of words, and follow the rules of regular expressions, where each token
is represented by its base form, its PoS, its sense (when available), and its hypernym (when
available). Wildcards (*) are used when the elements are underspecified.

IBL follows the idea of (Veenstra et al., 2000), which participated in Senseval-1 with the
“Tilburg” system. In this case, the TiMBL software (Daelemans et al., 2002) is used with
information-gain feature weighting. The novelty of this work is that they perform feature se-

12Also noun as Memory Based Learning (MBL).
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lection per each word, using cross-validation in training data. Only the features that help to
increase performance are kept for each word.

For the lexical-sample task, only IBL was used. Regarding the all-words system, the algorithm
followed these steps sequentially until a sense was assigned:

1. Apply IBL when there are enough examples for the word.

2. Apply pattern learning.

3. Propagate senses to close occurrences of the same words in the context.

4. Assign the 1st sense in WordNet.

Ave-Antwerp (Hoste et al., 2001)

The Antwerp all-words system relies on Semcor to build word-experts for each word with more
than 10 instances for training. They perform 10 fold cross-validation at 2 levels, in order to
optimize the parameters of each of their three classifiers, and also to optimize the voting scheme.
Their classifiers consist on 2 versions of their MBL method (TiMBL), trained on different sets
of features (local and topical), and a rule learning algorithm called Ripper (Cohen, 1995). Their
method scored second in the all-words task, with 63.6% precision and recall.

LIA-Sinequa (Crestan et al., 2001)

This team participated both in the lexical-sample task (ranking in the top-5), and in the all-
words task (ranking 3rd). Their all-words system was based on Hidden Markov Models (HMM),
trained on Semcor. For the lexical-sample, they relied on Binary Decision Trees trained on the
available examples (this was also applied for examples in the all-words task that were also in
the lexical sample). The contexts were represented by the lemmas and the WordNet semantic
classes in fixed positions around the target word.

II.8 WSD systems in Senseval-3

The third edition of Senseval (Mihalcea and Edmonds, 2004) took place in Barcelona, on July
25-26, 2004, in conjunction with the meeting of the Association for Computational Linguistics
(ACL). Fourteen tasks were presented, and 55 teams competed on them, for a total of more
than 160 system submissions. There were typical WSD tasks (lexical-sample and all-words) for
seven languages, and new tasks were included, involving identification of semantic roles, logic
forms, multilingual annotations, and subcategorization acquisition. We will focus, as before, on
the English lexical-sample and all-words tasks13.

The English lexical-sample task had the highest participation, as usual. 27 teams submitted
46 systems to this task, most of them supervised. The corpus was built with the collaboration
of web users, as is described in section II.3. WordNet 1.7.1 (for nouns and adjectives) and
WordSmyth (for verbs) were used as sense inventories. In the official results, 37 systems were
considered supervised, and only 9 were unsupervised; but as we mentioned earlier in this chapter,
this division is controversial. For instance, it seems clear that the winner in the unsupervised
category relied on hand-tagged examples to construct its sense-models. Moreover, the second
ranked team acknowledged that their system required a few tagged examples for their clustering
method. In any case, the performance of the top-14 supervised systems is given in table II.314.
The table shows the name of the system and the submitting team, together with the precision
and recall.

The results of the top 14 systems, from 8 different teams, illustrate the small differences in
performance for this task, where the top-9 systems are less than a point below. This suggests
that a plateau has been reached for this kind of task with this kind of ML approaches. The
results of the best system (72.9% recall) are way ahead of the MFS baseline (55.2% recall), and
present a significant improvement from the previous Senseval edition, which could be due, in

13The systems and results in the Basque lexical-sample task are presented in section V.8
14Check (Mihalcea et al., 2004) for complete table of supervised methods.
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System Team Precision Recall
htsa3 University of Bucharest 72.9 72.9
IRST-Kernels ITC-IRST 72.6 72.6
nusels National University of Singapore 72.4 72.4
htsa4 University of Bucharest 72.4 72.4
BCU comb Basque Country University 72.3 72.3
htsa1 University of Bucharest 72.2 72.2
rlsc-comb University of Bucharest 72.2 72.2
htsa2 University of Bucharest 72.1 72.1
BCU english Basque Country University 72.0 72.0
rlsc-lin University of Bucharest 71.8 71.8
HLTC HKUST all HKUST 71.4 71.4
TALP U.P. Catalunya 71.3 71.3
MC-WSD Brown University 71.1 71.1
HLTC HKUST all2 HKUST 70.9 70.9

Table II.5: Top-14 supervised systems in the Senseval-3 lexical-sample task (fine-grained scor-
ing). For each system, the submitting research group and the precision/recall figures are given.

System Precision Recall
GAMBL-AW-S 65.1 65.1
SenseLearner-S 65.1 64.2
Koc University-S 64.8 63.9
R2D2: English all-words-S 62.6 62.6
Meaning-allwords-S 62.5 62.3
Meaning-simple-S 61.1 61.0
LCCaw-S 61.4 60.6
upv-shmm-eaw-S 61.6 60.5
UJAEN-S 60.1 58.8
IRTS-DDD-00-U 58.3 58.2

Table II.6: Top-10 systems in the Senseval-3 all-words task. For each system, the precision/recall
figures are given.

part, to the change in the verb sense inventory. Attending to the characteristics of the top-
performing systems, this edition has shown a predominance of kernel-based methods (e.g. SVM,
see section II.4.5), which have been used by most of the top systems. For instance, the 2nd
ranked system works with the kernel function in order to integrate diverse knowledge sources.
We will describe the top two systems (Htsa3 and ITC-IRST) in detail below. Other approaches
that have been adopted by several systems are the combination of algorithms by voting, and
the use of complex features, such as syntactic dependencies and domain tags. Finally, a novelty
introduced by the winning system has been a post-processing departure from Bayesian priors,
that we will describe below.

Regarding the English all-words task, 20 systems from 16 different teams participated on
it. According to the result table presented in (Snyder and Palmer, 2004), 7 systems were
supervised and 9 unsupervised (the other four are not categorized). The best system achieved
65.1% precision and recall, while the “WordNet first sense” baseline would achieve 60.9% or
62.4% (depending on the treatment of multiwords and hyphenated words). The results of the
top-10 systems are given in table II.4. The suffix (-S) in the name of the system indicates
“supervised”, and the suffix (-U) indicates unsupervised. Note that the top nine systems are
supervised, although the 10th system (IRTS-DDD-LSI-U), which is a fully-unsupervised domain-
driven approach is close to the other methods, and this fact is encouraging for this kind of
approach. Furthermore, it is also worth mentioning that in this edition there are more systems
above the “first sense” threshold: between four and six.

For the all-words task, there is no plateau, and there are significant differences in the perfor-
mance and the approaches of the top systems. We will describe the two best-systems (GAMBL-
AW and SenseLearner) below. The supervised methods rely mostly in Semcor to get hand-tagged
examples; but there are several groups that incorporate other corpora like DSO, WordNet def-
initions and glosses, all-words and lexical-sample corpora from other Senseval editions, or even
the line/serve/hard corpora (Leacock et al., 1998). Most of the participant all-words systems
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include rich features in their models, specially syntactic dependencies and domain information.
The systems that rank between the 4th and 6th place (R2D2, Meaning-allwords, and

Meaning-simple) correspond to collaborative efforts of different research groups, which incor-
porate supervised and unsupervised approaches in a voting architecture. Kernel-based methods
and Domain-driven disambiguation are included in these ensembles. Coincidently, although the
ensembles are different, they obtain similar performance.

We will now describe the best performing systems in the English lexical-sample and all-words
tasks.

Htsa3 (Grozea, 2004)

The winner in the lexical-sample task was one of the six systems submitted by the group of
the University of Bucharest, with 72.9% precision and recall. The learning method applied
was Regularized least-squares classification (RLSC), which is based on kernels and Tikhonov
regularization. The features that they used consist on local collocations (words, lemmas, and
PoS tags), and lemmas in the context of the target word.

Htsa3 relied on a linear kernel, and they normalized its weight-values by dividing them
with the empiric frequency of the senses in training data. The normalization helps to balance
the implicit bias of RLSC, which gives higher “a posteriori” probability to frequent senses. A
new parameter (α) is introduced in order to perform the normalization step smoothly. The
regularization parameter and the α value are estimated using the Senseval-1 and Senseval-2
corpora.

IRST-Kernels (Strapparava et al., 2004)

IRST-Kernels scored second in the English lexical-sample task, with 72.6% recall. This system
is based on SVM (cf. section II.4.5), and they use the kernel function to combine heterogeneous
sources of information. Thus, they define their kernel function as the addition of two kernels:
the paradigmatic kernel and the syntagmatic kernel, which are constructed as follows:

• The syntagmatic kernel: the idea is that the similarity between two contexts is given by
the shared number of word sequences. This is implemented splitting further the kernel in
a “collocation kernel” (based on the lemma sequences) and a “PoS kernel” (based on PoS
sequences). In order to include matches of equivalent terms, a similarity threshold based
on LSA is applied, and terms above the threshold are considered equal.

• The paradigmatic kernel: information about the domain of the text is introduced by this
measure. This kernel is also the addition of another two: a “bag of words” kernel and
an “Latent Semantic Indexing (LSI) kernel”. The second tries to alleviate the sparseness
problem of the “bag of words” kernel.

They conclude that syntagmatic and paradigmatic information are complementary, and they
claim that kernels provide a flexible way to integrate different sources of knowledge.

GAMBL-AW (Decadt et al., 2004)

This system was the winner of the all-words task. They submitted a similar system also to the
lexical-sample task, which scored lower than kernel-based methods. GAMBL-AW is a supervised
approach that relies on extensive corpora to learn the word-experts. This corpus is obtained
joining Semcor with all the tagged data from previous Senseval editions (all-words and lexical-
sample; training and testing), also including the training data in Senseval-3 lexical-sample, the
examples in WordNet, and the line/hard/serve corpora. From these examples, they extract
two types of features: the local context (including information about chunks and dependency
relations extracted from a shallow parser), and the keywords in context. The keywords are
extracted per each sense from two sources: WordNet sense definitions, and applying the method
in (Ng and Lee, 1996).

Using this information, GAMBL applies a word-expert approach with MBL (using TiMBL)
and optimization of features and parameters. They apply a cascaded architecture, where clas-
sification is carried out in two steps: first, a keyword-based classifier assigns a sense to the new
example; this sense is then used as a feature for a second classifier, which is based on local
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features and makes the final decision. In order to construct these two classifiers, exhaustive op-
timization is performed with Genetic Algorithms (GA) and heuristic optimization by means of
cross-validation. They use GAs to jointly optimize feature selection and parameter optimization.
They show a significative improvement in the results due to optimization.

SenseLearner (Mihalcea and Faruque, 2004)

SenseLearner obtained the 2nd best score in the English all-words task, with 64.2% recall. This
team considers one of their goals to use as few hand-tagged data as possible, and they rely only
on Semcor and the WordNet hierarchy to construct their architecture. The method applies two
main steps sequentially, jumping to the second only when the first abstains:

1. Semantic Language Model: The examples in Semcor are used to learn a model for each PoS
(using jointly all the words), based on very simple co-occurrence features, which are different
for each PoS. TiMBL is then applied to the testing examples, and the model predicts the
word and sense of the test example. If the predicted word corresponds to the example,
the predicted sense is assigned, otherwise there is no answer. The average coverage of this
method is 85.6%.

2. Semantic Generalizations using Syntactic Dependencies and WordNet: In the learning
phase, all the dependencies in Semcor are extracted and expanded with the hypernyms
of the nouns and verbs appearing in them. For each dependency-pair, positive feature vec-
tors are created for the occurring senses, and negative vectors for the others. In the testing
phase, for each dependency-pair, feature vectors are created for all possible combinations
of senses. TiMBL assigns a positive or negative value for each of this vectors, using the
generalizations extracted from Semcor. These values are used to make the final prediction.



III. CHAPTER

Baseline WSD system: DL and basic features

III.1 Introduction

In the previous chapter we have seen some supervised WSD techniques, and the state-of-the-art
performance that different systems can provide. In order to approach the main problems of a
complex phenomena like WSD (issues introduced in the first chapter), we will now implement
our own baseline disambiguation system. The idea when constructing this system is to use basic
resources (WordNet, publicly available corpora, well-studied feature types and algorithms, etc.)
and apply them to our experiments. Our goal in this chapter is twofold:

1. Apply our basic system to extensive experimentation in order to shed light into different
aspects of WSD.

2. Measure the performance we can obtain with this system to be used as reference when
we introduce improvements, like new knowledge sources, disambiguation algorithms, or
automatically acquired examples.

As we mentioned in the introduction chapter, the DL algorithm (c.f. section II.4.2) has some
qualities that make it a good candidate for our basic system:

• DLs are based on the best single evidence, in opposition to classification based on the
combination of contextual evidences. Therefore, multiple non-independent features can be
included in the system without having to model the dependencies.

• The decision lists built for each word can be hand-inspected, and provide useful information
about the target word.

• Despite its simplicity, this algorithm has performed well in different Senseval editions; as
single system in Senseval-1, and as part of an ensemble in Senseval-2.

Thus, we will use DLs as learning method, and we will test how far can we go with existing
hand-tagged corpora (cf. section II.3) like Semcor, the DSO corpus, and the Senseval-2 data,
which have been tagged with word senses from WordNet. The feature-types that are used for
disambiguation will be one of the topics of this dissertation. Throughout this chapter, we will
rely on a basic set of features, similar to those widely used for WSD in the literature (Yarowsky,
1994; Ng and Lee, 1996), which we will separate into local and topical sets. The separation
into two main sets will allow us to start analyzing the effect of feature-types for disambiguation
performance.

Now that we have presented our baseline system, we will perform a precision/coverage eval-
uation on this setting, and we will also address some questions that we consider relevant about
supervised WSD:

1. Word types: relation between polisemy/bias/frequency and performance.
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2. Feature types: relation between word types and basic feature types.

3. How much data is needed? Learning curve.

4. How much noise in the data can be acceptable?

5. Fine-grained vs. coarse-grained disambiguation.

6. Expected performance for all words in a text.

7. Comparison with other methods in a real setting: Senseval-2.

8. Study performance for another language, less studied and with less resources: Basque.

We expect these experiments to give us more insight into the problem, before we start focusing
on the main contributions of this work.

The remaining of this chapter is organized as follows. Following this introduction, we will
introduce briefly works in the literature that are related to the experiments we present in this
chapter. The next section will be dedicated to the experimental settings that we will apply
in this and other chapters of this dissertation. In the following section, we will describe the
extraction of basic features from the context, for English and Basque. After that, the main
section will be devoted to the experiments that try to shed light on the questions presented
above, devoting one section to each. Finally, some conclusions will be outlined.

III.2 Related work

The experiments that we will carry out in this chapter present different aspects of the WSD
problem, which in some cases have been studied in the literature. As the experiments cover
diverse works, we decided to introduce them briefly here, and describe them in more detail in
the sections corresponding to the experiments.

Our first reference to the WSD literature will come with the study of local and topical features
(cf. section III.5.3), where we will compare our results with those reported in (Gale et al., 1993)
and (Leacock et al., 1998). In order to justify the different conclusions working on Semcor or
DSO, we will refer to the work by Ng et al. (1999). Also in this section, we will recall the work
in (Hoste et al., 2002) on the construction of word-experts with tailored feature sets. Regarding
the study of the learning curves, in section III.5.4 we will describe the work carried out in (Ng,
1997) on the DSO corpus.

Finally, we will refer to related works to compare the performance of DLs with other algo-
rithms in the same setting. In section III.5.7, we will present (Escudero et al., 2000b), where
three ML methods (NB, AB, and K-nearest neighbors) are applied to the disambiguation of all
the words in DSO. We will show the results of each algorithm, and compare them to our baseline
setting. The conclusions of recent works that include other ML algorithms are also mentioned
in this section, with comments on the relative performance of DLs (Yarowsky and Florian, 2002;
Villarejo et al., 2004), and on the fluctuations found on the experiments in relation to the pa-
rameter space (Yarowsky and Florian, 2002; Hoste et al., 2002). For more comparative results,
sections III.5.8 and III.5.9 describe the systems that we built for the Senseval-2 competition for
English and Basque respectively, and show the overall result tables. The English results were
previously introduced in section II.7, with the description of some systems.

III.3 Experimental settings

This section is organized in four parts, and will introduce the experimental setting that we will
use through the dissertation. First, we will define the target sets for our experiments. Those
sets will consist on word and file sets defined from Semcor and DSO, and the datasets in the
Senseval tasks. The next subsection will describe the pre-processing of multiwords, specially in
relation to the Senseval-2 corpora. The next segment will be devoted to enumerate the different
settings that will be used throughout the dissertation, and this subsection will be referenced in
the “experimental setting” sections of the chapters to come. Finally, we will outline the setting
that will be applied for the work in this chapter.
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III.3.1 Test sets

In order to evaluate our system, we have to choose a target word set. We can choose a fixed
set of “representative” words, or we can take a corpus and try to disambiguate all the words
that appear. For our first experiments in Semcor and DSO we selected a set of words attending
to criteria like frequency, ambiguity, and bias. We also disambiguated all the content words in
some given files, and all the DSO corpus. For the different Senseval tasks, we used as test words
the ones provided by the organization.

III.3.1.1 Semcor test set

We selected 19 test words trying to cover the maximum variety of cases. Thus, we classified
them according to these factors:

• Frequency: number of training examples in Semcor (low, high)

• Ambiguity: number of senses (low, high)

• Bias: skew of most frequent sense in Semcor (low, high)

As we will see in section III.5.2, the two first criteria are interrelated (frequent words tend to
be highly ambiguous), but there are exceptions. The third criterion seems to be independent,
but high bias is sometimes related to low ambiguity. We could not find all 8 combinations for
all parts of speech and the following samples were selected: 2 adjectives, 2 adverbs, 8 nouns
and 7 verbs. These 19 words form the test set A. The DSO corpus does not contain adjectives
or adverbs, and focuses in high frequency words. Only 5 nouns and 3 verbs from Set A were
present in the DSO corpus, forming Set B of test words. The list of words can be consulted in
the appendix (cf. table B.6).

In addition, 4 files from Semcor previously used in the literature (Agirre and Rigau, 1996)
were selected, and all the content words in the files were disambiguated.

III.3.1.2 DSO test set

Another word-set was defined for the experiments that relied on the DSO corpus, as the previ-
ously defined set B contained only 8 words. In this case we used a set of 21 verbs and nouns
previously used in the literature (Agirre and Martinez, 2000; Escudero et al., 2000c). We will
refer to these words as set C. The list of words is given in the appendix (cf. table B.6).

III.3.1.3 Senseval test sets

The different senseval tasks provide different word-sets and contexts to evaluate the systems.
This is the list of tasks our systems have been tested on (the tables with the words in the
lexical-sample tasks are given in section B.1 in the appendix):

• Senseval-2 English lexical-sample task (73 words)

• Senseval-2 Basque lexical-sample task (40 words)

• Senseval-3 English lexical-sample task (57 words)

• Senseval-3 Basque lexical-sample task: (40 words)

• Senseval-2 English all-words task

III.3.2 Pre-process of multiwords

In some cases the target word we want to disambiguate is part of a multiword that has its
own entry in a sense repository. In WordNet, for example, many multiwords are represented,
e.g. church building, fine arts, etc. For lexical-sample tasks, in some cases the multiwords
are excluded (English tasks in Senseval-1 and Senseval-3), and in other cases they have to be
detected (Basque tasks in Senseval-2 and Senseval-3, English task in Senseval-2). In order to
recognize multiword senses, they can be included in the sense-list of the target word and treated
like other senses. However, usually a better option is to incorporate a pre-processing stage to
try to detect them with a search in the context.
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Regarding our experiments, in the all-words corpora we used (Semcor, Senseval-2 and
Senseval-3), multiwords are always marked; although in the case of Senseval-2 it was not al-
ways easy to identify them, and this could affect our results (cf. section III.5.8). For the
lexical-sample tasks, we adopted three approaches in different experiments:

1. Treat the multiword senses as any other sense: this approach was adopted for our first
experiments with the English task in Senseval-21 (sections III.5.8, IV.6, and IV.7), and also
for the Basque tasks (sections III.5.9 and V.8).

2. Remove multiword senses (and proper nouns): we chose this setting in order to avoid noise
in our experiments on automatic acquisition of examples with the Senseval-2 English data
(chapter VI).

3. Apply a pre-process to detect multiword senses: this step was integrated for the experiments
in chapter V with the Senseval-2 English data, and is explained below.

In order to achieve better performance in lexical-sample settings with multiword senses, we
built a supervised tool to detect them independently. The tool proceeds by identifying all the
lemmas around the target word that appear in WordNet (continuous and non-continuous), and
using DLs learned from training data for the specific ambiguity (e.g. to determine whether art
or arts is the correct lemma, only examples from training that have those candidates are used).
The training data is usually scarce, but the recall of this process reaches 96.7% in the Senseval-2
English lexical-sample corpus.

III.3.3 Specific Settings

In our study of different aspects of WSD, we will apply different settings (corpora, sense-
inventories, and word sets) depending on the parameters we are studying and the resources
available at the moment. In this section we will describe the main settings that will be applied
throughout the experiments.

III.3.3.1 Semcor&DSO

This setting has been used for the basic set of experiments (chapter III), and for experiments
with richer features (chapter IV). See figure III.1.

III.3.3.2 WSJ&BC

We have applied this setting in order to study genre/topic variations (chapter VII). The main
characteristics are given in figure III.2.

III.3.3.3 Senseval2

This setting is related to the three tasks on which our systems participated in the Senseval-
2 competition: English lexical-sample task, English all-words task, and Basque lexical-sample
task. This setting is frequently applied, specifically in chapter III, chapter IV, and chapter V.
See figure III.3 for details on this setting.

III.3.3.4 Senseval2B

For this setting, the multiword senses that appear in the Senseval-2 lexical-sample English corpus
are removed, in order to test the automatic acquisition of sense-tagged examples (chapter VI).
The results training on the automatically obtained examples are compared with the results
training on Semcor. Figure III.4 shows the characteristics of this setting.

III.3.3.5 Senseval3

This setting is related to the two tasks on which our systems participated in the Senseval-
3 competition: English lexical-sample task, and Basque lexical-sample task. This setting is
applied in chapter V. Details are given in figure III.5.

1Many of the multiword cases in Senseval-2 were phrasal verbs. The Senseval-2 corpus also included proper-
noun marks as sense tags, these cases were discarded due to their difficulty.
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III.3.4 Experimental setting for this chapter

Most of the experiments performed in this chapter will use the Semcor and DSO corpora, in
the setting described in section III.3.3.1. As features, the basic feature sets introduced in the
following section III.4 will be applied. Only the last experiments that compare our system
to others in the Senseval-2 framework will require a different setting (Senseval-2 setting, cf.
section III.3.3.3). In this case also the feature set has slight differences for English, and this will
be explained in the corresponding section.

• Corpora: Semcor and DSO.

– Used separately, by applying cross-validation in each

corpus.

• Sense inventories:

– WordNet 1.6 for experiments in Semcor.

– WordNet 1.5 for experiments in DSO.

• Word-sets:

– set A and set B.

– All words in 4 Semcor files.

– All 191 tagged words in DSO.

Figure III.1: Semcor&DSO setting.

• Corpora: DSO.

– The two parts of DSO (WSJ and BC) used separately for

cross-tagging.

– Cross-validation to evaluate each corpus separately.

• Sense inventory: WordNet 1.5.

• Word-set: C.

Figure III.2: WSJ&BC setting.

• Corpora:

– Lexical tasks:

∗ Senseval-2 English lexical-sample corpus: separated

training and test.

∗ Senseval-2 Basque lexical-sample corpus: separated

training and test.

– All-words task (English):

∗ Semcor for training.

∗ Senseval-2 English all-words task corpus for testing.

• Sense inventories:

– WordNet 1.7Pre: English lexical-sample and all-words

corpora.

– WordNet 1.6: Semcor (automatically mapped to WN 1.7Pre

(Daude et al. , 2000)).

– EH inventory: sense list from a Basque dictionary (cf.

section II.2).

• Word-sets: Target sets in Senseval-2 (cf. sections III.3.1.3

and B.1).

Figure III.3: Senseval2 setting.
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• Corpora:

– Training: Semcor and automatically retrieved examples.

– Testing: Subset of Senseval-2 English lexical-sample

testing part.

∗ Examples tagged with multiword senses, phrasal verbs,

and proper nouns removed (cf. section II.3).

• Sense inventories:

– WordNet 1.7Pre: English lexical-sample testing and

automatically retrieved examples.

– WordNet 1.6: Semcor (automatically mapped to WN 1.7Pre

(Daude et al. , 2000)).

• Word-set: The nouns in the Senseval-2 English lexical-sample

task.

Figure III.4: Senseval2B setting.

• Corpora:

– Senseval-3 English lexical-task corpus: separated

training and test.

– Senseval-3 Basque lexical-task corpus: separated

training and test.

• Sense inventories:

– Nouns and adjectives are annotated

using the WordNet 1.7.1 sense inventory

(http://www.cogsci.princeton.edu/ wn/).

– Verbs are annotated based on Wordsmyth definitions

(http://www.wordsmyth.net)

• Word-sets: Target sets in Senseval-3 (cf. sections III.3.1.3

and B.1).

Figure III.5: Senseval3 setting.

III.4 Extraction of features from the context

This section is devoted to the extraction of basic features. We will first describe the feature-set
we will use for the baseline English system. After that, we will explain the process to construct
the feature-set that will be applied in our experiments with Basque.

III.4.1 Basic features for English

Throughout the thesis, we will use different feature sets, and different tools to extract them
from the context. For English, there will be different features depending on the phenomena we
are studying, and these will be described more accurately in the corresponding sections. In this
part, we will introduce the basic feature set that we will apply in chapter III.

We have taken as basic feature set a group of items from the context widely used in the
literature (Yarowsky, 1994; Ng and Lee, 1996). We will separate them into topical and local
features.

Topical features correspond to open-class word-forms that appear in windows of different
sizes around the target word. In this experiments we used two different window-sizes: 4 words
around the target, and the word-forms in the sentence.

Local features include bigrams and trigrams that contain the target word. Local features are
formed by the PoS, or word-forms. Lemmatization is not used in this basic feature set, because
we will test it separately, together with more informed features.

We can see an example of the extraction of features in figure III.6. Each line corresponds
to one feature. The analysis of the raw text to obtain lemmas and PoS tags is done differ-
ently depending on the corpus. Semcor provides all the information, including multiwords and
named entities; DSO and Senseval-2 were processed using different tools. The PoS tagging was
performed with TnT (Brants, 2000) for the basic set of features. For posterior experiments,
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• local features, for word-forms:

– bigram - left - word-form : ‘‘Protestant’’

– bigram - right - word-form : ‘‘are’’

– trigram - right - word-forms : ‘‘that Protestant’’

– trigram - center - word-forms : ‘‘Protestant are’’

– trigram - right - word-forms : ‘‘are badly’’

• local features, for part-of-speech:

– bigram - left - PoS : ‘‘JJ’’

– bigram - right - PoS : ‘‘VBP’’

– trigram - right - PoS : ‘‘IN JJ’’

– trigram - center - PoS : ‘‘JJ VBP’’

– trigram - right - PoS : ‘‘VBP RB’’

• topical features, for word forms:

– window - 4 words : come

– window - 4 words : remarks

– window - 4 words : Protestant

– window - 4 words : are

– window - 4 words : badly

– window - 4 words : attended

– window - sentence : many

– window - sentence : sides

– window - sentence : come

– window - sentence : remarks

– window - sentence : Protestant

– window - sentence : are

– window - sentence : badly

– window - sentence : attended

– window - sentence : large

– window - sentence : medieval

– window - sentence : cathedrals

– window - sentence : look

– window - sentence : empty

– window - sentence : services

Figure III.6: Features extracted for the target word church from the sentence From many sides
come remarks that Protestant churches are badly attended and the large medieval cathedrals
look all but empty during services.

the fnTBL toolkit (Ngai and Florian, 2001) was applied. For the lemmatization, we used the
functions provided with the WordNet distributions.

III.4.2 Basic features for Basque

For Basque we only apply a set of features, which will be described in this section, along with
the main characteristics of the language. It would be interesting to analyze other possibilities,
but that study is out of the scope of this thesis.

Basque is an agglutinative language, and syntactic information is given by inflectional suffixes.
The morphological analysis of the text is a necessary previous step in order to select informative
features. We used the output of the parser (Aduriz et al., 2000), which includes some additional
features: number, determiner mark, ambiguous analyses and elliptic words. For a few examples,
the morphological analysis was not available, due to parsing errors.

In Basque, the determiner, the number and the declension case are appended to the last
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element of the phrase. When defining our feature set for Basque, we tried to introduce the
same knowledge that is represented by features that work well for English. We will describe
our feature set with an example. For the phrase ”elizaren arduradunei” (which means ”to the
directors of the church”) we get the following analysis from our analyzer:

eliza |-ren |arduradun |-ei
church |of the |director |to the +plural

The order of the words is the inverse in English. We extract the following information for
each word:

elizaren:

Lemma: eliza (church)
PoS: noun
Declension Case: genitive (of)
Number: singular
Determiner mark: yes

arduradunei:

Lemma: arduradun (director)
PoS: noun
Declension Case: dative (to)
Number: plural
Determiner mark: yes

We will assume that eliza (church) is the target word. Words and lemmas are shown in
lowercase and the other information in uppercase. As local features we defined different types
of unigrams, bigrams, trigrams and a window of ±4 words. The unigrams were constructed
combining word forms, lemmas, case, number, and determiner mark. We defined 4 kinds of
unigrams:

Uni wf0 elizaren
Uni wf1 eliza SING+DET
Uni wf2 eliza GENITIVE
Uni wf3 eliza SING+DET GENITIVE

As for English, we defined bigrams based on word forms, lemmas and parts-of-speech. But
in order to simulate the bigrams and trigrams used for English, we defined different kinds of
features. For word forms, we distinguished two cases: using the text string (Big wf0), or using
the tags from the analysis (Big wf1). The word form bigrams for the example are shown below.
In the case of the feature type “Big wf1”, the information is split in three features:

Big wf0 elizaren arduradunei
Big wf1 eliza GENITIVE
Big wf1 GENITIVE arduradun PLUR+DET
Big wf1 arduradun PLUR+DET DATIVE

Similarly, depending on the use of the declension case, we defined three kinds of bigrams
based on lemmas:

Big lem0 eliza arduradun
Big lem1 eliza GENITIVE
Big lem1 GENITIVE arduradun
Big lem1 arduradun DATIVE
Big lem2 eliza GENITIVE
Big lem2 arduradun DATIVE

The bigrams constructed using Part-of-speech are illustrated below. We included the
declension case as if it was another PoS:

Big pos -1 NOUN GENITIVE
Big pos -1 GENITIVE NOUN
Big pos -1 NOUN DATIVE

Trigrams are built similarly, by combining the information from three consecutive words. We
also used as local features all the content words in a window of ±4 words around the target.
Finally, as global features we took all the content lemmas appearing in the context, which was
constituted by the target sentence and the two previous and posterior sentences.

One difficult case to model in Basque is the ellipsis. For example, the word “elizakoa” means
“the one from the church”. We were able to extract this information from our analyzer and we
represented it in the features, using a special symbol in place of the omitted word.
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Semcor DSO
Word PoS S. Rand

Ex. Ex./S MFS DL Ex. Ex./S MFS DL
All A 2 50 211 105.50 99 99/100
Long A 10 10 193 19.30 53 63/99
Most B 3 33 238 79.33 74 78/100
Only B 7 14 499 71.29 51 69/100
Account N 10 10 27 2.70 44 57/85
Age N 5 20 104 20.80 72 76/100 491 98.20 62 73/100
Church N 3 33 128 42.67 41 69/100 370 123.33 62 71/100
Duty N 3 33 25 8.33 32 61/92
Head N 30 3 179 5.97 78 88/100 866 28.87 40 79/100
Interest N 7 14 140 20.00 41 62/97 1479 211.29 46 62/100
Member N 5 20 74 14.80 91 91/100 1430 286.00 74 79/100
People N 4 25 282 70.50 90 90/100
Die V 11 9 74 6.73 97 97/99
Fall V 32 3 52 1.63 13 34/71 1408 44.00 75 80/100
Give V 45 2 372 8.27 22 34/78 1262 28.04 75 77/100
Include V 4 25 144 36.00 72 70/99
Know V 11 9 514 46.73 59 61/100 1441 131.00 36 46/98
Seek V 5 20 46 9.20 48 62/89
Understand V 5 20 84 16.80 77 77/100

Table III.1: Information for the words in set A (Semcor) and set B (DSO), and results for
baselines (Random and MFS) and DL (trained with the basic set of features).
S: number of senses; Rand: Random baseline; Ex./S: number of examples per sense.

III.5 Experiments

Now that we have introduced the experimental setting, this section is devoted to the study of
the main questions raised in the introduction. The experiments will explore different aspects of
the WSD problem.

III.5.1 Baseline and basic features

In our first experiment, we used the basic feature set defined in section III.4.1 to train the system,
and compared the results with two baselines: the random baseline and the more informed MFS
baseline (cf. section II.4.1). The random baseline is directly obtained by means of the ratio
of the total number of senses. The experiment was performed for the 19 words in set A (for
Semcor), and the 8 words in set B (for DSO).

The results for the Semcor and DSO corpus for each word are shown in table III.1. For
DLs the precision and coverage are given, for the baselines only the precision (the coverage is
always 100%). Complementing the precision and coverage figures, the following information is
provided for each word: number of senses in WordNet 1.6, number of examples in the corpus,
and number of examples per sense (frequency/ambiguity ratio). These figures can give an idea
of the difficulty of the words. E.g. fall only has 1.63 examples per sense, and the MFS precision
is 13%, which indicates that we should not expect high accuracy. For this word, DLs obtain
34% precision for 71% coverage, showing that the system is able to achieve results over the MFS
baseline even with few training data.

We have marked the winning column in boldface, and we can see that DLs beat the baselines
almost in all cases in Semcor (only include gets slightly lower results than MFS). In DSO, DLs
are always better than the baselines. With respect to the coverage, for Semcor it does not reach
100% in all cases, because some decisions are rejected when the log likelihood is below zero. On
the contrary, the richer data in DSO enables 100% coverage.

For a better analysis, table III.2 groups the previous values per word-set and PoS. The values
are micro-averaged with the number of examples per word (cf. section II.5.1). The three upper
rows of the table illustrate the relation between the ambiguity and the frequency for the word-
sets in Semcor and DSO: average number of senses, examples, and examples per sense (ratio).
The next two rows indicate the precision of the random and MFS baselines (always with full
coverage). Finally, the performance of DLs is shown (precision and coverage given). The best
precision for each column is denoted in boldface. We will point out some conclusions from this
table:
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Semcor DSO
set A set B set B

Adj. Adv. Noun Verb Over. Noun Verb Over. Noun Verb Over.
Senses 5.8 5.7 9.4 20.3 12.3 10.0 29.3 17.2 10.1 28.6 18.8
Examples 202 368.5 119.9 183.7 178.2 125.0 312.7 195.4 927.2 1370.3 1093.4
Examples
per sense

34.7 64.5 12.6 9.0 14.4 12.5 10.7 11.3 92.7 46.7 63.4

Random 31 20 19 10 17 16 6 10 16 5 1
MFS 77 58 69 51 61 63 42 50 56 61 59
DL 82/

100
72/
100

80/
99

58/
92

70/
97

77/
99

49/
90

60/
94

72/
100

67/
99

70/
100

Table III.2: Average results (DL and baseline), and statistics for the basic set of features in
Semcor and DSO. For DLs, precision and coverage are given.

• The number of examples per word sense is very low for Semcor (around 11 examples per
sense for the words in Set B), while DSO has substantially more training data (around 66
examples per sense in set B). It has to be noted that several word senses do not occur
neither in Semcor nor in DSO.

• The random baseline attains 17% precision for Set A, and 10% precision for Set B.

• The MFS baseline is higher for the DSO corpus (59% for Set B) than for the Semcor corpus
(50% for Set B). This rather high discrepancy can be due to tagging disagreement, as will
be commented in the concluding section of the chapter.

• The scarce data in Semcor seems enough to get results over the baselines. The larger amount
of data in DSO warrants a better performance, but it is still limited to 70% precision.
Overall, DLs significantly outperform the two baselines in both corpora:

– Set A: 70% vs. 61% (Semcor).

– Set B: 60% vs. 50% (Semcor), 70% vs. 59% (DSO).

• If we analyze the words according to PoS, we can clearly see that verbs get the lowest
precision, specially in Semcor (58% for set A, 49% for set B). Verbs are very ambiguous,
and the “examples per sense” ratio is low. In DSO, the difference in precision for verbs
and nouns is not so evident (72% for nouns, 67% for verbs), even when the example ratio
for nouns is twice as high (92 to 46). Nouns, adjectives, and adverbs always score over
70%, adjectives reaching 82% precision in Semcor. The worst coverage is also for verbs: in
Semcor 92% of the examples are covered for set A and 90% for set B; while for the other
PoS the coverage is 99% or 100%.

• Looking at the difference between DLs and MFS, we notice that verbs get the lowest im-
provement in almost all cases, except for the adjectives in Semcor, which have a high MFS
(77%), difficult to beat. The most impressive gain is for adverbs, which improve MFS in
14 points. In section III.5.2, we will study words according to their polisemy, frequency,
and skew; and we will extract some conclusions in relation to the performance over the
baselines.

• It is difficult to compare the results obtained for set B in Semcor and DSO, probably due
to the discrepancies tagging the same words on different corpora. By PoS, we can see that
the precision is much better for verbs in DSO (67% vs. 49%), but for nouns it is better in
Semcor (77% vs. 72%). Even if DSO has much more training data (927 examples per word
in average for nouns, versus 125 examples per word in Semcor), and we would expect the
precision to be higher. We can see in table III.1 that 4 out of 5 nouns achieve better results
on Semcor data. The reason could be that, even if the word set is the same, the tagging
differences make the task different.
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Preprocessing and
Word POS Examples Testing time (secs.) training time (secs.)

All A 211 2.00 711.20
Long A 193 2.00 745.20
Most B 238 2.40 851.80
Only B 499 5.20 1143.50
Account N 27 0.00 131.60
Age N 104 1.00 302.90
Church N 128 1.00 175.60
Duty N 25 0.00 133.30
Head N 179 1.20 500.40
Interest N 140 1.30 397.20
Member N 74 1.00 303.70
People N 282 2.80 686.60
Die V 74 0.20 276.50
Fall V 52 0.20 303.10
Give V 372 4.60 968.30
Include V 144 1.30 526.70
Know V 514 4.40 924.30
Seek V 46 0.00 230.80
Understand V 84 0.90 344.70

Avg. A 202.00 2.00 728.20
set A Avg. B 368.50 3.80 997.65

Avg. N 119.88 1.04 328.91
Avg. V 183.71 1.66 510.63

Table III.3: Execution time for DL with the examples in Semcor.

Regarding the execution time, table III.3 shows training and testing times for each word in
Semcor. Training the 19 words in set A takes around 2 hours and 30 minutes, and it is linear to
the number of training examples, around 2.85 seconds per example. Most of the training time
is spent processing the text files and extracting all the features, which includes complex window
processing. Once the features have been extracted, training time is negligible as also is the test
time (around 2 seconds for all instances of a word). Training time has been measured on CPU
total time on a Sun Sparc 10 machine with 512 Megabytes of memory at 360 Mhz.

III.5.2 Kinds of words: polisemy/bias/frequency

In this experiment we analyzed the effect on disambiguation performance of three factors: am-
biguity, frequency, and bias. These characteristics have been defined in section III.3.1.1, and
have been used to choose the word-sets. Our goal was to observe whether the disambiguation
precision of a word can be determined by its ambiguity, frequency, or bias. We measured the
absolute precision of DLs, and the precision of the DLs relative to the baselines (difference in
precision).

We developed the experiment with the set A of words, and the Semcor corpus. We used
the results on the previous experiment (see table III.1) to draw the precision depending on the
different factors, and study them. These are our conclusions:

• Frequency: Figure III.7 plots the precision (absolute and relative) according to the number
of examples employed to train each word. The resulting graph shows no improvement
for words with larger training data. This is due to the interrelation between frequency and
ambiguity. The words that are more ambiguous, have more examples in Semcor. Therefore,
the frequency of a word in the corpus does not determine the disambiguation precision we
can expect.

• Ambiguity: Similarly, the data of figure III.8 does not indicate whether ambiguous words
are easier to disambiguate. Again, the reason is that words with many senses occur more
frequently.

• Bias: This is the parameter that affects the performance the most. Words with high skew
obtain better results, but the DLs outperform MFS mostly on words with low skew (see
figure III.9).
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Figure III.7: Results in Semcor according to frequency.
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Figure III.8: Results in Semcor according to ambiguity.
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Figure III.9: Results in Semcor according to bias.

Overall decision lists perform very well (compared to MFS) even with words with very few
examples (E.g.: duty (25) or account (27)) or highly ambiguous words.

III.5.3 Feature types: relation between word types and basic feature types

The goal of this experiment was to analyze separately the performance of features from local
and global contexts in disambiguation. There have been previous experiments in this line (Gale
et al., 1993; Leacock et al., 1998) and they have shown that topical contexts tend to work better
for nouns. For our experiment, we consider bigrams and trigrams (PoS tags and word-forms) as
local, and two features as topical: all the word-forms in the sentence, and a four-word window
around the target.

The results are illustrated in table III.4. We show the performance achieved for each word,
and the micro-averaged results per PoS and overall. In each column, the precision and coverage
for each feature set (local features, topical features, combination) is given.
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Semcor DSO
Word Pos

Local Topical Combination Local Topical Combination
All A 99/100 98/91 99/100
Long A 67/98 61/87 63/99
most B 79/100 71/95 78/100
only B 72/100 60/96 69/100
account N 55/78 47/56 57/85
age N 73/99 78/87 76/100 76/98 70/97 73/100
church N 60/98 74/89 69/100 68/100 72/96 71/100
Duty N 62/84 75/48 61/92
Head N 89/100 90/85 88/100 78/99 76/97 79/100
Interest N 55/86 57/86 62/97 68/91 60/98 62/100
Member N 90/99 91/89 91/100 81/100 78/100 79/100
People N 90/100 89/94 90/100
Die V 97/99 96/70 97/99
Fall V 35/60 35/25 34/71 81/99 80/96 80/100
Give V 41/54 32/52 34/78 77/100 78/98 77/100
Include V 69/98 73/85 70/99
Know V 59/99 57/90 61/100 52/89 37/81 46/98
Seek V 70/80 40/43 62/89
Understand V 77/100 75/81 77/100

Avg. A 84/99 81/89 82/100
Avg. B 74/100 64/96* 72/100
Avg. N 78/96 81/87 80/99 75/97 71/98* 72/100*
Avg. V 61/84 57/72 58/92 70/96 66/91* 67/99*
Overall 72/93 68/84* 70/97 73/96 69/95* 70/100*

Table III.4: Local context vs. topical context in Semcor and DSO. Precision and coverage is
shown. The mark ‘*’ indicates statistical significance according to the t-test (only for PoS and
overall figures).

We also apply a paired Student’s t-test of significance (cf. section II.5.2) to see whether the
difference between the approaches is statistically significant. We measured this value for local
features vs. topical features, and also for the winning system (local or global) vs. combination
of features. The confidence value we used was t9,0.975 = 2.262. We show the results of the test
grouped by PoS and overall, not by word; the “topical” and “combination” columns include the
character ‘*’ when the t-test indicates that the difference is statistically significant.

The results in Semcor show that, attending to precision, topical features achieve the best
results for nouns, while for the other parts of speech the best precision is for the local features.
These results are consistent with those obtained by Gale et al. (1993) and Leacock et al. (1998).
Word by word, we can see that 6 out of the 8 nouns obtain better results when trained on topical
features, and 12 of the other 13 words learn better from local features. However, according to the
t-test, there is only significant difference in the case of adverbs, and overall. The overall results
show that local features get better precision and coverage in comparison to topical features. The
combination of all features gets similar recall to local features (68%).

The results with the DSO corpus are in clear contradiction with those from Semcor: local
features have better precision both for nouns and verbs. Out of the 8 words, only the noun
church and the verb give achieve better precision with topical features. It is hard to explain
the reasons for this contradiction, but it can be related to the amount of data available in DSO,
and the differences of tagging in both corpora (Ng et al., 1999). We have to note that for
nouns, topical features get better coverage than local features (exactly the opposite behavior
to the Semcor results). This could mean that the large amount of data in DSO provides more
overlapping cases for the topical features, and those are applied with less confidence, damaging
precision. Again, the combination of both kinds of features attains lower precision in average
than the local features alone, but this is compensated by a higher coverage, and overall the recall
is very similar (70%). The t-test finds the local features significantly better than the topical
features for all parts of speech, and the difference between local and combined features is also
found to be significant (even if they have similar recall overall).

Recent work in WSD has focused on the construction of word experts (Hoste et al., 2002),
where the set of features that works best is chosen from held-out data for each word. In this



40 Baseline WSD system: DL and basic features

experiment, we can see that there are big differences for some words depending on the feature
set we use (e.g.: know in DSO). We studied the results of the 8 common words in both sets to
see whether the results where consistent, and we could separate local-words and topical-words.
Only one word (church) worked better with topical features in both corpora, and 2 (fall and
know) worked better on local features. The fact that for the other 5 words different sets where
preferred in these two corpora shows again that the differences in tagging make difficult to
extract conclusions.

III.5.4 Learning curve

One question that we should address is the quantity of data needed to train our supervised
systems. With that goal, we trained our system with increasing quantities of data to see whether
the system kept learning or it reached a standstill. The learning curve would be the graph
resulting from this data.

In a previous paper (Ng, 1997), it is estimated that about 1,000 occurrences per word should
be tagged to train a high accuracy domain-independent system. Based on this reference, Ng
estimated that an effort of 16 person-years would be required to tag enough examples for the
most frequent words in English (he proposed to use the most frequent sense heuristic with the
rest of the words, which would account for less than 10% of all the occurrences, and those would
be the less polisemous). Also in the mentioned work, he studied the learning curves of different
word sets with a high number of examples, using the DSO corpus. He showed that the system
kept improving when more data was added, even for words with more than 1,300 examples.

In this section, we studied the learning curve for our experimental setting. We performed the
experiment in Semcor and DSO, using the same set of words (set B). We retained increasing
amounts of the examples available for training each word: 10% of all examples in the corpus,
20%, 40%, 60%, 80%, and 100%. Cross-validation was applied for testing the results, and the
process worked as follows: we partitioned the whole training set in 10 parts, and for each cross-
validation step we used one different part for testing. From the remaining data, we chose the
corresponding percentage (10%, 20%, 40%, ...) randomly for training.

The learning curve in Semcor is shown in figure III.10 and the DSO curve in figure III.11. In
the figures, the Y axis marks the disambiguation performance (given as the recall, to normalize
between the precision and the coverage), and the X axis indicates the number of examples. The
averaged curves for each part of speech (nouns and verbs), and the overall curve are given.

The noun curve in Semcor shows that there is not enough data for a regular behavior. There
are around 125 examples in average per noun, and each 20% implies that only 25 examples are
added to the training set, which do not seem to make a difference for the higher partitions. On
the contrary, for verbs we see a steady increase of recall when we train with more data. The
overall results also show a constantly ascendant curve.

For DSO, the system keeps learning with more data, but it seems that there is no difference
from 80% to 100%, suggesting that the system may have reached its top. At 80%, it uses an
average of 930 examples per noun, and 1370 per verb. The performance is 72% for nouns and
67% for verbs. As we have seen in section III.5.1, the results for nouns are better in Semcor
than in DSO.

III.5.5 Noise in the data

In this section we want to evaluate the effect of noisy training data. The goal of this test is
to analyze the performance of the system when the tagged data carries an expected amount of
error. In a real setting, this would help us to know what to expect when we obtain the training
data automatically (with noise) instead of by hand.

The experiment works as follows: we introduced random incorrect tags in the examples, and
created four new samples for training from each corpora (Semcor and DSO). Each sample had
a fixed percentage of noise: 10% of the examples with random tags, 20%, 30% and 40%. We
performed the experiment using the common set B of words. The results for each corpus are
illustrated in figures III.12 and III.13. The graphics show the recall for each percentage of noise,
from 0% to 40% . The averaged curves for nouns, verbs, and the overall curve are given.

In the figures, we can see that the performance on Semcor data drops instantly when 10%
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Figure III.10: Learning curve in the Semcor corpus.
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Figure III.11: Learning curve in the DSO corpus.

noise is introduced, and keeps decreasing constantly as we insert more noise in the data. In
contrast, when the system is trained on DSO, it resists much better to noise, and only gets
heavily affected when the percentage of noise reaches 40%. If we consider the curve of the
nouns, we saw in section III.5.1 that for set B the Semcor data obtained better results, but it is
enough to introduce 10% of noise in both corpora to eliminate this difference.

We can conclude that when we have few examples to train, as in Semcor, the noise affects
the performance heavily, and it is necessary to use big amounts of data in order to minimize the
damage.

III.5.6 Fine-grained vs. coarse-grained disambiguation

The choice of the sense inventory is a central discussion in WSD work. As we pointed out in the
introduction chapter, for this research we chose to work with WordNet sense distinctions. This
fixed inventory may be too fine-grained for many NLP tasks.

In this section we will measure the precision we can get using coarser senses than those
defined in WordNet, but which can yet be useful for some applications. We will define this
inventory using the WordNet architecture, which groups senses into semantic files. In these
files, the synsets are grouped by part-of-speech and semantic similarity. Some examples of types
of groups are the following: “nouns denoting acts or actions”, “nouns denoting animals”, etc.
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Figure III.12: Results with noise in the Semcor corpus.
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Figure III.13: Results with noise in the DSO corpus.

The complete list for nouns and verbs is given in table B.7 in the appendix. We can see how
the grouping can be applied to the noun age in figure III.14.

For the experiment, we replaced the sense tags in Semcor and DSO data for their corre-
sponding semantic file tags, and applied cross-validation as usual. Again, we used the common
8 word set (set B). Overall, the number of senses in average reduced from 17.25 senses to 6.
The grouping of senses was stronger for verbs (from 29.3 to 6.3), while for nouns the granularity
reduced from 10 to 5.8 . Table III.5 shows the results. The precision and coverage in Semcor
and DSO is shown for synsets and semantic files. The results are averaged per PoS and overall.

The precision we obtain with semantic files is 83% in both corpora, with total coverage in
DSO, and 98% coverage in Semcor. The results are significantly better than with synsets, but
the amount of error (17%) is still important. For nouns, we can see that the improvement
is small (1 precision point in Semcor, 4 in DSO), even when the average polisemy has been
significantly reduced. We could attribute this low results to the scarcity of data, and the sense
sparseness of the data points (the senses that appear in the corpus could belong frequently to
different semantic files).

For verbs the results are much better. There is more training data, and the reduction in sense
granularity is bigger, which enables the system to achieve good results. The best performance is
obtained in DSO, where the 1,370 examples per word give a precision of 91%. Semcor provides
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• 4 senses grouped in the semantic file ‘‘time’’:

– {age } A historic period; "we live in a litigious age".

– {age } A time in life (usually defined in years) at which

some particular qualification or power arises; "she was

now of school age".

– {age, long time, years } A prolonged period of time;

"we’ve known each other for ages"; "I haven’t been there

for years and years".

– {age, old age, years} Time of life; "he’s showing his

years"; "age hasn’t slowed him down at all".

• 1 sense in the semantic file ‘‘attribute’’:

– {age } How long something has existed; "it was replaced

because of its age".

Figure III.14: Grouping for the noun age: 5 senses in WordNet 1.6 in 2 semantic files.

# Semantic Semcor DSO
Words PoS # Synsets

Fields Synset SF Synset SF
age N 5 2 76/100 75/100 73/100 74/100
church N 3 3 69/100 69/100 71/100 71/100
head N 30 15 88/100 88/100 79/100 80/100
interest N 7 5 62/97 67/99 62/100 72/100
member N 5 4 91/100 91/100 79/100 79/100
fall V 32 7 34/71 57/71 80/100 85/100
give V 45 10 34/78 72/95 77/100 87/100
know V 11 2 61/100 100/100 46/98 100/100

Avg. N 10 5.8 77/99 78/100 72/100 76/100
Avg. V 29.33 6.33 51/90 87/96 67/99 91/100
Overall 17.25 6 62/94 83/98 70/100 83/100

Table III.5: Precision and coverage disambiguating coarse senses in Semcor and DSO.

312 examples per word, and the precision reaches 87%. Again, we can see the importance of
having enough training data in order to take profit of different techniques.

III.5.7 Expected performance for all words in a text

For this experiment, we wanted to go beyond the fixed word sets and estimate which performance
could we expect disambiguating all the content words in a corpus. In order to do that, we
disambiguated the content words in four Semcor files, and also the nouns and verbs tagged in
DSO.

Starting with the Semcor experiment, we disambiguated all content words in 4 files previously
used in another work (Agirre and Rigau, 1996). In that work, the files were randomly chosen
to test their unsupervised method, conceptual density, and compare it to other unsupervised
methods (Yarowsky, 1992; Sussna, 1993). Although the direct comparison with DLs is not
possible, because the experiments are defined differently, the results can give a reference of
the performance of the unsupervised methods. The target files belong to different genre/topic:
Press-reportage (br-a01), Press: Editorial (br-b20), Learned: Science (br-j09), Humour (br-r05).

We implemented the experiment as follows: for each word in the target file, we used the rest
of the files as training data. The rare polisemous words with no examples in the rest of Semcor
were left out of the experiment. In table III.6, we present the averaged results for each file, and
the average results of the four files. The precision and coverage values shown correspond to the
polysemous words in the files. Along with the precision and coverage values, the table shows
the average number of senses per word in WordNet; the number of testing examples; and the
precision of the MFS and random baselines, as reference.

The results display a similar performance for all files: around 68% precision. The baselines
are also in the same numbers for the different files. The facts that, on the one hand the results
are similar for texts from different sources (journalistic, humor, science), and on the other hand
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File Avg. Senses Examples Random MFS DL (prec./cov.)
br-a01 6.60 792 26 63 68/95
br-b20 6.86 756 24 64 66/95
br-j09 6.04 723 24 64 69/95
br-r05 7.26 839 24 63 68/92

Average 6.71 777.5 25 63 68/94

Table III.6: Overall results disambiguating 4 files in Semcor. Baselines have full-coverage.

PoS Avg. Senses Testing examples Random MFS DL (prec./cov.)
Adjs. 5.49 122.00 28 71 71/92
Advs. 3.76 48.50 34 72 80/97
Nouns 4.87 366.75 28 66 69/94
Verbs 10.73 240.25 16 54 61/95

Table III.7: Overall results disambiguating 4 files in Semcor, given per PoS. Baselines have
full-coverage.

words with varying degrees of ambiguity and frequency have comparable performance (as seen
in section III.5.2), seems to confirm that the training data in Semcor can provide these results
across all kinds of words and texts, except for highly skewed words, where we can expect better
performance than average.

In table III.7 the results are grouped according to the PoS of the target word. We can see
that in this case there are significant differences.

• Verbs are the most difficult to disambiguate (as we saw in table III.2), obtaining only 61%
precision. They have the highest polisemy (almost 11 senses per testing example). However,
the precision is significantly better than the MFS baseline (7% higher).

• Nouns are the more frequent type in the testing data, totaling 47% of the examples. The
performance for nouns is just above the overall average (69% precision and 94% cover-
age). The coverage for nouns is low in comparison with the baseline word-sets experiment
(section III.5.1), in this case it is even lower than the coverage for verbs.

• Adjectives achieve a precision of 71% and a coverage of 92%. There is no improvement over
MFS, and the results are far from the 82% precision reported previously for the 2 adjectives
in word set A.

• Adverbs obtain the best results: 80% precision and full coverage (8% better recall than
baseline). These results confirm the good performance seen in table III.2.

The other experiment we conducted in this section was to disambiguate all the nouns and
verbs tagged in DSO (121 nouns, 70 verbs). The DSO experiment gives us the opportunity to
compare the results with other supervised approaches. In fact, Escudero et al. (2000b) present
their results disambiguating the DSO corpus by means of different ML algorithms, concretely:

• K-nn: K-nearest neighbors exemplar-based method.

• AB: A variant of Shapire and Singer’s AdaBoost.MH .

• NB.

For the implementation, we used 10 fold cross-validation to apply the DLs and to measure
the MFS baseline, as in (Escudero et al., 2000b). Table III.8 reports the precision and coverage
of our approach, and the precision reported for the baseline and the other ML methods (always
with full coverage).

The table shows that DLs obtains similar results to AB in precision, and slightly better than
K-nn and NB. The results serve to illustrate that DLs can achieve state-of-the-art performance,
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PoS MFS K-nn NB AB DL
Nouns 59 69 68 71 72/99
Verbs 53 65 65 67 68/98

Overall 56 67 67 70 70/99

Table III.8: Overall results disambiguating DSO for different ML methods. Coverage is given
for DLs only (other methods have full-coverage).

but only as a reference. Even if the training and test data is the same, there are differences in
the experiments: the feature representation, the cross-validation procedure, and the evaluation
(value of partial answers) can lead to differences. For example, the MFS baseline is computed
differently. In (Escudero et al., 2000b) the precision is 52.3%, while in our case in reaches 56%.

Moreover, Hoste et al. (2002) show that the performance of different experiments can suffer
large fluctuations depending on the following factors: the ML method and its parametrization,
the kind of features used to represent the examples, and the interaction between the features and
the parameters of the algorithm. Recent works show that DLs perform worse when compared
with more sophisticated methods, see (Yarowsky and Florian, 2002; Villarejo et al., 2004), or
the comparison between DL and AB in section IV.6. In the next section we will analyze the
performance of DLs in a controlled framework to compare different approaches: the Senseval
competition.

To conclude, in this section we have seen that we can reach a precision of 68-70%, for a
coverage of 94%-99% tagging all the content words in a corpus. We have also seen that the
results are similar for different types of texts and words, with some exceptions:

• Words with high bias are easier (cf. section III.5.2).

• The performance depends on the PoS of the words. Verbs tend to be the most difficult.

We have also introduced results of other approaches with the same corpora. We will study
this further in the next section.

III.5.8 Comparison with other methods in a real setting: Senseval2

In this experiment, we evaluated our method in the Senseval-2 competition, which was reviewed
in section II.8. This gave us the chance to compare the performance of our system with many
other algorithms. The Senseval-2 framework presented different tasks in ten languages. The
main tasks were the disambiguation of all the content words in a corpus (all-words task), and the
disambiguation of selected words in different contexts (lexical-sample task). Normally, training
data was provided for the lexical samples, but not for the all-words tasks. We present here
our basic system for different tasks in Senseval-2; a different version including combination of
algorithms, richer features, and smoothing was presented in Senseval-3. This last version and
its performance is described in chapter V.

We participated in three tasks in Senseval-2: English lexical-sample, English all-words, and
Basque lexical-sample. For the lexical-sample tasks, we used the training data provided by
the organization; for the all-words task we used the Semcor corpus, which required a WordNet
version mapping (Daude et al., 2000). We presented a total of 5 systems, and in this section we
will describe the two basic English experiments: English lexical sample and English all-words.
We also submitted the results of systems based on feature selection (which will be described in
section IV.7), and results for the Basque task (presented in section III.5.9). Our contribution to
Senseval-2 is published in (Agirre and Martinez, 2001).

We had to adapt necessarily our setting for these experiments, because the corpus, the target
words, and the sense inventory were different. We also decided to introduce a few changes in the
basic feature set: we included bigrams and trigrams formed by lemmas, and we used lemmas
(of content words only) instead of word-forms in the context windows. Besides, for the lexical-
sample task, we used all the context provided by the organization instead of one single sentence.
The Senseval-2 setting was described in section III.3.3.3, the details of our submission to the
English tasks are given in figure III.15.
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• Feature set

– bigrams of word-forms, lemmas, and PoS.

– trigrams of word-forms, lemmas, and PoS.

– Bag of lemmas of the content words:

∗ ± 4 word window around the target.

∗ the whole context, usually the 2 preceding and 2

succeeding sentences (lexical-sample task).

∗ the sentence (all-words task).

• Sense inventory: WordNet 1.7 pre-release, specially

constructed for Senseval-2.

• Sense mapping

– We performed an automatic mapping between the senses

in Semcor (tagged with WordNet 1.6) and WordNet 1.7

pre-release .

– Only nouns and verbs were mapped, due to time

constraints.

• Lexical-sample experiment

– 73 words (29 nouns, 29 verbs, and 15 adjectives).

– Source corpus: BNC and WSJ.

– 8611 tagged instances for training (approx. 118 per

word).

– 4328 instances for testing.

• All-words experiment

– Testing: 5,000 words of running text.

– Source corpus: WSJ articles from different domains of

the Penn TreeBank II.

– Semcor for training (via mapping).

Figure III.15: Setting for the Senseval-2 submissions (English tasks).

Before we analyze the results, we want to mention that we did not a complex pre-processing
of the data (the features were extracted as described in section III.4.1). Certainly, the detection
of multiwords would improve significantly the results (cf. section III.3.2). Respecting the all-
words task, the unavailability of mapping for the adjectives, and the scarcity of data in Semcor
affected strongly the coverage.

In order to compare the results for the lexical-sample task, we recall the table that we
presented in section III.4.1, with our baseline system marked in bold. Thus, in table III.9, the
performance of each of the 20 competing systems is given. The results are sorted by recall,
and correspond to the fine-grained scoring. Only the last versions of resubmitted systems (R)
are included. The baseline systems provided by the organization, which are not in the table,
achieved the following recall: 51.2% (Lesk-corpus, cf. section II.6), 47.6% (MFS), and 14.1%
(Random).

We can see that our system ranks 9th of 20 in precision and recall. With a recall of 56.4%,
our simple implementation was not far from the more elaborate systems, and it was significantly
better than the best baseline.

In the all-words task we obtained almost the same precision as in the lexical-sample task:
57.2%, but the coverage was limited to nouns and verbs with training examples in Semcor, and
reached only 51% of the target words. Besides, even if multiwords were marked, they were not
properly identified for our experiments, and this was another source of error. Our system ranked
14th out of 21 in recall, and 7th out of 21 in precision. Table III.10 shows the results for the 21
systems2, in this case there is no distinction between supervised and unsupervised methods. The
format of the table is the same that we described for the lexical-sample task, and the version of

2The system CL Research-DIMAP is assigned more than 100% coverage in the official results, due to some
mistake.
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Position Precision Recall Coverage System
1 64.2 64.2 100.0 JHU (R)
2 63.8 63.8 100.0 SMUls
3 62.9 62.9 100.0 KUNLP
4 61.7 61.7 100.0 Stanford - CS224N
5 61.3 61.3 100.0 Sinequa-LIA - SCT
6 59.4 59.4 100.0 TALP
7 57.1 57.1 100.0 Duluth 3
8 56.8 56.8 99.9 UMD - SST
9 57.3 56.4 98.3 BCU - ehu-dlist-all
10 55.4 55.4 100.0 Duluth 5
11 55.0 55.0 100.0 Duluth C
12 54.2 54.2 100.0 Duluth 4
13 53.9 53.9 100.0 Duluth 2
14 53.4 53.4 100.0 Duluth 1
15 52.3 52.3 100.0 Duluth A
16 50.8 50.8 99.9 Duluth B
17 49.8 49.8 99.9 UNED - LS-T
18 42.1 41.1 97.7 Alicante
19 66.5 24.9 37.4 IRST
20 82.9 23.3 28.0 BCU - ehu-dlist-best

Table III.9: Supervised systems in the Senseval-2 English lexical-sample task sorted by recall
(version 1.5, published 28 Sep. 2001). Fine-grained scoring. R: resubmitted system. Our basic
system (BCU - ehu-dlist-all) given in bold.

the results is also 1.5 .
The organization provided a MFS baseline, which assumed perfect lemmatization, and did

not attempt to find multiwords. The precision and recall of this baseline was 57%, which was
very difficult to beat (only the three best systems achieved better recall). As we have seen, our
system obtained comparable precision, but much lower coverage.

III.5.9 Evaluation on Basque in Senseval2

For the last experiment on this chapter, we tested the DL method on another language: Basque.
Some characteristics, and the extraction of features for Basque are described in section III.4. As
we did for English, a more sophisticated system was presented in Senseval-3, which is described
in chapter V.

Three different teams took part in the Senseval-2 lexical sample task: Johns Hopkins Univer-
sity (JHU), Basque Country University (BCU) and University of Maryland (UMD). The third
team submitted the results later, out of the Senseval competition. The results for the fine-
grained scoring are shown in table III.11, including the MFS baseline. Assuming full coverage,
JHU attains the best performance. Our system obtained 73.2% precision for 100% coverage.
The system improved in almost 9 points the precision of the MFS baseline, but was two points
below the best system (JHU- Johns Hopkins University). We have to notice that the JHU sys-
tem won the lexical sample task both for Basque and for English; and while the difference in
recall with our system was only 2% for Basque, it reached 8% for English. We think that the
reason for this is that our feature set for Basque is better, although our ML algorithm is worse.

III.6 Conclusions

Throughout this chapter, we have worked with an algorithm based on DLs and basic features
in different experiments. Our goals in this analysis were to measure the performance we could
achieve with this basic system (in order to compare it to the approaches in the next chapters),
and also to study different aspects of the WSD problem on this setting.

We have seen that the Semcor corpus provides enough data to perform some basic general
disambiguation, at 68% precision on any general running text. The performance on different
words is surprisingly similar, as ambiguity and number of examples are balanced in this corpus.
The main differences are given by the PoS of the target words: the verbs present the highest
polisemy and lowest precision (11 senses in average, 61% precision), as it is usually the case.

The DSO corpus provides large amounts of data for specific words, allowing for improved
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Position Precision Recall Coverage System
1 69.0 69.0 100.0 SMUaw
2 63.6 63.6 100.0 CNTS-Antwerp
3 61.8 61.8 100.0 Sinequa-LIA - HMM
4 57.5 56.9 98.9 UNED - AW-U2
5 55.6 55.0 98.9 UNED - AW-U
6 47.5 45.4 95.5 UCLA - gchao2
7 47.4 45.3 95.5 UCLA - gchao3
8 41.6 45.1 108.5 CL Research - DIMAP
9 50.0 44.9 89.7 UCLA - gchao
10 36.0 36.0 99.9 Universiti Sains Malaysia 2
11 74.8 35.7 47.7 IRST
12 34.5 33.8 97.8 Universiti Sains Malaysia 1
13 33.6 33.6 99.9 Universiti Sains Malaysia 3
14 57.2 29.1 50.7 BCU - ehu-dlist-all
15 44.0 20.0 45.3 Sheffield
16 56.6 16.9 29.8 Sussex - sel-ospd
17 54.5 16.9 31.0 Sussex - sel-ospd-ana
18 59.8 14.0 23.3 Sussex - sel
19 32.8 03.8 11.6 IIT 2
20 29.4 03.4 11.6 IIT 3
21 28.7 03.3 11.6 IIT 1

Table III.10: Supervised systems in the Senseval-2 English all-words task sorted by recall (version
1.5, published 28 Sep. 2001). Fine-grained scoring. Our basic system (BCU - ehu-dlist-all) is
given in bold.

Prec. Recall Attempted System
75.7 75.7 100 JHU
73.2 73.2 100 BCU-ehu-dlist-all
70.3 70.3 100 UMD
64.8 64.8 100 MFS

Table III.11: Results in Senseval-2 in the lexical-sample Basque task.

precision. It is nevertheless unable to overcome the 70% barrier, and as we have mentioned in
section III.5.1, the results for nouns are better in Semcor, due probably to tagging disagree-
ments. Other works in the literature that rely on DSO have shown similar performance with
ML algorithms like AB and NB (Escudero et al., 2000b).

However, when applied to the Senseval-2 dataset, the system presents much lower perfor-
mance, with a precision of 57% for the lexical-sample and all-words tasks (the recall was slightly
lower in the lexical-sample, and much lower for the all-words). There are different reasons for
these disappointing results. Focusing on the lexical-sample, we have to take into account that
the best system only scored 64.4% recall, significantly lower than the 70% figures in Semcor and
DSO. This indicates the difficulty of the word-set, where participating systems scored specially
low with the verbs. Another factor to explain the low performance of our system was the im-
portance of pre-processing the examples to detect multiword senses. Most of the top-performing
systems included such a pre-process, and this affected the results3. Finally, our system was not
optimized for performance, its goal was to be a baseline system for reference when applying dif-
ferent improvements (feature types, training example set, or combination with other algorithms).
We will come back to these issues at the end of these conclusions.

Following with the analysis of the Senseval-2 results, an early conclusion would be to blame
the DL method on the low performance in front of more sophisticated ML methods. But as the
work in (Hoste et al., 2002) shows, the performance of these kind of systems is affected by three
factors: the learning algorithm and the parameter setting, the feature set, and the interaction
between them. As a reference, the DL algorithm was used in the ensemble presented by the
winning team (JHU, cf. section II.6), and achieved 63% recall. The main differences with our
system were the pre-processing, the inclusion of syntactic dependencies as features, and the

3This factor motivated the construction of the multiword detection tool presented in section III.3.2
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weighting of feature types.
Up to now, in the conclusions we have addressed the performance we can expect for different

tasks and corpora, including the Senseval-2 evaluation. Regarding the questions we posed at
the beginning of the chapter, these are the main conclusions of our experiments, and how they
affect the WSD system:

1. Word types: relation between polisemy/bias/frequency and disambiguation
performance

The highest results can be expected for words with a dominating word sense, but the
difference to the MFS baseline is lower. Words with high polisemy tend to be the most
frequent, which makes the polisemy and frequency factors balance each other. Therefore, in
order to know previously which are the difficult words, we would require information about
the frequency distribution of the senses, which is difficult to obtain.

2. Feature types: relation between word types and basic feature types

Local features vs topical features. In our experiments the behavior was different depending
on the corpus.

• Semcor: topical features were better for nouns, but not for other categories. These
results are consisted with the work by Leacock et al. (1998). Taking the results overall,
local features performed better, and the recall for the whole set of features was similar
to using only the local set (but with higher coverage for the whole set).

• DSO: the local features achieved better performance than the topical set for all cate-
gories. This could be due to the much higher number of examples in DSO. The best
recall was obtained using the whole feature set, as topical features help to improve
coverage.

It is important to note that single words exhibit different behavior, suggesting that the best
policy could be the construction of word-experts with specific feature sets (Hoste et al.,
2002).

3. How much data is needed? Learning curve.

The learning curve shows that Semcor has too few examples for these experiments. Specially
nouns do not have enough data to see a regular behavior. For verbs we see a steady increase
of recall when we train with more data. The overall results also show an ascendant curve.
Therefore, more data would help to improve the WSD system.

In DSO, the system keeps learning with more data, but it stabilizes with 80% of all the
available data, which indicates that for this kind of system we have reached the roof. At
that point, it uses an average of 930 examples per noun, and 1,370 per verb. The recall is
72% for nouns and 67% for verbs.

4. How much noise can the data accept?

About this factor, we can conclude that when we have few examples to train, as in Semcor,
the noise affects the performance heavily, and it is necessary to use bigger amounts of data
in order to minimize the damage.

5. Fine-grained vs. coarse-grained disambiguation.

The precision we obtain with semantic files is 83%, both in DSO and Semcor; but with
slightly lower coverage in Semcor. The improvement is specially noticeable for verbs, where
the reduction of sense granularity allows to reach 91% recall in DSO. An open issue is to
find applications where coarse disambiguation would help.
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6. Expected performance for all words in a text.

Our experiments in the Semcor and DSO corpora have illustrated that we can expect a
recall of around 68%-70% when working on this kind of setting with the WordNet sense
inventory.

7. Comparison with other methods in a real setting: Senseval-2.

The results in this setting have been significantly lower (57% precision) due to problems
related to the specific setting, as was explained in the beginning of this section.

8. Study performance for another language, less studied and with less resources:
Basque.

Our main conclusion regarding our work for Basque was that more work was needed on
the feature set. Our aim was to imitate the expressiveness of the well-studied features for
English WSD, and we introduced several different feature types with that goal. A better
study of the contribution of single features would be desirable. In any case, the results in the
Senseval-2 task are encouraging, with our system only 2% below the winning JHU system
(while the difference was 8% between these systems for English), which would indicate that
our feature set represented better the context than the JHU set, although their ML method
was clearly better.

After the experiments with our baseline system, we are now able to start studying the main
hypotheses of this dissertation: the contribution to the WSD problem of linguistically motivated
feature representations, and the automatic acquisition of examples to alleviate the knowledge
acquisition bottleneck.

Regarding the feature set, it is clear that the integration of diverse and informative features
is necessary to move towards the solution of the problem. Our results in the Senseval-2 setting
in comparison with other systems suggest that a richer feature set (including at least syntactic
dependencies) should improve the performance of the system. In chapter IV, we will introduce
different feature types based on syntactic dependencies, semantic tags, and selectional prefer-
ences in order to measure their contribution to disambiguation. We have also seen in our study
of local/topical features that different words benefit from different feature types, and we will
explore the possibility of choosing a different feature-set per word in a WSD system based on a
trade-off between precision and coverage.

For the issue of the knowledge acquisition bottleneck, our experiments on the learning curves
show that more data would help to improve the WSD systems. Moreover, the experiments on the
effect of noise illustrate that the more examples we have, the smaller is the loss of performance
in the presence of noise. Therefore, if we could obtain a big corpora with some noise on it (as
it would happen with automatic means), it could be useful for WSD and could alleviate the
hand-tagging effort. This issue is explored in-depth in chapter VI.

Finally, apart from the feature types and number of examples, we have seen in this chapter
that our basic system should include other characteristics to be robust enough. For an enhanced
version of our system to be tested in the next Senseval, we will include a multiword pre-processing
tool (cf. section III.3.2), and we will explore other ML algorithms and smoothing techniques for
better estimations of the training data (factors covered in chapter V).
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New feature types: syntactic and semantic knowledge

IV.1 Introduction

In the previous chapter we mentioned that one of the limitations of our system was the repre-
sentation of the context by means of simple features. As we noticed in the introduction chapter,
the design of the feature-set is crucial when building a supervised WSD system. The features
have to be generic enough to be applied in a variety of cases, and yet they should reflect the
relevant information of the context at hand.

We will illustrate the importance of informative features by means of an example. Let us
recall one of the questions that we introduced in chapter I:

Can you translate the whole document into Basque?

Let us assume that we want to disambiguate the verb translate in the sentence. For simplicity
of the exposition, the goal will be to discriminate between the first two senses in WordNet 2.0,
defined as follows:

1. translate, interpret, render – (restate (words) from one language into another language).

2. translate, transform – (change from one form or medium into another).

There are interesting features in the context that could be extracted by a dependency parser
for the target word translate:

• Subject: you

• Head Object: document

• Head of Prepositional Phrase (into): Basque

In the basic feature set seen in chapter III, this information is handled by different features,
which would represent the words document and Basque in the general “bag-of-words” feature;
and the word you simply as a left collocate.

Now, let us suppose that we have in our training set the sentence “I translated a book from
Italian to Basque”. If we rely on the basic feature set, the only feature that would match the
test example is the general “bag-of-words” feature, instantiated with the word Basque. However,
this feature type can match also several irrelevant words. On the other hand, using parsing
information, the feature type “Head of Prepositional Phrase (into)” would match for Basque.
This is a more discriminative feature type, and could help to discard noise.

Moreover, this kind of linguistic feature could be used to generalize further (with the WordNet
hierarchy, for instance), and build selectional preferences, as in (Resnik, 1992, 1997). Following
with the example, a training sentence like “I translated a book into Spanish” would be useful
if the feature type “Head of Prepositional Phrase (into)” would be able to allow matching of
classes that are below a superclass like “Languages”, thus relating Basque and Spanish.



52 New feature types: syntactic and semantic knowledge

Traditionally, the WSD systems have relied on basic feature sets to learn their models. Only
in recent years this picture has changed, with the advent of “off the shelf” parsing tools and other
resources that can provide rich features, like the domain information from WordNet Domains
(Magnini and Cavagliá, 2000). The use of these tools to extract features have been noticeable
in the systems participating in Senseval, specially in the last edition.

When richer information is applied, normally the different feature sets are integrated together,
and no study of the performance of different features is done. However, there is interesting work
on the contribution of different feature types (including syntactic dependencies like the ones we
will study on this chapter) in the works by Yarowsky and Florian (2002) and Lee and Ng (2002).
We will describe their conclusions on section IV.2. For our work, we think that it is important
to measure the contribution of each knowledge source separately, and that is one of the goals of
this chapter. This study would allow us to construct a feature-set in a principled way, and to
avoid redundant or noisy features in our setting.

Another important aspect of disambiguation is that different words exhibit different behavior;
as we have seen in the previous chapter, some words are better disambiguated relying on the
local context while others take more profit from “bag-of-word” type features. Another example
comes from the literature, in the work by Gliozzo et al. (2004) we can see that their method
based on domains works well for some words (domain-words), and obtains very low performance
with others. The concept of word-experts (systems tailored for each different target word) is
getting strong in WSD research in recent years (Decadt et al., 2004). Thus, as it is difficult
to know which knowledge source will be useful for a word in a context, it would be interesting
to explore as many sources as possible before we shape our word-expert. In this chapter, we
have also tested the selection of features per word, starting from a big set of basic and syntactic
features.

The feature types we are going to study consist on a broad range of syntactic features,
semantic features extracted using the WordNet hierarchy, and selectional preferences learned
from an all-words sense-tagged corpus (Semcor). The necessary syntactic knowledge will be
extracted using the Minipar parser (Lin, 1998b), which we chose after comparison with some
other available for research. We will use the dependency trees to implement experiments using
the Semcor and DSO corpora, and compare the new setting to the basic feature set described in
chapter III. We will also apply those features to the Senseval-2 setting, to be able to compare our
results with other systems. Our last experiment on syntactic features will consist on algorithms
that perform precision/coverage trade-off to obtain systems that can answer with high precision
to part of the test instances. One of these algorithms will rely on selection of features per
word; an approach that could also be useful to retrieve sense-tagged examples automatically in
a fashion similar to the method in chapter VI.

Regarding semantic features, for our first experiments we will extract them from the context
using the disambiguated corpus Semcor and the relations in the WordNet hierarchy. We defined
features based on the synsets surrounding the target word, the hypernyms of these synsets (at
different levels), and also their semantic files.

Finally, we will learn selectional preferences for classes of verbs using the syntactic depen-
dencies in the Semcor corpus. We will rely on the WordNet hierarchy to assign weights to
the relations between synsets, and we will apply the learned model to disambiguate the testing
examples.

This chapter is organized as follows. In the next section we will describe works from the
literature that are in line with the aims of the chapter. Section IV.3 will outline the setting we
will apply in the different experiments. Section IV.4 will introduce the set of syntactic features
that we will acquire from the dependency parser. The next three sections (IV.5, IV.6, and
IV.7) will be devoted respectively to experiments performed with syntactic features in Semcor
and DSO; to experiments in the Senseval-2 setting; and to the precision/coverage trade-off
experiments. In the subsequent section, IV.8, the semantic feature set will be introduced, and
the evaluation of the effect of those features will be covered in section IV.9. The focus of the
next two sections (IV.10, and IV.11) will be selectional preference learning and the corresponding
evaluation. Finally, the conclusions of the chapter will be summarized in section IV.12.
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IV.2 Related work

The importance of integrating richer feature sets in WSD models is now reflected in the growing
number of systems that apply them in some way. As we will see, the Senseval competitions
and the recent literature offers many examples of this trend. We will present some of them
according to the different knowledge sources they use: syntactic information (dependency rela-
tions), semantic features (sense tags, or other semantic tags from the context), and selectional
preferences. We will perform experiments separately for them in this chapter, and we will try
to measure their contribution to WSD performance.

IV.2.1 Syntactic features

The feature types that are being most widely applied recently are syntactic dependencies. The
availability of “off the shelf” parsing tools, and some empirical evidence of their contribution
(Yarowsky and Florian, 2002; Lee and Ng, 2002), have made them interesting for WSD research.
In (Lee and Ng, 2002), they apply the statistical parser from (Charniak, 2000), and extract a
small set of features based on dependencies. They define different features depending on the
target PoS, and apply 4 different ML methods in a battery of experiments. They report the best
results until that day both on the Senseval-1 and the Senseval-2 English lexical-sample datasets.
Syntactic features contribute significantly to the overall performance.

In (Yarowsky and Florian, 2002) a complete survey of parameter spaces is carried out, includ-
ing syntactic features extracted by means of heuristic patterns and regular expressions over the
PoS tags around the target word. They describe an ensemble of ML methods that competed for
different languages in Senseval-2; we already introduced this system in section II.7. The main
conclusions of their study are that the feature space has significantly greater impact than the
algorithm choice, and that the combination of different algorithms helps significantly to WSD.
Overall, the best results are obtained combining different ML methods, and using the whole
feature set; but they notice that the syntactic features contribute less than local and topical
features. They argue that the reason for this could be the higher sparseness of these features,
and also the noise introduced in the detection of features. They also show that syntactic features
help more in the disambiguation of verbs, and when applied with discriminative methods like
DLs or Transformation Based Learning (TBL).

In the Senseval competitions for English, the number of systems using syntactic features
has been growing. In Senseval-1 (cf. section II.6) only the winning system (JHU) applied
these features among the top-performing systems. In Senseval-2 (cf. section II.7), again the
winning system from JHU (described above) relied on syntactic features; and we can also mention
(Tugwell and Kilgarriff, 2001), which obtains a grammatical relations database from the corpus,
using finite-state techniques over PoS tags. This database is used to construct semi-automatically
clues for disambiguation. The other systems did not apply these features in the English tasks,
although one used dependencies to learn selectional preferences, as we will see below. In the
3rd edition of Senseval (cf. section II.8) many of the top ranked systems included syntactic
dependencies in their feature sets. However, in the lexical-sample task, the two best systems did
not have time to include them, but they mention that they would like to try them on the future.
In the all-words task, the best performing systems relied on this type of knowledge, as separate
features (GAMBL), or with semantic generalizations (SenseLearner), both these systems were
described in detail in section II.8.

IV.2.2 Semantic features and selectional preferences

Another way to exploit richer information is to generalize from the words in the context using
different techniques (generally with the aid of resources like the WordNet ontology). The process
can benefit from the syntactic dependencies seen in the context and construct what is called
“selectional preferences” of the target word. There are many approaches relying on this technique
in the literature. Resnik (1992, 1997) defines an information-theoretic measure of the association
between a verb and nominal WordNet classes: selectional association. He uses verb-argument
pairs from the BC. Evaluation is performed applying intuition and WSD. The model we will
introduce in section IV.10 follows in part from his formalization.
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Abe and Li (1996) follow a similar approach, but they employ a different information-theoretic
measure (the minimum description length principle) to select the set of concepts in a hierarchy
that generalize best the selectional preferences for a verb. They call their model Tree Cut Model
(TCM). The argument pairs are extracted from the WSJ corpus, and evaluation is performed
using intuition and PP-attachment resolution.

In (Stetina et al., 1998), they extract [word − argument − word] triples for all possible
combinations, and use a measure of “relational probability” based on frequency and similarity.
They provide an algorithm to disambiguate all words in a sentence. It is directly applied to
WSD with good results.

In (Stevenson and Wilks, 1999), selectional restrictions based on LDOCE semantic classes are
applied in a “partial sense tagger” that is included in a combined system. They extract syntactic
dependencies using a specially constructed shallow parser, and the sense-tagger only keeps the
senses that do not break any constraint for the expected semantic classes of the arguments. The
classes of LDOCE are organized hierarchically, therefore, the constraint is kept if the semantic
category is at the same level or lower in the hierarchy.

Regarding the Senseval competitions, we described the system LIA-Sinequa in section II.6
as one of the best performing in Senseval-1. Their system trained Binary Decision Trees on a
feature set that included WordNet semantic classes in fixed positions around the target word.
In Senseval-2, the work by McCarthy et al. (2001) is an extension of the TCM model described
above. In this case, the TCMs are acquired for verb classes instead of verb forms. They
apply Bayes rule to obtain probability estimates for verb classes conditioned on co-occurring
noun classes. They use the subject and object relations between argument heads. The main
problem of this all-words system was the low coverage, and they alleviate it relying on the “one
sense per discourse” constraint, and in anaphora resolution. Finally, in Senseval-3 we can find
“SenseLearner”, already described in section II.8, which also applies semantic generalizations in
one of its two modules. This system ranked second on the English all-words task.

IV.3 Experimental setting

The experiments performed in this chapter have followed two settings with their correspond-
ing corpora, sense inventory, and word-sets (cf. section III.3.3): “Semcor&DSO” setting, and
“Senseval2” setting. As ML methods, DL and AB have been applied. The new features will be
described in section IV.4. The experiments are distributed as follows:

• Syntactic features: 2 settings:

– Semcor&DSO setting: DL method.

– Senseval2 setting: DL and AB methods.

• Semantic features: Semcor&DSO setting: DL method.

• Selectional preferences: Semcor&DSO setting.

IV.4 Syntactic features

In order to extract syntactic features from the tagged examples, we need a parser that meets the
following requirements: free for research, able to provide the whole structure with named syn-
tactic relations (in contrast to shallow parsers), positively evaluated on well-established corpora,
domain independent, and fast enough.

We found three parsers that fulfilled all the requirements: Link Grammar (Sleator and Tem-
perley, 1993), Minipar (Lin, 1998b) and RASP (Carroll and Briscoe, 2001). We installed the
first two parsers, and performed a set of small experiments (John Carroll helped out running his
own parser). Unfortunately, a comparative evaluation does not exist; therefore we performed a
little comparative test, and all parsers achieved similar results. At this point we chose Minipar
mainly because it was fast, easy to install and the output could be easily processed to extract
dependencies. The choice of the parser did not condition the design of the experiments, and the
results should also be applicable to other parsers with similar performance.
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From the output of the parser, we will extract different sets of features. First, we distinguish
between direct relations (words linked directly in the parse tree) and indirect relations (words
that are two or more dependencies apart in the syntax tree, e.g. heads of prepositional modifiers
of a verb). An example can be seen in figure IV.1.

• Henry obj word listed

• listed objI word Henry

• petition mod Prep pcomp-n N word listed

• listed mod Prep pcomp-n NI word petition

Figure IV.1: Relations extracted for the verb list from the sentence Henry was listed on the
petition as the mayor’s attorney. Obj word :verb-object relation. Mod Prep pcomp-n N word :
relation of type “nominal head of a modifier prepositional phrase” between verb and noun. I:
inverse relation.

We will describe the tuples that are extracted in the example. The direct relation “verb-
object” is obtained between listed and Henry and the indirect relation “head of a modifier
prepositional phrase” between listed and petition. For each relation we store also its inverse.
The relations were coded according to the Minipar identifiers (see table IV.1). For instance,
in the last relation in figure IV.1, mod Prep indicates that listed has some prepositional phrase
attached, pcomp-n N indicates that petition is the head of the prepositional phrase, I indicates
that it is an inverse relation, and word that the relation is between words (as opposed to relations
between lemmas).

The most relevant relations are shown in table IV.1. For each relation this information is
provided: the acronym of the relation, whether it is used as a direct relation or to construct
indirect relations, a short description, some examples, and additional comments. The complete
list of relations is given in table B.8 in the appendix.

Table IV.2 illustrates the way the different dependencies are related. We see that in order
to extract the dependencies between words, we have to follow the relations that are given in
Minipar. As the table shows, some dependencies are defined by 2 or 3 relations in Minipar.
For each relation, we show the PoS tags of the components and some examples. The PoS tags
give information about the subcategorization of the words, and we will use them to build some
features. Some dependencies represent strong relations (arguments), and are marked in bold.
The complete tagset of Minipar is shown in figure IV.2.

We will classify the syntactic features as instantiated grammatical relations (IGR) and gram-
matical relations (GR).

IV.4.1 Instantiated Grammatical Relations (IGR)

IGRs are coded as {wordsense relation value} triples, where the value can be either the word
form or the lemma. We also use the PoS information to construct the Minipar relations (e.g.
Mod Prep.). The list of the relevant relations in Minipar (cf. table IV.1), and the connections in
table IV.2 will be the base to select the relations that seem to have useful information, for a total
of 38 features. Two examples for the target noun church are shown below. In the first example,
a direct relation is extracted for the {building} sense (church#2 in WordNet 1.6), and in the
second example an indirect relation for the {group of Christians} sense (church#1). The
former relates directly the verb with its object, and the latter links the verb surrender to church
(which is the head of a prepositional phrase) following two Minipar dependencies, namely mod
(modifier) and pcomp-n (nominal head of PP).

• Example 1 : “...Anglican churches have been demolished...”
{Church#2 obj lem demolish}

• Example 2 : ”...to whip men into a surrender to a particular church...”
{Church#1 mod Prep pcomp-n N lem surrender}
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Relation D. I. Description Examples Comments
By-subj X Subj. with passive
C X Clausal comple-

ment
... that John loves Mary
that <-c- John loves Mary
I go there for + inf. clause
go <-mod- (inf) <-c- for
<-i- mainverb

Cn X Nominalized
clause

to issue is great
be <-s inf <-cn inf <-i issue

Often wrong

Comp1 X Complement (PP,
inf/fin clause) of
noun

... one of the boys
one (N P) <-comp1- of <-
pcomp-n- boy

“boy in the
garage” is MOD

... grants to finance hospi-
tals
grants (N C) <- c1- (inf)
<-i- finance
... resolution which voted
...
resolution (N C) <-c1-
(fin) <-i- voted

Desc X Description ... make a man a child
make <-desc- child

Occurs frequently

Fc X Finite complement ... said there is ...
say <-fc- (fin) <-i- main-
verb

I X See c and fc, dep.
between clause and
main verb

Mod X Modifier ...strikes increase as work-
ers demand...
increase <-mod as <-
comp1 fin <-i demand
raises to cope with situa-
tion
raise <-mod inf <-i cope <-
mod with
<-pcomp-n situation
... was already lost ...
lost <-mod- already

Obj X Object
Pcomp-c X Clause of pp in voting itself

in <-pcomp-c vpsc <-i-
votig

Pcomp-n X Nominal head of
pp

in the house
in <-pcomp-n house

Pnmod X Postnominal mod. person <-pnmod missing
Pred X Predicative (can

be A or N)
John is beatuful
(fin) <-i- is <-pred beauti-
ful
<-subj John

Sc X Sentential comple-
ment

force John to do
force <-sc-do

Subj X
Vrel X Passive verb modi-

fier of nouns
fund <-vrel- granted When “pnmod”, is

tagged as adj. (of-
ten wrongly), here
is tagged as verb

Table IV.1: The most relevant syntactic relations, with examples and comments. D: Direct
relation. I: Indirect relation.

IV.4.2 Grammatical relations (GR)

This kind of feature refers to the grammatical relation itself. In this case, we col-
lect bigrams {wordsense relation} and also n-grams {wordsense relation1 relation2
relation3 ...}. The relations can refer to any argument, adjunct or modifier. N-grams are
similar to verbal subcategorization frames, and at present, we have used them only for verbs.
We want to note that Minipar provides simple subcategorization information in the PoS itself
(e.g.: V N N mark for a verb taking two arguments). We have defined 3 types of n-grams:
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Source PoS Dep. PoS Dep2. PoS Dep3. PoS Examples
V N Obj N - - - -
V N Subj N CN - NO - - - It does not link

like s
A (?) Subj C i V it is possible to

<-subj- be
V N S N CN - cn - C - i - V to buy is funny
V N By-subj Pr pcomp-npcomp-c N C - i - V made by J.

made by cutting
N (no sub-
cat)

Mod P A pcomp-... end of doing,
position of
accepted prac-
tice

A (no sub-
cat)

Mod P A pcomp-n/-c essential for,
fastidious in
heavily traveled

VBE Mod CPNA i... is to enter
-
-
is absolutely

V (no sub-
cat)

Mod C P A i... pcom... combine to
investigate
join after com-
pleting
was aproved
earlier

C (no sub-
cat)

Mod PCAN pcomp... On other mat-
ters, sbe. does
...

N A/ C/ P
A C/ P

comp1 A P C pcomp-c/-n i ... V (only N) sth.
close
one of the day
time to be

V N/V A Desc A N
N Pnmod A persons missing
N Vrel V bonds issued by
VBE Pred ANCP i ... pco... there is a plan

birs are to end
is across ...

V C Fc C i V subcat C: have
to face

V I Sc V subcat I: force
sb to take

V no subcat Amod A even know

Table IV.2: Dependencies and their relations. The PoS columns indicate the Pos tag given by
Minipar to the components of the relation; the Dep. (dependency) columns indicate the type of
relation between the left and right elements. Examples are given in the last column. Arguments
are marked in bold.

• Ngram1: The subcategorization information included in the PoS data given by Minipar,
e.g. V N N.

• Ngram2: The subcategorization information in ngram1, filtered using the arguments that
really occur in the sentence.

• Ngram3: All dependencies in the parse tree.

The three types have been explored in order to account for the argument/adjunct distinction,
which Minipar does not always assign correctly. In the first case, Minipar’s judgment is taken
from the PoS. In the second case the PoS and the relations deemed as arguments are combined
(adjuncts are hopefully filtered out, but some arguments might be also discarded). In the third
case, all relations (including adjuncts and arguments) are considered.

In the following example, the ngram1 feature indicates that the verb fall has two arguments
(i.e. it is transitive), which is an error of Minipar, probably caused by a gap in the lexicon. The
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• Det: Determiners

• PreDet: Pre-determiners

• PostDet: Post-determiners

• NUM: Numbers

• C: Clauses

• I: Inflectional Phrases

• V: Verb and Verb Phrases

• N: Noun and Noun Phrases

• NN: Noun-Noun Modifiers

• P: Preposition and Preposition Phrases

• PpSpec: Specifiers of Preposition Phrases

• A: Adjective/Adverbs

• Have: Have Verb

• Aux: Auxiliary verbs. E.g.: should, will, does, ...

• Be: Different forms of be: is, am, were, be, ...

• COMP: Complementers

• VBE: Be as a linking verb. E.g.: I am hungry

• V N: Verbs with one argument (the subject), i.e., intransitive

verbs

• V N N: Verbs with two arguments, i.e., transitive verbs

• V N I: Verbs taking small clause as complement

Figure IV.2: List of PoS tags in Minipar.

ngram2 feature indicates simply that it has a subject and no object, and the ngram3 feature
denotes also the presence of the adverbial modifier still. Ngram2 and ngram3 try to repair
possible gaps in Minipar’s lexicon.

E.g.: His mother was nudging him, but he was still falling.

{Fall#1 ngram1 V N N}

{Fall#1 ngram2 subj}

{Fall#1 ngram3 amodstill subj}

IV.5 Syntactic features on Semcor and DSO

In this section we will describe the experiments that we performed on the Semcor and DSO
corpora using the features defined in section IV.4. We targeted the experiments on setting
“Semcor&DSO” (cf. section III.3.3.1); the 19-word set A was used when working on Semcor,
and the 8-word set B with DSO. We applied DL, and exceptionally, for the experiments in this
section pruning was not applied (cf. section II.4.2). The reason not to use pruning was that
we could foresee that the coverage of the syntactic features separately would be low, and we
expected good recall for the algorithm making decisions even with few data.

For our first experiment, we grouped the syntactic features in different sets, according to the
description given in section IV.4 . For the IGR, we separated the relations obtained directly
and indirectly; for the GR, we distinguished between direct and indirect bigrams, and we also
separated the three types of n-grams described. There was a total of seven sets of syntactic
features. We also applied the algorithm to the basic features described in section III.4.1, to
know the performance we could achieve without pruning.

The results of this experiment, which was targeted to set A in Semcor, using 10-fold cross-
validation, are shown in table IV.3. For each part-of-speech and overall, the precision and
coverage of the seven syntactic feature sets, the basic feature set, and the MFS baseline are
provided. The ngram features, which provide subcategorization information, were applied only
for verbs. For each precision column, the best result is given in bold.

The syntactic feature sets exhibited different behavior:
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Feature set
Adj. Adv. Nouns Verbs Overall

Prec. Cov. Prec. Cov. Prec. Cov. Prec. Cov. Prec. Cov.
MFS 77 100 58 100 69 100 51 100 61 100
Basic feats. 82.5 100 69.9 100 79.3 100 51.2 100 67.0 100
IGR - direct 86.5 31.2 71.1 20.2 78.2 69.0 49.1 69.2 64.0 53.9
IGR - indirect 100 1.0 100 0.7 90.9 8.0 47.9 19.3 59.2 9.9
GR - bigr. - direct 79.3 89.2 56.5 70.8 70.5 92.8 43.8 87.3 58.7 85.5
GR - bigr. - indirect 81.9 5.4 81.7 8.1 62.3 45.3 44.5 51.2 53.7 34.7
GR - ngram1 45.3 99.7
GR - ngram2 41.9 92.7
GR - ngram3 47.2 66.4

Table IV.3: Basic and Syntactic feature sets in Semcor. Precision and coverage of syntactic
feature sets, basic feature set, and MFS baseline. Results per PoS and overall. Ngram features
applied only for verbs. Best precision given in bold for each column.

Feature set
Adj. Adv. Nouns Verbs Overall

Prec. Cov. Prec. Cov. Prec. Cov. Prec. Cov. Prec. Cov.
MFS 77 100 58 100 69 100 51 100 61 100
Base Features 82.5 100 69.9 100 79.3 100 51.2 100 67.0 100
+ IGR-direct 82.8 100 70.3 100 79.4 100 51.1 100 67.1 100
+ IGR-indirect 82.5 100 69.9 100 79.2 100 51.4 100 67.0 100
+ GR-bigr-direct 82.7 100 69.9 100 79.1 100 51.2 100 66.9 100
+ GR-bigr-indirect 82.5 100 69.9 100 79.1 100 51.1 100 66.9 100
+ GR-ngram1 51.3 100
+ GR-ngram2 51.2 100
+ GR-ngram3 51.3 100

Table IV.4: Performance in Semcor adding syntactic features to the basic set. Best precision
per column given in bold.

• GR-bigram-direct was the only feature set that obtained acceptable coverage overall (85%),
but its precision was lower than the basic feature set and the MFS baseline.

• The sets GR-ngram1 and GR-ngram2 obtained good coverage for verbs, but they also had
lower precision than the baselines. We have to notice that the MFS baseline for verbs was
as good as the DLs with the basic set of features, which made it difficult to beat.

• The IGR-direct feature set was better in overall precision than the MFS baseline, but for a
coverage of 53%.

• The indirect feature sets obtained high precision, except for verbs, but could only be applied
in a few cases.

From this experiment we have to conclude that when used separately, the syntactic features
that we extracted present a lower performance than the basic feature set.

In our next experiment, we used the syntactic feature sets in combination with the basic
set of features. We expected the new features to provide additional clues that would improve
the performance of the basic setting. Thus, we repeated the previous experiment combining
the basic set and the syntactic sets. The results are shown in table IV.4. As in the previous
experiment, the seven new feature sets and the two baselines are provided per PoS and overall,
and the best precision for each column is marked in bold.

We see clearly that there is no improvement over the results of the basic set. It seems that
the syntactic features do not add new information for the DLs. Before we analyze these results
in more detail, we repeated the experiment on the DSO corpus for the set B of words (cf.
section III.3.1.1). We expected that this would help to improve the coverage of the syntactic
features, because the number of examples per word is higher in this corpus. The results are
illustrated in table IV.5. For this experiment, we did not separate direct and indirect relations,
and we included all the syntactic features in a new set (GR + IGR). The precision and coverage
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Features
Nouns Verbs Overall

Prec. Cov. Prec. Cov. Prec. Cov.
MFS 56 100 61 100 59 100
Base Features 73.1 100 69.1 99.4 71.2 99.7
IGR 76.2 24.3 71.4 28.2 73.7 26.1
GR-bigram 68.4 35.0 71.7 26.8 69.8 31.0
GR-ngram1 46.3 40.6
GR-ngram2 52.9 37.6
GR-ngram3 54.5 28.2
IGR + GR 71.3 35.9 69.3 34.8 70.3 35.4
Basic + IGR 73.2 100 69.5 99.4 71.4 99.7
Basic + GR-bigram 73.2 100 69.2 99.4 71.3 99.7
Basic + GR-ngram1 67.9 100
Basic + GR-ngram2 67.9 100
Basic + GR-ngram3 68.0 100
Basic + IGR + GR 73.3 100 69.6 99.5 71.5 99.8

Table IV.5: Results for basic and syntactic feature sets in DSO.

of the syntactic set, and the combination of basic and syntactic sets is shown. The best precision
per column is given in bold.

We can see that the coverage is still poor, but the precision is higher than in Semcor. The
MFS baseline is easily beaten, the IGR features improve significantly the precision of the basic
set overall (with lower coverage), and the GR features improve the base results for verbs. The
IGR features exhibit a better behavior with nouns, and the GR features with verbs. Combining
all the features, there was a small improvement over the basic set overall (0.3% in precision, and
0.1% in coverage); and a bigger difference for verbs (0.5% in precision, 0.1% in coverage).

At this point, we analyzed the behavior of the different features separately, in order to know
whether they can be useful for disambiguation. We applied the DL algorithm using only one
feature each time, and we evaluated the precision and coverage (normally low) of each piece
of evidence. We included in this experiment the basic features, for comparison. For a better
analysis, we separated the results by PoS, and sorted the features following two criteria: precision
and recall. The tables are too large to be included here, and can be seen in section B.4 in the
appendix.

Concerning the precision of the features, we see that all the high-precision features are syn-
tactic, even if they attain very low coverage. There are many features with 100% precision, but
they are applied few times. For instance, the full-precision feature that attains highest coverage
for nouns is mod Prep pcomp-n N lem (“lemma of the head of a modifier prepositional phrase”).
For reference, we already presented an example with a similar relation for verbs in figure IV.1.
This relation can be used only in 3.3% of the examples (32 out of 959). For verbs there are few
full-precision features, and their coverage is reduced to a handful of examples. The best is the
feature descI (description), which appears only 4 times (always with the verb die in the same
sense).

However, when we sort the features according to their recall, the syntactic features are out-
performed by basic features. For nouns, only basic features achieve more than 25% in recall.
The best performing features are context windows, followed by local features (bigrams and tri-
grams) formed with PoS, local features formed with word-forms, and finally syntactic features.
The best syntactic features are formed with the prepositional complements of the nouns, with
22.5% recall.

For verbs the results are different. The recall is lower, as it usually happens, and the features
can be ranked as follows (range of recall given between parentheses):

1. Context windows (45%-50%)

2. GR-ngram1 (45.2%)

3. Local features formed with PoS (39%-43.5%)

4. GR-ngram2 (38.8%)

5. Syntactic features (leaded by GR-ngram3, subject, ...) and other local features (0%-38.1%)
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In this case, the syntactic features obtain better results. The GR-ngram sets obtain good
recall, even better than some basic bigrams and trigrams. This indicates that some subcatego-
rization information has been acquired. Other syntactic features that appear high in the table
are those related to the subject of the target verb, but attain lower coverage. In the tables from
the appendix (cf. section B.4), where the results for all the features are given, we can notice
that many syntactic features do not appear in the corpus.

Finally, in order to understand the reasons of the small improvement when combining all the
features, we focused on some words in the Semcor experiment, and analyzed the learned decision
lists. These are the main conclusions:

1. Syntactic features usually have fewer occurrences in the training corpus than basic features,
and they rank low in the decision lists. Even syntactic features with high frequency in
training usually have basic features above them, which suggest that the information may
be redundant.

2. In the case of words with a dominant sense, some syntactic features that appear frequently
and do not carry much information (e.g. the presence of a determiner linked to a noun)
can introduce noise and point strongly to the most frequent sense. This happens also with
non-syntactic features, but in a less harming scale because they comprise a more reduced
and controlled set.

3. The parser fails to detect many dependencies and commits some errors, which affects the
precision and specially the coverage.

From this first analysis of the syntactic features, we can conclude that different ways have
to be explored in order to take advantage of this source of information. These issues will be
addressed in different sections of this chapter:

• Section IV.6 covers the performance of the syntactic features in the Senseval-2 setting. By
means of these experiments we will see the performance of another ML algorithm (AB) that
will learn better from redundant features, and also the quality of the relations extracted
from the Senseval-2 lexical sample corpus.

• Sections IV.10 and IV.11 in this chapter, introduce selectional preferences learned from
some of these syntactic relations.

• Feature selection is presented in section IV.7, together with another method to improve
precision at the cost of coverage. Feature selection can be a way to discard noisy syntactic
features. In related work, smoothing of features, described in chapter V, will provide better
estimations from the training data.

IV.6 Syntactic features on the Senseval-2 corpus

For the following experiments, we will use the Senseval-2 lexical sample corpus, and evaluate
the effect of the syntactic features. We described in section III.5.8 the basic experiments we
performed for English in this competition. The experiments that we will show in this section
were not included in our Senseval-2 submission due to time constraints.

We devised two experiments in order to measure the contribution of syntactic features in the
Senseval-2 setting. We will use the training part of the lexical-sample corpus for training, and
the testing part for evaluation; we will apply the “Senseval2” setting (cf. section III.3.3.3), for
all the words in the lexical-sample task, and the WordNet 1.7Pre sense-inventory. First we will
measure the performance of IGR-type and GR-type relations using DLs. Next, we will evaluate
the benefit of adding syntactic features to the basic feature set using DLs and AB.

Performance is measured as precision and coverage. We also consider F1 to compare the
overall performance, because it gives the harmonic average between precision and recall (where
recall is in this case precision times the coverage). F1 will help us to compare the results of the
two ML algorithms.
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PoS
IGR GR GR + IGR MFS

Prec. Cov. F1 Prec. Cov. F1 Prec. Cov. F1 F1
A 81.6 21.8 29.2 70.1 65.4 55.4 70.7 68.9 57.7 59.0
N 74.6 36.0 38.5 65.4 57.6 47.8 67.6 62.5 52.0 57.1
V 68.6 32.2 33.4 67.3 41.2 39.2 66.3 52.7 45.4 40.3

Ov. 72.9 31.9 35.2 67.1 52.1 46.0 67.7 59.5 50.4 48.2

Table IV.6: Performance for different sets of syntactic features (IGR, GR, GR+IGR) applying
DL on the Senseval-2 corpus. The figures in bold indicate the best precision, coverage, and F1
per each PoS and overall.

Feature set
DSO Senseval-2

Nouns Verbs Nouns Verbs
IGR 29.8 31.4 39.5 33.4
GR 35.5 30.3 47.8 39.3
IGR+GR 37.7 35.8 52.0 45.8
MFS 56 61 57.1 40.3

Table IV.7: F1 values for the syntactic feature sets (IGR, GR, IGR+GR) in Senseval-2 and
DSO for nouns and verbs.

IGR + GR Local Basic Basic + IGR + GR
PoS MFS

DL AB DL AB DL AB DL AB
A 59.0 57.7 62.6 66.3 67.5 65.3 66.2 65.4 67.7
N 57.1 52.0 60.0 63.6 65.3 63.2 67.9 63.3 69.3*
V 40.3 45.4 48.5 51.6 50.1 51.0 51.6 51.2* 53.9*

Ov. 48.2 50.4 55.2 59.4 59.3 58.5 60.7 58.7 62.5*

Table IV.8: F1 results for different algorithms, feature sets, and PoS in Senseval-2. ‘*’ indicates
statistical significance (McNemar’s test) over basic set.

For our first experiment, table IV.6 shows the precision, coverage and F1 figures for each of
the syntactic feature sets as used by the DL algorithm (IGR, GR, GR+IGR). The figures in
bold indicate the best precision, coverage, and F1 per each PoS and overall.

IGRs provide very good precision, but low coverage. The only exceptions are verbs, which
get very similar precision for both kinds of syntactic relations. GRs obtain lower precision but
higher coverage. The combination of both attains best F1, and is the feature set used in the
next experiment. Note that the combination of syntactic features is able to outperform MFS
overall, and for verbs the increase in F1 is 5.1%. This indicates that the features represent useful
information.

As a reference, before we present the main experiment we will compare these results with
the performance of the previous section with the DSO corpus. Even if the experiments are
different (different word-sets and corpora), this will give us a better idea of the performance we
can achieve with this kind of feature. The rows in table IV.7 indicate the three feature sets and
the MFS baseline; the columns represent nouns and verbs in the DSO and Senseval-2 corpora.

Senseval results are higher than DSO results in all cases. However, the MFS baseline (which
can serve as an indicator of the difficulty of the task: the higher the MFS value, the easier the
disambiguation) is similar in both corpora for nouns, but much higher in DSO for verbs. The
better results in Senseval-2 over the baseline indicate that the features are more reliable in the
Senseval-2 setting.

For our next experiment, DLs and AB were used on syntactic features, local features, a
combination of local+topical features (also called basic), and a combination of all features (ba-
sic+syntax) in turn. Table IV.8 shows the F1 figures for each algorithm, feature set and PoS.
Regarding the contribution of syntactic features to the basic set, the last two columns in the
table include the character ‘*’ whenever the difference in precision over the basic feature set is
significant according to McNemar’s test (cf. section II.5.2).

AB is able to outperform DLs in all cases, except for local features. The characteristics of the
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methods can be seen in section II.4. Syntactic features get worse results than local features, but
prove to be useful in the combination. Focusing on the contribution of syntactic features, we
see that DLs profit from the additional syntactic features but the difference is only statistically
significant for verbs. On the other hand, AB attains significant improvement (1.8% overall,
2.7% for verbs). The results (specially for AB) show that basic and syntactic features contain
complementary information, and that they are useful for WSD.

IV.7 Syntactic features and high precision systems

A high-precision WSD system can be obtained at the cost of low coverage, preventing the system
to return an answer in the lowest confidence cases. With this kind of approach, we can tag part
of a raw corpus with high confidence, to be able to learn from sense-tagged occurrences of a
word. This would be useful, for instance, to learn selectional preferences with methods like the
ones described in section IV.8; or for WSD in an iterative way, as in Yarowsky (1995b).

Methods to identify good features can be applied to high precision systems. This approach
would allow to identify features that work well for specific words, and discard noisy features.
At this point, where the evidence suggests that the large set of syntactic features that we have
introduced should be refined (see section IV.6), feature selection seems a reasonable path to
explore. Thus, we have built one high-precision system based on feature selection with DLs,
which consist on choosing a reduced feature set in cross-validation for each word.

Other two high-precision approaches have also been tried with DL and AB, following the
method in (Dagan and Itai, 1994) that applies thresholds to the decisions of the algorithms.
As in section IV.6, the experiments have been performed in the Senseval-2 lexical sample setting.

We will start describing the feature selection method. Ten-fold cross validation on the
training data for each word was used to measure the precision of each feature in isolation. Thus,
the DL algorithm would be used only on the features with precision exceeding a given threshold.
This method has the advantage of being able to set the desired precision of the final system.
For example, for the noun art, using both basic and syntactic features, and a threshold of 80%
precision, the system chooses the following features in cross-validation:

• has relat mod inI

• lex-mod lem

• nn lem

• nn word

• trig lem 0

• trig wf 0

Therefore, these would be the only features taken into account to tag occurrences of art in
testing. We have used the following precision-thresholds: 50, 60, 70, 80, 85, 90, and 95. The
application of the same threshold to all words provokes that some words can have no features
selected for a given threshold, and others do not have any feature filtered. More complex
feature selection methods would overcome this problem, but as we will see, this simple approach
is enough to provide answers with high confidence for a percentage of the testing data.

The results of the feature selection experiment using the basic feature set, and the one
extended with syntactic features (IGR + GR) are given in table IV.9. For each threshold, the
table shows the precision, coverage, and F1. The results correspond to the 73 words in the
Senseval-2 lexical-sample task (micro-averaged). The best F1 for each feature-set is given in
bold.

From the overall results, we can derive these conclusions:

• The syntactic features improve significantly the results. Specially for the high-precision
thresholds, the algorithms profit clearly from syntactic features.

• The best F1 is reached with the syntactic features and the 60% threshold, improving the
performance of the whole set. This shows that some filtering of syntactic features is required.
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Threshold
Basic + IGR + GR Basic

Prec. Cov. F1 Prec. Cov. F1
0 59.4 97.9 58.7 59.3 97.5 58.5
50 59.7 97.9 59.1 58.4 97.5 57.7
60 66.1 83.5 60.2 66.3 79.5 58.7
65 68.9 75.9 59.5 69.2 71.5 57.7
70 72.1 63.7 56.1 73.3 56.9 53.2
80 79.6 48.2 51.8 80.4 40.1 46.0
85 83.7 35.7 44.0 83.8 27.4 36.0
90 86.7 26.4 36.2 88.9 15.4 23.7
95 86.5 19.7 28.5 88.1 8.9 14.4

Table IV.9: Feature selection method with DL on two feature sets: basic features, and extended
set with syntactic features (IGR + GR). Micro-averaged performance for each threshold for the
73 words in the Senseval-2 lexical-sample. In bold, the best F1 for each feature-set.

θ
Base + IGR + GR Base

Prec. Cov. F1 Prec. Cov. F1
2 63.2 85.4 58.2 61.9 84.4 56.7
2.5 70.7 64.1 55.2 69.2 62.6 53.3
3 79.7 39.0 44.7 78.7 37.7 43.1
3.5 88.4 20.5 30.1 88.5 19.0 28.3
4 93.7 7.9 13.7 93.5 7.1 12.4

Table IV.10: Decision threshold with DL on two feature sets: basic features, and extended set
with syntactic features (IGR + GR). Micro-averaged performance for each θ for the 73 words
in the Senseval-2 lexical-sample. In bold, the best F1 for each feature-set.

• A high precision of 86.7% can be achieved for 26.4% of the testing examples.

The second method is based on a decision-threshold (Dagan and Itai, 1994): the algorithm
rejects decisions taken when the difference of the maximum likelihood among the competing
senses is not big enough. For this purpose, a one-tailed confidence interval was created so we
could state with confidence 1 − α that the true value of the difference measure was bigger than
a given threshold (named θ). As in (Dagan and Itai, 1994), we adjusted the measure to the
amount of evidence, and applied a 60% confidence interval. For each feature f and sense i, the
lower bound βα(featf , sensei) was calculated using the following formula:

βα(featf , sensei) = log(
Nfi

∑

j 6=i Nfj
) − Z1−α

√

1

Nfi
−

1
∑

j 6=i Nfj

Where Nfi denotes the frequency of feature f with sense i, and Z1−α is the confidence
coefficient from the normal distribution. Thus, for a new example to disambiguate, a feature f
is discarded for a sense i when βα(featf , sensei) < θ. The values of θ range from 2 to 4. The
results are shown in table IV.10.

In this experiment the contribution of the syntactic features is smaller than in table IV.9,
although they help. The use of all the features allows for a precision of 93.7% and a coverage of
7.9%.

In the case of AB, there was no straightforward way to apply the feature selection method.
The application of the decision-threshold did not yield satisfactory results, therefore we turned
to using the support value returned for each decision that was made. We first applied a threshold
directly on this support value, i.e. discarding decisions made with low support values. A second
approximation, which is the one reported here, applies a threshold over the difference in the
support for the winning sense and the second winning sense. Still, further work is needed in
order to investigate how AB could abstain in the less confident cases.

The results for some representative points are given in table IV.11. There, we can see that the
F1 value improves significantly for syntactic features, reducing a little the coverage. However,
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Basic + IGR + GR Basic
Prec. Cov. F1 Prec. Cov. F1
60.3 100 60.3 59.4 100 59.4
66.7 84.5 61.1 65.6 83.5 59.7
68.5 77.5 59.8 67.7 76.3 58.6
70.4 70.0 58.0 69.5 69.4 56.9
71.9 61.9 55.0 70.6 61.4 53.7
74.5 45.1 46.3 73.3 43.5 44.4
74.9 38.4 41.6 74.0 37.7 40.5
75.0 33.5 37.6 73.1 32.0 35.4
74.0 26.7 31.2 72.5 27.5 31.3
72.0 19.3 23.3 71.0 18.6 22.3
92.1 0.9 1.6 0.9 89.5 0.9
100 0.8 1.6 0.8 96.7 0.8

Table IV.11: Application of AB with decision thresholds. Performance on intermediate points
for basic and extended features. Micro-averaged performance for the 73 words in the Senseval-2
lexical-sample. In bold, the best F1 for each feature-set.
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Figure IV.3: Graph of systems based on precision/coverage trade-off in Senseval-2 data.

the system is not able to reach high percentage values, except for a handful of cases. As we said,
other means should be explored to adapt AB to this task.

The results of the three experiments are better illustrated in the precision/coverage graph
in figure IV.7. The figure reveals an interesting behavior for different coverage ranges. In the
high coverage range, AB on basic+syntactic features attains the best performance, which is
consistant with the results in section IV.6. In the medium coverage area, the feature selection
method for DL obtains the best results, also for basic+syntactic features. Finally, in the low
coverage and high precision area the decision-threshold method for DL is able to reach precisions
in the high nineties, with almost no profit from syntactic features.

The two methods to raise precision for DL are very effective. The decision-threshold method
obtains constant increase in performance up to 93% precision with 7% coverage. The feature
selection method attains 86% precision with 26% coverage using syntactic features, but there is
no further improvement. In this case DL is able to obtain extremely good accuracy rates (at the
cost of coverage) restricting to the use of the most predictive features. A possible improvement
of this approach would be to combine the outputs of both DL methods, covering more cases
with high precision. On the contrary, we have had problems in adjusting the AB algorithm for
obtaining high-precision predictions.

The figure also shows, for coverage over 20%, that the syntactic features consistently allow
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PoS
Basic + Synsets + Sem. Files + Hypernyms + Anc. (3) + Anc.

Pr. Cov. Pr. Cov. Pr. Cov. Pr. Cov. Pr. Cov. Pr. Cov.
Adj. 82 100 82 100 84* 100 82 100 84 100 85 100
Adv. 72 100 72 100 72 100 70 100 69* 100 70 100
Nouns 80 99 80 99 80 100 81 100 80 100 80 100
Verbs 58 92 57 94 58 93 57 96 55* 97 56* 97

Overall 70 97 70 98 71 97 70 98 69* 99 69 99

Table IV.12: Results on the word-set A in Semcor adding semantic features to the basic set.
Precision (Pr.) and coverage (Cov.) shown. The ‘*’ character after the precision indicates that
the difference with respect to the basic feature set is significant. The best precision per row is
given in bold.

for better results, confirming that syntactic features improve the results of the basic set.

IV.8 Semantic features

In this section we will explore the contribution of semantic features. The Semcor corpus provides
the synsets for all the content words in the context. Using this information, we devised some
experiments in order to know whether we can take advantage of this information. The idea is
that if we could disambiguate some words in the context, these would provide additional clues
to disambiguate other words in the same context.

The assumptions of this experiment are difficult to meet in a real setting. Therefore, we did
not define the features as disambiguated collocations but as “bag-of-words”, because we can
suppose that it would be easier to disambiguate some indeterminate words in a near context
than guessing exactly the synsets of the local context.

Thus, the semantic features we will use in the next experiments are based on the WordNet
hierarchy. They will represent synsets, semantic files (see experiment on coarse senses in sec-
tion III.5.6), and hypernyms of the words in the context, in a “bag-of-words” way. This is the
complete list:

• Synset: Synsets of each word in the context.

• Semantic-file: Semantic files of each word in the context.

• Hypernym: Immediate hypernyms of the words in the context.

• Ancestor(3): Hypernyms of the words in the context, up to distance 3.

• Ancestor: Hypernyms of the words in the context, up to unique beginners.

As we will see in the next section, only the synsets and relatives of nouns have been used in
some experiments.

IV.9 Performance of semantic features

In order to use the Semcor corpus, we go back to the “Semcor&DSO” setting (cf. sec-
tion III.3.3.1). For our first experiment, we applied the DL algorithm on the A word-set (cf.
section III.3.1), adding the new features to the basic feature set described in section III.4.1. We
added one feature type each time, and evaluated the precision and coverage. The results are
illustrated in table IV.12. The best precision for each row (PoS and Overall) is given in bold.
The ‘*’ character after the precision figure indicates that the difference of the result with respect
to the basic feature set is significant according to the Student’s t-test (cf. section II.5.2).

The table shows that only semantic files improve the precision of the basic set, but according
to the t-test, the 1-point difference is not significant overall. The test is positive only for
adjectives. The other features do not improve the results. All the features based on hypernyms
improve the coverage, but not the precision. Some reason for these low results are the following:
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PoS
Topical + Hypernyms + Ancestor(3) + Ancestor

Prec. Cov. Prec. Cov. Prec. Cov. Prec. Cov.
Adj. 82 100 84 100 87* 100 88* 100
Adv. 67 100 67 100 67 100 67 100
Nouns 79 100 80* 100 80 100 80 99
Verbs 54 100 54 100 55* 100 54 99

Overall 67 100 68 100 68* 100 68* 100

Table IV.13: Results with the NB method on the word-set A in Semcor, adding semantic features
to the topical set. Only synsets of nouns used. The ‘*’ character after the precision indicates
that the difference with respect to the topical feature set is significant. The best precision per
row is given in bold.

1. The DL algorithm does not take profit from these features because it focuses only in the best
evidence. As we noticed in section IV.6, algorithms based on the combination of features,
like AB, may be better suited to scale up from basic features.

2. The WordNet hierarchy is richer for nouns than from other categories. Therefore, one
option is to use only the nouns in the context to define semantic features, in order to reduce
the noise.

3. Local features obtain usually better precision than “bag-of-words” topical features (cf. sec-
tion III.5.3). This implies that normally they have more weight in the decision, but there
are some cases in which we may have to rely on the topical context (e.g.: the method in
chapter VI, where examples are obtained automatically substituting the target word by a
relative). Therefore, even if the results for the combination of basic features (local + topi-
cal) do not improve, it would be interesting to know whether the new features can improve
the results of the topical set alone.

Taking these factors into account we designed new experiments. We did not explore exhaus-
tively all the cases, because the low results of the tests made us think in a better approach for
using the WordNet hierarchy for WSD: selectional preferences (section IV.10).

We report here the results obtained applying the NB algorithm (cf. section II.4), using only
the nouns in the context, and adding the features to the topical set. For this setting we measured
only the results with the hierarchical features (hypernyms, ancestors(3), and ancestors). We also
tested other combinations, but the differences in the results were small. We think that the results
of this experiment are enough to reflect the contribution we can expect for this kind of semantic
features.

Table IV.13 illustrates the precision and coverage achieved by NB for the different feature
sets. The best precision for each line (PoS and overall) is given in bold. The ‘*’ character
indicates significance of the Student t-test. The results show that hypernym-based features
improve the precision in one point, and according to the t-test, that difference is significant for
the sets Ancestor and Ancestor(3). We can see that the difference in overall precision is small;
and only adjectives improve clearly their performance (2%-6% recall). We analyzed the results
of the two adjectives in the set, and all the improvement was due to the word long (193 examples
in Semcor). If we examine words with other PoS, we see that the differences are very low, and
the t-test is negative in almost all cases.

All in all, the experiments suggest that other ways should be tried to benefit from these
features. Instead of the “bag-of-words” approach, the use of dependency relations seems a
better way to explore semantic generalization, as we will see in the next sections. However, the
experiments were performed on Semcor, which means that there were few examples to train,
but also that the system would be applicable to all the words that appear in Semcor. As we
have seen in the Senseval literature (cf. chapter II), the all-words systems perform significantly
lower than lexical-sample systems, and it is not easy for them to overcome the MFS baseline.
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IV.10 Learning of selectional preferences

Selectional preferences try to capture the fact that linguistic elements prefer arguments of a
certain semantic class; e.g. a verb like eat prefers as object edible things, and as subject animate
entities, as in, (1) She was eating an apple. Selectional preferences get more complex than it
might seem. E.g. (2) The acid ate the metal, (3) This car eats a lot of gas, (4) We ate our
savings, etc.

Corpus-based approaches for selectional preference learning extract a number of relations
(e.g. verb/subject) from large corpora and use an algorithm to generalize from the set of nouns
for each verb separately. Usually, nouns are generalized using classes (concepts) from a lexical
knowledge base like WordNet.

IV.10.1 Selectional preference models

Before we describe our approach, we will explain the terminology we use. We say concept and
class to refer to the synsets in WordNet. Synsets are represented as sets of synonyms, e.g.:
{food, nutrient}. When a concept is taken as a class, it represents the set of synsets that are
subsumed by this synset in the hierarchy. A word sense in WordNet is a word-concept pairing,
e.g.: given the concepts a={chicken, poulet, volaille} and b={wimp, chicken, crybaby} we can
say that chicken has two word senses, the pair chicken-a and the pair chicken-b. In fact the
former is sense 1 of chicken ({chicken1}), and the later is sense 3 of chicken ({chicken3}). For
the sake of simplicity, we also say that {chicken, poulet, volaille} represents a word sense of
chicken. We can see the four senses of chicken in WordNet 1.6 in figure IV.4.

Word: chicken

• Sense 1 => {chicken, poulet, volaille}

• Sense 2 => {chicken, Gallus gallus}

• Sense 3 => {wimp, chicken, crybaby}

• Sense 4 => {chicken}

Figure IV.4: Senses of chicken and corresponding synsets (concepts or classes) in WordNet 1.6 .

In our approach, the model is trained using subject-verb and object-verb associations ex-
tracted from Semcor. The syntactic relations were extracted using the Minipar parser. A
peculiarity of this exercise is the use of a sense-disambiguated corpus, in contrast to using a
large corpus of ambiguous words. This corpus makes it easier to compare the selectional prefer-
ences obtained by different methods. Nevertheless, the approach can be easily applied to larger,
non-disambiguated corpora.

We have extended Resnik’s selectional preference model (Resnik, 1992, 1997) from word-to-
class (e.g. verbs - nominal concepts) to class-to-class (e.g. verbal concepts - nominal concepts).
This model emerges as a result of the following observations:

• Distinguishing verb senses can be useful. The four examples for eat presented in the be-
ginning of section IV.10 are taken from WordNet, and each corresponds to a different word
sense: example (1) is from the take in solid food sense, (2) from the cause to rust sense,
and examples (3) and (4) from the use up sense.

• If the word senses of a set of verbs are similar (e.g. word senses of ingestion verbs like eat,
devour, ingest, etc.) they can have related selectional preferences, and we can generalize
and make a class of verbs share the same selectional preference.

Our formalization distinguishes among verb senses; that is, we treat each verb sense as a
different unit that has a particular selectional preference. From the selectional preferences of
single verb senses, we also infer selectional preferences for classes of verbs. For that, we use the
relation between word senses and classes in WordNet.
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Summarizing, we want to model the probability of a nominal concept given that it is the
subject/object of a particular verb (word-to-class), a verb sense (word sense-to-class), or a
verbal concept (class-to-class). We will now explain the three models in turn.

We have to notice that the models we will describe now do not represent probabilities in
the strict sense, but heuristic weights that we will represent with the symbol W. This happens
because in our model we will assume that a concept and its hypernym are independent, which
is not real. This allows us to define easily weighted class-to-class relations for all concepts from
a few tagged examples, but at the cost of losing the support of a well-established probabilistic
distribution. The validity of our approach will be tested in the WSD exercise.

We will apply this notation in the description of the models: v stands for a verb, cn (cv)
stands for a nominal (verbal) concept, cni (cvi) stands for the concept linked to the i-th sense
of the given noun (verb), rel could be any grammatical relation (in our case object or subject),

⊆ stands for the subsumption relation, fr stands for frequency and f̂r for the estimation of the
frequencies of classes (we will use estimated frequencies because of the sparse data in Semcor,
the estimation method is presented in section IV.10.2).

The models will be illustrated with an example: the object relation between the nominal
concept {chicken1} and the verb eat.

IV.10.1.1 Word-to-class model : W (cni|rel v)

The weight of the concept {chicken1} being the object of eat depends on the probabilities of
the concepts subsumed-by and subsuming {chicken1} being objects of eat. For instance, if
chicken1 (first sense of chicken) never appears as an object of eat, but other word senses under
its hypernym {food, nutrient} do, W ({chicken1}|object eat) will be higher than 0.

Formula IV.1 shows that for all concepts subsuming cni the probability of cni given the more
general concept times the probability of the more general concept being a subject/object of
the verb is added. The first probability is obtained dividing the estimated class frequencies of
cni with the estimated class frequencies of the more general concept. The second probability
is calculated dividing the estimated frequency of the general concept occurring as object of eat
with the number of occurrences of eat with an object. The estimation of the frequencies of the
classes will be described in section IV.10.2.

W (cni|rel v) =
∑

cn⊇cni

P (cni|cn) × P (cn|rel v) =

∑

cn⊇cni

f̂r(cni, cn)

f̂ r(cn)
×

f̂r(cn rel v)

fr(rel v)
(IV.1)

IV.10.1.2 Sense-to-class model : W (cni|rel vj)

Using a sense-tagged corpus, such as Semcor, we can compute the weight of the different senses
of eat having as object the class {chicken1}. We use the formula IV.1 for each sense of eat
separately. In this case we have different selectional preferences for each sense of the verb (vj):
W (cni|rel vj).

IV.10.1.3 Class-to-class model : W (cni|rel cvj)

We compute the weight of the verb classes associated to the senses of eat having as object
{chicken1}, using the probabilities of all concepts above {chicken1} being objects of all concepts
above the possible senses of eat. For instance, if devour never appeared on the training corpus,
the model could infer its selectional preference from that of its superclass {ingest, take in}.

Formula IV.2 shows how to calculate the W value. For each possible verb concept (cv) and
noun concept (cn) subsuming the target concepts (cni, cvj), the probability of the target concept
given the subsuming concept (this is done twice, once for the verb, once for the noun) times the
probability the nominal concept being subject/object of the verbal concept is added.

W (cni|rel cvj) =
∑

cn⊇cni

∑

cv⊇cvj

P (cni|cn) × P (cvj |cv) × P (cn|rel cv)
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=
∑

cn⊇cni

∑

cv⊇cvj

f̂r(cni, cn)

f̂ r(cn)
×

f̂r(cvj , cv)

f̂ r(cv)
×

f̂ r(cn rel cv)

fr(rel cv)
(IV.2)

IV.10.2 Estimation of class frequencies

Frequencies for classes can be counted directly from the corpus when the class is linked to a
word sense that actually appears in the corpus, written as fr(cni). Otherwise they have to be

estimated using the direct counts for all subsumed concepts, written as f̂r(cni).
The equations to compute the estimated frequencies are shown in figure IV.5. Formula IV.3

shows the estimation for the nominal class cn. All the counts for the subsumed concepts (cni)
are added, but divided by the number of classes for which cni is a subclass (that is, all ancestors
in the hierarchy). This is necessary to guarantee the following:

∑

cn⊇cni

P (cni|cn) = 1

Formula IV.4 shows the estimated frequency of a concept given another concept. In the case
of the first concept subsuming the second, it is equal to 0; otherwise the frequency is estimated
as in formula IV.3.

Formula IV.5 estimates the counts for [nominal-concept relation verb] triples for all possible
nominal-concepts, which is based on the counts for the triples that actually occur in the corpus.
All the counts for subsumed concepts are added, divided by the number of classes in order to
guarantee this relation:

∑

cn

P (cn|rel v) = 1

Finally, formula IV.6 extends formula IV.5 to [nominal-concept relation verbal-concept] in a

similar way. We can see an example for f̂r(cn rel v) in figure IV.6.

f̂r(cn) =
∑

cni⊆cn

1

classes(cni)
× fr(cni) (IV.3)

f̂r(cni, cn) =







∑

cnj⊆cni

1
classes(cnj)

× fr(cnj) if cni ⊆ cn

0 otherwise
(IV.4)

f̂r(cn rel v) =
∑

cni⊆cn

1

classes(cni)
× fr(cni rel v) (IV.5)

f̂ r(cn rel cv) =
∑

cni⊆cn

∑

cvi⊆cn

1

classes(cni)
×

1

classes(cvi)
× fr(cni rel cvi) (IV.6)

Figure IV.5: Estimation of frequencies.

IV.11 Evaluation of selectional preferences

The acquired preferences will be tested on a WSD exercise. Our goal in this experiment will
be to choose the correct word sense for all nouns occurring as subjects and objects of verbs,
but the method could also be used to disambiguate the verbs. The algorithm selects the word
sense of the noun that is below the strongest nominal class for the verb, verb sense, or verb class
(depending on the model). When more than one word sense is below the strongest class, all are
selected with equal weight.
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• Occurrences of eat in the corpus:

– eat - object - {chicken1, ...}

– eat - object - {pork1, ...}

• Subsumption relations from WordNet:

– {chicken1, ...} ⊆ {food, nutrient, ...}

– {pork1, ...} ⊆ {food, nutrient, ...}

• Estimation table:

fr f̂r

{chicken1, ...} 1 0.5
{pork1, ...} 1 0.5
{food, nutrient, ...} 0 1

Figure IV.6: Example of estimation of frequency for the case f̂r(cn rel v); where rel = object, v
= eat, and cn = {food, nutrient, ...}.

In order to apply the method, we need a corpus to learn the preferences, and another for
testing. We can use an untagged corpus for learning, introducing all the possible tags for each
relation extracted. For this approach to be useful, we would require a big corpus, in order to
reduce the noise of the ambiguity. This is the usual approach for selectional preference learning
in the literature. Another option is to use a corpus of sense-tagged relations, but such a corpus is
difficult to obtain. We already have the Semcor corpus available, and we have used it in previous
experiments, therefore we opted for this approach. We used Semcor to learn the preferences,
and also for testing (via cross-validation).

The fact that we rely on a general all-words corpus, and not in a list of tagged instances for
each target word makes it difficult to compete with supervised systems, and even with the MFS
baseline. This method is closer to the unsupervised approach, and should be seen in that light.

Two experiments will be described in this section. We will rely on the “Semcor&DSO”
setting (cf. section III.3.3.1). For the lexical-sample, we will use only the 8 nouns in the set
A (cf. section III.3.1.1). We will apply 10 fold cross-validation, learning the preferences from
90% of the data, and disambiguating the remaining 10% for each iteration. For the all-nouns
experiment, four files previously used in the baseline experiments (cf. section III.5.7) were
disambiguated. In this case, to disambiguate each file, we trained the selectional preferences on
the rest of Semcor.

As we said, only nouns occurring as subjects and objects of verbs can be disambiguated. We
can see in table IV.14 the proportion of examples where the target nouns have been marked as
subject or object (for the lexical sample experiment). Note that only 19% of the occurrences of
the nouns are objects of any verb, and 15% are subjects. This implies that the method by itself
is not enough for full-coverage WSD. In order to extend the model we may:

• Use other relations besides subject and object.

• Integrate this knowledge with other information sources.

• Use an alternative parser that could help to detect more relations. We have observed that
many object/subject are not identified.

Nevertheless, the following experiments will show us whether the information learned in the
form of selectional preferences can be another valid source of knowledge to be integrated in a
WSD system. The other test we will make is to measure whether the extended class-to-class
model is able to generalize well and improve the results of the word-to-class model.

Table IV.15 shows the overall results for the lexical sample experiment. Together with the
two baselines (random and MFS), the precision, coverage, and recall of the word-to-class model
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Object Subject
Nouns Senses Freq.

Freq. % Freq. %
account 10 27 8 29.6 3 11.1
age 5 104 10 9.6 9 8.7
church 3 128 19 14.8 10 7.8
duty 3 25 8 32.0 1 4.0
head 30 179 58 32.4 16 8.9
interest 7 140 31 22.1 13 9.3
member 5 74 13 17.6 11 14.9
people 4 282 41 14.5 83 29.4
Overall 67 959 188 19.6 146 15.2

Table IV.14: Frequencies and polisemy of the lexical sample nouns, together with the relations
extracted from Semcor by Minipar.

Method
Object Subject

Prec. Cov. Rec. Prec. Cov. Rec.
Random 19.2 100 19.2 19.2 100 19.2
MFS 69.0 100 69.0 69.0 100 69.0
Word2class 66.9 86.7 58.0 69.8 79.4 55.4
Class2class 65.7 97.3 64.0 68.3 98.6 67.3

Table IV.15: Performance of selectional preference models on the nouns from set A in Semcor.
Random and MFS baselines, and two models: word-to-class and class-to-class.

Word
Object Subject

Freq. Prec. Cov. Freq. Prec. Cov.
account 8 37.5 100 3 33.3 100
age 10 77.8 90.0 9 66.7 100
church 19 63.2 100 10 60.0 100
duty 8 25.0 100 1 0 100
head 58 74.1 100 16 56.2 100
interest 31 55.2 93.5 13 15.4 100
member 13 38.5 100 11 36.4 100
people 41 82.1 95.1 83 86.4 97.6
Overall 188 65.7 97.3 146 68.3 98.6

Table IV.16: Results of the class-to-class model per word in Semcor (set A).

and the class-to-class are given1.
The classic word-to-class model gets slightly better precision than class-to-class, but class-to-

class is near complete coverage and thus gets the best recall. This indicates that the algorithm
is able to generalize well and learn useful information. The recall is above the random baseline,
but slightly below MFS. We have to notice that with so few points of data, the MFS baseline is
difficult to beat. Another factor is that there is no smoothing or cut-off value involved, which
forces the algorithm to decide with low confidence. Table IV.16 shows the results for the class-
to-class model per word, where we can see the number of examples for each target word, the
precision, and the coverage. Note that the system is tested using cross-validation, and with
these amounts of examples, most of the time the preferences have to be generalized using words
different to the target. We can see that normally better precision is obtained for words with
higher number of examples, like people or head.

To conclude this section, table IV.17 illustrates the results of the selectional preference models
in 4 Semcor files. The averaged performance values are given for the two baselines and the two
models. We see that the class-to-class model obtains better precision and recall than the word-
to-class model, showing that it is better suited for this task. However, the loss with respect to

1We decided not to include the sense-to-class model, because it requires a sense-tagged corpus, and at this
point we think that it is more interesting to study the performance of the class-to-class model, which is learnable
from untagged corpora and can obtain preferences for verb senses not seen in the corpus.
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Method
Object Subject

Prec. Cov. Rec. Prec. Cov. Rec.
Random 26.5 100 26.5 29.6 100 29.6
MFS 69.8 100 69.8 79.0 100 79.0
W2C 51.7 80.1 41.4 69.9 85.6 59.8
C2C 53.2 95.0 50.5 70.5 98.1 69.2

Table IV.17: Performance of selectional preference models on the nouns from 4 Semcor files.

the MFS baseline is bigger than in the previous experiment.

IV.12 Conclusions

We have performed several experiments throughout the chapter for different types of features.
We will first describe the conclusions derived from each group of experiments, and finally we
will summarize our overall conclusions.

Syntactic features on Semcor and DSO

Our first experiments were performed on Semcor and DSO, with the DL method. In Semcor,
the syntactic features achieve lower performance (in precision and coverage) than the basic
set, and the combination of the two sets (basic and syntactic) does not help to improve the
results. In DSO there is a small improvement adding the syntactic features to the basic set
(0.3% precision, 0.1 %coverage). Verbs are the most benefited from syntactic knowledge (0.5%
precision, 0.1% coverage). Taken separately, the syntactic feature set improves the precision of
the basic features, but the coverage is still low.

In order to know the reason for this low performance (specially in Semcor), we analyzed the
behavior of the different features separately. We applied the DL algorithm using only one feature
each time, and we evaluated the precision and coverage of each piece of evidence. We observed
that the syntactic features achieved good precision, but the recall was very low in comparison
with basic features, and they could be applied only in a few cases. However, some syntactic
features achieved comparatively good recall for verbs, specially ngrams, suggesting that some
subcategorization information had been acquired.

For further analysis, we focused on some words in the Semcor experiment, and analyzed the
learned decision lists. These are the main conclusions:

1. Syntactic features usually have fewer occurrences in the training corpus than basic features,
and they rank low in the decision lists. Even syntactic features with high frequency in
training usually have basic features above them, which suggest that the information may
be redundant.

2. In the case of words with a dominant sense, some syntactic features that appear frequently
and do not carry much information (e.g. the presence of a determiner linked to a noun)
can introduce noise and point strongly to the most frequent sense. This happens also with
non-syntactic features, but in a less harming scale because they comprise a more reduced
and controlled set.

3. The parser fails to detect many dependencies and commits some errors, which affects the
precision and specially the coverage.

Syntactic features on the Senseval-2 corpus

For our next setting, the Senseval-2 dataset, we decided to apply also another ML method: AB.
We expected that this would alleviate the effect of the two former problems in the previous
experiments on syntactic features. But first, we analyzed the performance of the syntactic
features with DLs. Surprisingly, the results were significantly better in this corpus. Syntactic
features alone obtained better F1 value than the MFS baseline. The F1 value was much higher
in this experiment than in the DSO task, even when the recall of the MFS baseline was higher
in DSO.
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In our next experiment, we tested the combination of basic and syntactic features using the
two ML methods. We extracted these conclusions:

• AB is able to outperform DL in all cases, except for local features.

• Syntactic features get worse results than local features.

• Syntactic features prove to be useful in the combination. DLs profit from the additional
syntactic features but the difference is only statistically significant for verbs. On the other
hand, AB attains significant improvement (1.8% overall, 2.7% for verbs).

Syntactic features and high precision systems

Finally, we tested the effect of syntactic features for high precision WSD. We analyzed two
systems based on DL (feature selection and decision-threshold), and one based on AB (decision-
threshold). These are the main observations:

• Syntactic features help to improve the F1 result of the basic set in all cases.

• Adjusting the methods to a minimum loss of coverage (discarding the most difficult testing
examples), the overall F1 improves for the three methods.

• The methods based on DL reach 93% precision at 7% coverage (decision-threshold), and
86% precision at 26% coverage (feature selection). Syntactic features are specially helpful
for feature selection.

• AB does not achieve high precision figures, but it obtains the highest F1 score in this setting,
with 66.7% precision and 84.5% coverage.

Semantic features

Experiments on these features, which were based on synsets of the words in the context, did not
achieve good performance. This feature set was defined using the WordNet hierarchy, and the
information from the semantic-files. The experiments were performed on Semcor, which means
that there were few examples to train, but also that the system would be applicable to all the
words that appear in Semcor. As we have seen in the Senseval literature (cf. chapter II), the
all-words systems perform significantly lower than lexical-sample systems, and it is not easy for
them to overcome the MFS baseline.

The results show that overall, the system is able to improve the performance of the topical
feature set, using the NB algorithm. This could be useful when the local contexts are not
reliable, as could happen with automatically acquired features (cf. chapter VI). Another case
where the recall is improved is for adjectives, with a gain of 3% recall.

All in all, the experiments suggest that other ways should be tried to benefit from these
features. Instead of the “bag-of-words” approach, the use of dependency relations seems a
better way to explore semantic generalization.

Selectional preferences

We tested whether selectional preference learning could give us a better way to use semantic
information for WSD. The experiments had the following characteristics:

• Extract object/subject relations between nouns and verbs, applying the Minipar parser.

• Learn preferences from the WordNet hierarchy using two models: word-to-class, and class-
to-class.

• Disambiguate nouns in the Semcor corpus, via cross-validation.
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Our first observation was that the coverage of the subjects and objects was very low. Some
ways to address this would be by extracting other types of relations, integrating selectional
preferences in a system with other types of features, or using a more accurate parser. However,
we performed the disambiguation for the examples that we could obtain, to measure whether
this information was useful. The two experiments, which were performed for a sample of nouns,
and for all the nouns in four Semcor files, took us to the following conclusions:

• The class-to-class model obtains better recall than the word-to-class model, with only a
small loss in precision. Class-to-class learns selectional preferences for senses of verbs that
do not occur in the corpus, via inheritance.

• The recall of the class-to-class model gets close to the MFS baseline. We have to note that
this is a hard baseline for this kind of all-words systems, as we have seen in our study of
the literature (cf. section IV.2.2).

• The preferences are acquired from a small set of tagged examples, and for some words
the results are very low. The words with more examples to train seem to have better
performance.

Apart from the low coverage, another limitation of this approach is that no cut-off values or
smoothing is applied, and the algorithm is forced to make decisions with few data. Applying
a threshold could help to improve precision. Another way we would like to explore is the use
of a big untagged corpus to learn the preferences. We are also interested in the performance
when disambiguating words with other PoS than nouns. Finally, we would like to test these
selectional preferences in combination with other feature types, like the ones we have been
exploring previously. We think that despite their low coverage, selectional preferences would
help to improve the overall performance of the system, although it is not straightforward how to
integrate them in a supervised system. One possibility would be to include the sense chosen by
the selectional preference model in the feature set, in a fashion similar to (Stevenson and Wilks,
1999).

Overall conclusions

The goal of this chapter has been to analyze richer features, in order to know whether the
effort of extracting this knowledge is useful for WSD. The types of features we have analyzed in
this chapter are divided in three groups: syntactic features, semantic features, and selectional
preferences.

For syntactic features, the results show that basic and syntactic features contain complemen-
tary information, and that they are useful for WSD. The contribution of this type of feature is
specially noticeable for the algorithm AB in the standard setting, and for DLs when applying
the precision/coverage trade-off.

Regarding semantic features, we have seen that they could contribute slightly to improve the
performance of an all-words system. However, the “bag-of-words” approach does not seem to
benefit much from the WordNet hierarchy. Instead, the generalization of syntactic dependencies
using WordNet offers promising results, as has also been seen in2(Mihalcea and Faruque, 2004).
Improved performance could come from integrating selectional preferences together with other
feature types, but this path has not been explored in this dissertation.

2The system “SenseLearner” has been described in section II.8.
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V. CHAPTER

Sparse data problem and smoothing techniques

V.1 Introduction

In the previous chapter we have studied the contribution of different knowledge sources to WSD.
Now we will focus on the sparse data problem, which affects several NLP techniques that estimate
probabilities from real texts, like statistical MT or text categorization. Both for NLP and WSD,
most of the events occur rarely, even when large quantities of training data are available. In
supervised WSD, the difficulty of building a hand-tagged corpus makes the sparse data problem
one of the main barriers to achieve higher performance figures. Normally, for each word there is
only a handful of occurrences with sense tags. For example, if we take the word channel, we see
that it appears 5 times in SemCor, one of the few sense-tagged corpus for all-words: the first
sense has four occurrences, the second a single one, and the other 5 senses are not represented.
For a few words, more extensive training data exists. Senseval-2 (Edmonds and Cotton, 2001)
provides 145 occurrences of channel, but still some of the senses are represented by only 3 or 5
occurrences.

Moreover, the fine-grained analysis of the context performed by most WSD systems requires
that we represent it by means of many features, some of them rare. The occurrences of these
features can be very informative, and the estimation of rare-occurring features might be crucial
to have high performances. These scenarios, where the dimensionality of the feature space
exceeds the number of examples, show a big potential for overfitting.

Smoothing refers to the techniques that try to estimate the probability distribution that
approximates the one we expect to find in held-out data. In WSD, if all occurrences of a
feature for a given word occur in the same sense, the Maximum Likelihood Estimation (MLE)
would give a 0 probability to the other senses of the word given the feature, which is a severe
underestimation. We will denote these cases as X/0, where X is the frequency of the majority
sense, and zero is the frequency of the other senses.

For instance, if the word Jerry occurs in the context of art only once in the training data
with a given sense, does it mean that the probability of other senses of art occurring in the
context of Jerry is 0? We will see in section V.6.3 that this is not the case, and that the other
senses are nearly as probable. Our smoothing study will show for this feature of the word art
that the smoothed ratio should be closer to 1/1.

In this chapter, we follow the smoothing method proposed by Yarowsky in his PhD disser-
tation (Yarowsky, 1995a), and present a detailed algorithm of its implementation for the WSD
problem, defining some of the parameters used, alongside the account of its use by three different
ML algorithms: DL, NB, and VSM (cf. section II.4). The impact of several smoothing strategies
is also presented, and the results indicate that the smoothing method explored in this work is
able to make both statistically motivated methods (DL and NB) perform at very high precisions,
comparable and in some cases superior to the best results attained in the Senseval-2 competition
(cf. section II.7). We also show that a simple combination of the methods and a fourth system
based on SVM (cf. section II.4) attains the best result for the Senseval-2 competition reported
so far. This system was submitted to the Senseval-3 competition, obtaining one of the top scores
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(cf. section II.8).
Another motivation for this work is the possibility to use smoothing techniques in bootstrap-

ping approaches. Bootstrapping techniques such as (Yarowsky, 1995b) have shown that having
good seeds, it would be possible to devise a method that could perform with quality similar
to that of supervised systems. Smoothing techniques could help to detect rare but strong fea-
tures, which could be used as seeds for each of the target word senses. In the next chapter,
we will apply the method presented in (Leacock et al., 1998) to obtain examples automatically
by means of the WordNet hierarchy. This method could be extended relying on smoothing to
obtain relevant features for each sense, and using these features as the source of new examples.

This chapter is organized as follows. Related work on smoothing and ensembles of algorithms
is summarized in section VII.2. Section V.3 presents the experimental setting, and the feature
set is described in section V.4. Section V.5 introduces smoothing of features, and section V.6
presents the specific algorithm with examples. Section V.7 presents the evaluation and compar-
ison with other systems in Senseval-2, and section V.8 gives the results of the official Senseval-3
evaluation. Finally, the last section draws some conclusions.

V.2 Related work

Hoste et al. (2002) observe that parameter optimization is a key factor in WSD performance.
They note that there are many interactions among the feature space, the learning examples, and
the parameters of the ML method. The optimization of these interactions per word would lead
to better results for a given algorithm. Our results show that it is indeed the case, and weaker
learning algorithms such as DL, NB and VSM attain performances close or superior to SVM
with the help of appropriate smoothing techniques.

An important parameter that has to be estimated previously for some disambiguation meth-
ods is the smoothing of feature frequencies. Algorithms like DL or NB cannot handle 0 prob-
abilities for a sense given a feature. Although these algorithms have been widely used in the
literature (specially in combination with other methods, as we will describe below), there are
few works that address this problem with specific techniques, and normally simple default values
are used.

Yarowsky (1995a), in his dissertation work, provided a study on ways to estimate the dis-
tribution of each different collocation in the model. His method is based on the mean value
of accuracy in held-out data. In order to better estimate X/0 and X/1 frequencies, the oc-
currences in held-out data are counted; the basic idea is to assume that all collocations with
the same sense distribution in the primary training data have the same true distribution. This
approach is further refined grouping features for the same feature type, target PoS, etc. and
using log-linear interpolation with the observed points. He showed that if primary training, test
data, and held-out data are similar, then the mean distribution will be a better estimation than
raw frequencies. This approach applies ideas from other smoothing methods in the literature:
the Good Turing algorithm (Good, 1953), and the Method of Deleted Estimation (Jelinek and
Mercer, 1980).

Good (1953) merges all the distributions that have the same raw frequency in held-out data
and estimates the smoothed probability applying a measure directly on those counts. This
method is normally used in combination with others. The Method of Deleted Estimation (Je-
linek and Mercer, 1980), linearly interpolates higher-order values with lower-order models. The
probability of a feature would depend on the probabilities of the components in some extent,
which is defined by the parameter λ. This method also uses held-out data to estimate prob-
abilities. From a broader perspective, Chen (1996) provides a comprehensive description of
diverse smoothing methods, and its application to different NLP problems. He implements the
above described Method of Deleted Estimation, Katz smoothing (Katz, 1987), and Church-Gale
smoothing (Church and Gale, 1991); and compares them to two new methods developed for his
dissertation.

Regarding the relation between smoothing and ML methods for WSD, in (Ng, 1997), NB was
applied using a simple method of smoothing, where zero counts were replaced by the probability
of the given sense divided by the total number of examples. This approach has been followed
in other experiments with NB (Escudero et al., 2000b). For our work, we used this method
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as baseline, and also in combination with the method we will describe in section V.6. In a
more recent work (Lee and Ng, 2002), 4 ML methods (NB, AB, SVM, and DTrees) are applied
separately to the Senseval-2 English Lexical Sample data. For NB, the probabilities are smoothed
using a simple method (Laplace, “add one”). They report better results with SVM than the
best Senseval-2 result (65.4% vs. 64.2%). They have not attempted to combine the different
methods, and no parameter estimation has been performed for the individual classifiers.

Together with the smoothing algorithm, in this chapter we will also test the integration of dif-
ferent ML methods in combined systems, which has been shown to be one of the most successful
approaches in the Senseval competitions. We already described in section II.7 the JHU-English
system (Yarowsky et al., 2001), which consisted on voting-based classifier combination, and ob-
tained the best performance in the English lexical-sample task. In their training models, they
assign weights to different features, depending on the type of feature and the distance to the
target word. This system is further refined in (Cucerzan and Yarowsky, 2003), including new al-
gorithms like the Mixture Model (MM), and applying a filtering process to identify the relevance
of surrounding words to disambiguate the target. This last paper reports a significative increase
of the results for NB and Mixture Models when using feature-weights and filtering. The final
results outperform in 2.3% the best Senseval-2 submission (66.5% Vs 64.2%). In section V.7,
some of these latter methods have been compared with our final algorithm for evaluation in the
Senseval-2 setting.

Finally, another approach is the combination of different linguistic knowledge sources to
disambiguate all the words in the context, as in (Stevenson and Wilks, 2001). In this work,
they integrate the answers of three ”partial taggers” based on different knowledge sources in a
feature-vector representation for each sense. The vector is completed with information about the
sense (including rank in the lexicon), and simple collocations extracted from the context. The
TiMBL memory-based learning algorithm is then applied to classify the new examples. The
”partial taggers” apply the following knowledge: 1) Dictionary definition overlap (optimized
for all-words by means of simulated annealing), 2) Selectional preferences (based on syntactic
dependencies and LDOCE codes), and 3) Subject codes from LDOCE applying the algorithm
by (Yarowsky, 1992).

V.3 Experimental setting

For the main experiments in this chapter we applied the “Senseval2” setting (cf. sec-
tion III.3.3.3), with a preprocessing stage for the multiwords and phrasal verbs (process de-
scribed in section III.3.2). The preprocess is a necessary step in order to achieve competitive
performance with other systems on the Senseval-2 lexical-sample task.

We relied on different ML methods in order to test the effect of the smoothing techniques:
DL, NB, VSM, and SVM. We also constructed an ensemble of systems (by voting) to see how
good was the final system in the Senseval framework.

We used the training part of the Senseval-2 corpus with cross-validation to estimate the C
parameter for the SVM algorithm, and to obtain the smoothed frequencies for the features. For
the set of experiments in evaluation, the systems are trained on the training part, and tested on
the testing part.

Finally, we report here our results in the Senseval-3 competition using the approach presented
in this chapter. The “Senseval3” experimental setting is given in section III.3.3.5.

V.4 Features

From the experience of the two previous chapters, we defined a new feature set that included
syntactic dependency information. We also introduced features not tested previously, as the
previous noun/verb/adj/adv in the sentence. With this augmented feature set we expected
to obtain more profit of the smoothing procedure. The features can be grouped in four main sets:

Local collocations: Bigrams and trigrams formed with the words around the target. These
features are constituted with lemmas, word-forms, or PoS tags1. Other local features are those

1The PoS tagging was performed with the fnTBL toolkit (Ngai and Florian, 2001).



80 Sparse data problem and smoothing techniques

formed with the previous/posterior lemma/word-form in the context for each main PoS. E.g.
The feature
“prev V lem stand” would indicate that the target word is preceded by the verb stand.
Syntactic dependencies: Syntactic dependencies were extracted using heuristic patterns, and
regular expressions defined with the PoS tags around the target2. The following relations were
used: object, subject, noun-modifier, preposition, and sibling. E.g. list OBJ petition.
Bag-of-words features: We extract the lemmas of the content words in the whole context,
and in a ±4-word window around the target. We also obtain salient bigrams in the context,
with the methods and the software described in (Pedersen, 2001). e.g. the feature context bigr
visionary eyes would express that visionary eyes has been found to be relevant for the target
word, and has been seen in the given context.
Domain features: The WordNet Domains resource was used to identify the most relevant
domains in the context. Following the relevance formula presented in (Magnini and Cavagliá,
2000), we defined 2 feature types: (1) the most relevant domain, and (2) a list of domains above
a predefined threshold3. Other experiments using domains from SUMO, the EuroWordNet top-
ontology, and WordNet’s Semantic Fields were performed, but these features were discarded
from the final set. The domain features were only used for the Senseval-3 experiments.

V.5 Feature-type smoothing

We have already seen in the introduction that estimating X/0 features with MLE would yield
a probability P (s|f) = 1 for the majority sense and a probability P (s|f) = 0 for the minority
senses, which is an underestimation. Features with X/0 counts are usual when the training data
is sparse, and these values must be smoothed before they are fed to some learning algorithms,
such as DL or NB, as they lead to undetermined values in their formulations.

Other distributions, such as X/1, X/2, ... can also be estimated using smoothing techniques.
Yarowsky (1995a) argues that the probability of the second majority sense in X/1 distributions
would be overestimated by MLE.

For intermediate cases, such as X/2, X/3, etc. it is not clear whether the effort of modeling
would be worth pursuing. For higher frequencies, using the raw frequency could be good enough.
In this work we focused in X/0 and X/1 distributions.

The smoothing algorithm shown here (which we will call feature-type smoothing) follows the
ideas of Yarowsky (1995a). The main criteria to partition the training data has been to use
raw frequencies and feature types (e.g. prev N wf, feature type that represents the first noun
word-form to the left of the target). Raw frequency is the most important parameter when
estimating the distribution, and joining features of the same type is a conservative approach to
partition the data. Therefore we join all occurrences of the prev N wf feature type that have
the same frequency distribution for the target word, e.g. 1/0. This way, we perform smoothing
separately for each word.

We could use the smoothed values calculated in this manner directly, but many data points
would still be missing. For instance, when studying prev N wf in the X/0 frequency case for art,
we found occurrences of this feature type in held-out data in the 1/0, 2/0 and 3/0 cases, but not
the rest (4/0 and higher). In this case it is necessary to use interpolation for the missing data
points, and we applied log-linear interpolation. The interpolation also offers additional benefits.
Firstly, using the slope of the interpolated line we can detect anomalous data (such as cases
where 1/0 gets higher smoothed values than 5/0) as we always expect a positive slope, that is,
higher ratios deserve higher smoothed values. Secondly, interpolation can be used to override a
minority of data points which contradict the general trend. These points will be illustrated in
the examples presented in section V.6.3.

However, when using interpolation, we need at least two or three data points for all feature
types. For feature types with few points, we apply a back-off strategy: we join the available
data for all words in the same Part of Speech. The rationale for this grouping is that strong
features for a noun should be also strong for other nouns. In order to decide whether we have

2This software was kindly provided by David Yarowsky’s group, from Johns Hopkins University.
3The software to obtain the relevant domains was kindly provided by Gerard Escudero’s group, from Universitat

Politecnica de Catalunya
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enough data for a feature type or not, we use the number of data points (minimum of three)
available for interpolation. In order to check the validity of the interpolation, those cases where
we get negative slope are discarded.

V.6 Feature-type smoothing algorithm

There are two steps in the application of the smoothing algorithm to the disambiguation task.
First, we use the available training data in cross-validation, with an interpolation method, in
order to estimate the smoothing tables for each feature type with X/0 or X/1 raw frequency.
Second, the interpolated tables are accessed on the disambiguation phase, when the WSD meth-
ods require them. Sections V.6.1 and V.6.2 present the algorithms, and section V.6.3 shows
some illustrative examples.

V.6.1 Building smoothing tables

We build two kinds of smoothing tables. The first kind is the application of the grouping
strategy based on feature types and frequency distributions. Two tables are produced: one at
the word level, and another at the PoS level, which we will call smoothed tables. The second
kind is the result of the interpolation method over the two aforementioned tables, which we will
call interpolated tables. All in all, four tables are produced in two steps for each frequency
distribution (X/0 and X/1).
1) Construct smoothing tables for each target word and for each PoS. For each
feature type (e.g. prev N wf ), we identify the instances that have X/0 or X/1 distributions (e.g.
prev N wf Aboriginal) and we count collectively their occurrences per sense. We obtain tables
with (X’,Y’) values for each word, feature type and pair (X,Y); where (X,Y) indicate the values
seen for each feature in the training part, and (X’,Y’) represent the counts for all the instances
of the feature type with the same (X,Y) distribution in the held-out part.

We perform this step using 5-fold cross-validation on the training data. We separate in a
stratified way4 the training data in two parts: estimation-fold (4/5 of the data) and target-fold
(1/5 of the data), which plays the role of the held-out data. We run the algorithm five times in
turn, until each part has been used as target. The algorithm is described in detail in Figure V.1
for the X/0 case (the X/1 case is similar). Note that the X count corresponds to the majority
sense for the feature, and the Y count to all the rest of minority senses for the feature. For
example, we can see in the held-out columns in table V.1 the (X’,Y’) counts obtained for the
feature type prev N wf and the target word art in the Senseval-2 training data for the X/0 cases.
2) Create interpolation curves. From the smoothing tables, we interpolate curves for feature
types that have at least 3 points. The process is described in detail in the second part of
Figure V.1. We first accumulate the counts in the smoothed table from the previous step.
The “Accumulated” columns in table V.1 show these values, as well as the X/Y ratio and its
logarithm. The Y value is then normalized, and mapped into the logarithmic space. We apply
a common linear interpolation algorithm called least square method (Neter et al., 1985), which
yields the starting point and slopes for each interpolation table. If we get a negative slope, we
discard this interpolation result. Otherwise, we can apply it to any X, and after mapping again
into the original space we get the interpolated values of Y, which we denote Y”. Table V.1
shows the Y” values, the X”/Y” ratios, and the log values we finally obtain for the prev N wf
example for art for X = 1..4 and Y = 0 (“Interpolated” columns). The X”/Y”ratios indicate
that for X values lower than 4, the feature type is not reliable, but for X >= 4 and Y = 0, this
feature type can be used with high confidence for art.

V.6.2 Using the smoothed values

The process to use the smoothed values in testing is described in Figure V.2. There we see
that when we find X/0 or X/1 distributions, the algorithm resorts to the obtain smoothed value
function to access the smoothing tables. The four tables constructed in the previous section
are all partial, i.e. in some cases there is no data available for some of the senses. The tables
are consulted in a fixed order: we first check the interpolated table for the target word; if it
is not available for the feature type, we access the interpolated table for the PoS of the target

4By stratified, we mean that we try to keep the same proportion of word senses in each of the 5 folds.
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1. Construct word smoothing tables for X/0 (X0)

- For each fold from training-data (5 folds)

Build count(f, w, sense) for all senses from the estimation-folds (4 folds)

For each word w, for each feature f in each occurrence in target-fold (1 fold)

get count′(f, w, sense) for all senses of w in target-fold

If distribution of count′(f, w, sense) is of kind X/0 (X0) then

For each sense

if sense = s. maxs count(f, w, s)
then # sense is major sense in estimation-fold

increment X’ in table word X0(w,type(f),X)

else

increment Y’ in table word X0(w,type(f),X)

- Normalize all tables: X’ is set to X, and Y’ := Y’X’/X

Output (No need to keep X’): normtable word X0(w, type(f), X) := Y ′

2. Log linear Interpolation

- Accumulate X’ and Y’ values

- Map into linear space:

logtable word X0(w, type(f), X) :=
log(acctable word X0(w, type(f), X).X′/acctable word X0(w, type(f), X).Y ′)

- Do linear interpolation of logtable: sourcepoint(w, type(f)) = a0,

gradient(w, type(f)) = a1

- For each X from 1 to ∞
interpolatedtable word X0(w, type(f), X) := X/(ea0+a1X)

Figure V.1: Construction of smoothing tables for X/0 features for words. The X/1 and PoS
tables are built similarly.

Original Held-out Accumulated Interpolated
X Y X’ Y’ X’/Y’ X’ Y’ X’/Y’ log(X’/Y’) X” Y” X”/Y” log(X”/Y”)
1 0 4 4 1 4 4 1.00 0.00 1 0.91 1.10 0.09
2 0 6 1 6 10 5 2.00 0.69 2 1.18 1.69 0.52
3 0 2 0 ∞ 12 5 2.4 0.88 3 1.14 2.63 0.96

4 0.98 4.08 1.40
...

Table V.1: Smoothing table for the feature prev N wf and the word art (X/0 distribution).

word. Otherwise, we resort to the non-interpolated smoothing table at the word level. Finally
we access the non-interpolated smoothing table for the PoS.

In cases were the four tables fail to provide information, we can benefit from additional
smoothing techniques. The three ML methods that we have applied have different smoothing
requirements, and one of them (NB) does need a generally applicable smoothing technique:

DL: as it only uses the strongest piece of evidence, it can discard X/0 features. It does not
require X/1 smoothing either.
NB: It needs to estimate all single probabilities, i.e. all features for all senses, therefore it needs
smoothing in X/0, X/1 and even X/2 and larger values of Y. The reason is that in the case of
polisemy degrees larger than 2, the rare senses might not occur for the target feature and that
could lead to infinite values in the equation.
VSM: it has no requirement for smoothing.

In order to check the impact of the various smoothing possibilities we have devised 6
smoothing algorithms to be applied with the 3 ML methods (DL, NB, and VSM). We want
to note that not requiring smoothing does not mean that the method does not profit from
the smoothing technique (as we shall see in the evaluation). For the baseline smoothing
strategy we chose both “no smoothing”, and “fixed smoothing”; we also tried a simple
but competitive method from (Ng, 1997), denoted as “Ng smoothing” (methods to be de-
scribed below). The other three possibilities consist on applying the Feature-Type method as in
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Given an occurrence of a word w in testing, for each feature f in the context:

Get count(f, w, sense) for all senses from all training (all 5 folds)

If counts are not X/1 or X/0 then

For each sense:

count′(f, w, sense) := count(f, w, sense)

Elseif count is X/Y (where Y is 1 or 0) then

If Y ′ = obtain smoothed value(X, Y )
Then

For each sense

If sense = s. maxs count(f ,w , s) then #(MAJOR SENSE)

count′(f, w, sense) = X
Elsif sense = 2nd sense then #(ONLY IF Y=1, WHERE A MINORITY SENSE

OCCURS ONCE)

count′(f, w, sense) := Y ′ #(SECOND SENSE GETS MORE CREDIT)

Else

count′(f, w, sense) := Y ′/|othersenses| # (DISTRIBUTE WEIGHT UNIFORMLY

AMONG MINOR SENSES)

Else # (THERE IS NO SMOOTHING DATA FOR THIS X/Y)

DISCARD #(THIS IS POSSIBLE FOR DL)

For each sense

If sense = s. maxs count(f ,w , s) then # (MAJOR SENSE)

count′(f, w, sense) := X
Elsif sense = 2nd sense then #(ONLY IF Y=1, WHERE A MINORITY SENSE

OCCURS ONCE)

count′(f, w, sense) := 1 # (SECOND SENSE GETS MORE CREDIT)

Figure V.2: Application of Feature-type smoothing to DL, NB and VSM.

Figure V.2, with two variants: use “Ng smoothing” for back-off (E), or in a combined fashion (F):

(A) No smoothing: Use raw frequencies directly.
(B) Fixed smoothing: Assign 0.1 raw frequency to each sense with a 0 value.
(Ng) Ng smoothing: This method is based on the global distribution of the senses in the training
data. For each feature, each of the senses of the target word that has no occurrences in the
training data gets the ratio between the probability of the sense occurring in the training data
and the total number of examples: Prob(sense)/Number of examples.
(Ft) Feature-type smoothing: The method described in this chapter. In the case of DL, note
that when no data is available the feature is just discarded. For NB, it is necessary to rely on
back-off strategies (see E and F).
(E) Ft with Ng as back-off: When Ft does not provide smoothed values, Ng is applied.
(F) Ft and Ng combined: The smoothed values are obtained by multiplying Ft and
Ng values. Thus, in Figure V.2, the count′(f,w, sense) values are multiplied by
Prob(sense)/Number of examples.

The output of the smoothing algorithm is the list of counts that replace the original frequency
counts when computing the probabilities. We tested all possible combinations, but notice that
not all smoothing techniques can be used with all the methods (e.g. we cannot use NB with “no
smoothing”).

V.6.3 Application of smoothing: an example

We will focus on three feature types and the target word art in order to show how the smoothed
values are computed. For art, the following features have a 1/0 distribution in the training
data: “prev N wf Aboriginal”, “win cont lem context Jerry”, and “win 2gram context collection
owned”5. The majority sense for the three cases is the first sense. If we find one of those features
in a test occurrence of art, we would like to know whether they are good indicators of the first

5The first feature indicates that Aboriginal was the first noun to the left of art. The second that Jerry was
found in the context window. The third that the bigram collection owned was found in the context window.
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prev N wf win cont lem context win 2gram context
X Y

X’ Y’ X” Y” X’ Y’ X” Y” X’ Y’ X” Y”
1 0 4 4 1 0.91 517 1187 1 2.24 63 150 1 2.31
2 0 6 1 2 1.18 82 125 2 4.45 8 4 2 4.37
3 0 2 0 3 1.14 13 22 3 6.62 2 1 3 6.48
...

Table V.2: Smoothed values (interpolation per word) for the feature types prev N wf,
win cont lem context and win 2gram context with the target word art.
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Figure V.3: Interpolation curves for the X/0 case (features prev N wf and win context) with
the target word art. The Y” estimation and the log(X ′′/Y ′′) values are given for each X value
and feature.

sense or not.
As all these features occur with frequency 1/0, we have collected all counts for the feature

types (e.g. prev N wf ) which also have 1/0 occurrences in the training data. Table V.1 shows
the counts for prev N wf ; the (4,4) values that appear for (X’,Y’) indicate that the prev N wf
features that have 1/0 distribution in the target-folds contribute 4 examples to the majority
sense and 4 to the minority senses when looked up in the estimation-folds.

The data for prev N wf has at least 3 points, and therefore we use the accumulated frequencies
to obtain an interpolation table. We see that the interpolated frequencies for the minority senses
stay nearly constant when the X values go up. This would reflect that the probability of the
minority senses would go down quickly for higher values of X. In fact, the interpolated table can
be used for values of X greater that 3, which had not been attested in the training data.

The same process is followed for the other two feature types: win cont lem context and
win 2gram context. Table V.2 shows the smoothed values (X’,Y’) and the interpolated values
(X”,Y”) for the three types studied. The values for Y are much higher in the latter two cases,
indicating that there is a very low confidence for these features for the word art. In contrast,
prev N wf can be a valuable feature if found in 4/0 or greater distributions.

Figure V.3 shows this different behavior graphically for prev N wf and win cont lem context.
For each feature type, the estimated Y” values and the log-ratio of the majority sense are given:
the higher the Y” the lower the confidence in the majority sense, and inversely for the log-
ratio. We can see that the curve for the Y” values assigned to prev N wf get lower credit as
X increases, and the log-ratio grows constantly. On the contrary, for win cont lem context the
values of Y” increase, and that the log-ratio remains below zero, indicating that this feature
type is not informative.
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Basic Smoothing Complex Smoothing
A B Ng Ft E F

DL 60.4 60.7 64.4 64.4 64.3
NB 62.9 63.5 61.8 63.8
VSM 65.9 65.6 66.2 64.0 64.2 65.2
SVM 65.8

Table V.3: ML methods and smoothing techniques: (A) no smoothing, (B) fixed smoothing,
(Ng) Ng smoothing, (Ft) Feature-type smoothing, the method presented in this chapter, (E) Ft
with Ng as back-off, and (F) the combination of Ft and Ng.

Systems Basic smoothing Complex smoothing
All methods 65.7 66.2
except SVM 64.9 66.2
except NB 66.0 66.7
except VSM 64.9 65.7
except DL 65.7 66.3

Table V.4: Combination of systems with basic smoothing and complex smoothing. The rows
show the recall achieved combining the 4 systems, and discarding one in turn.

V.7 Evaluation on Senseval-2

The main experiment is aimed at studying the performance of four ML methods with the different
smoothing approaches (where applicable). The recall achieved on the Senseval-2 dataset is shown
in table V.3, the best results per method marked in bold. We separated the results according to
the type of smoothing: basic smoothing (“no smoothing” and “fixed smoothing”), and complex
smoothing (techniques that rely on “Feature-type smoothing” and “Ng smoothing”). We can
see that the results are different depending on the ML method, but the best results are achieved
with complex smoothing for the 3 ML methods studied: DL (Ft and E), NB (F), and VSM
(Ng). The best performance is attained by the VSM method, reaching 66.2%, which is one of
the highest reported in this dataset. The other methods get more profit from the smoothing
techniques, but their performance is clearly lower. McNemar’s test6 shows that the difference
between the results of the best “basic smoothing” technique and the best “complex smoothing”
technique is significant for DL and NB, but not for VSM.

All in all, we see that the performance of the statistically-based (DL, NB) methods improves
significantly, making them comparable to the best single methods. In the next experiment,
we tested a simple way to combine the output of the 4 systems: one system, one vote. The
combination was tested on 2 types of systems: those that relied on “complex smoothing”, and
those that not. For each algorithm, the best smoothing technique for each type was chosen; e.g.
the VSM algorithm would use the (A) approach for “simple smoothing”, and (Ng) for “complex
smoothing” (see table V.3). The performance of these systems is given in table V.4. The table
also shows the results achieved discarding one system in turn.

The results show that we get an improvement over the best system (VSM) of 0.5% when
combining it with DL and SVM. The table also illustrates that smoothing accounts for all the
improvement, as the combination of methods with simple smoothing only reaches 66.0% in the
best case, for 66.7% of the “complex smoothing” (difference statistically significant according to
McNemar’s test with 95% confidence interval).

As a reference, table V.5 shows the results reported for different groups and algorithms in
the Senseval-2 competition and in more recent works. Our algorithms are identified by the
“IXA” letters. “JHU - S2”, corresponds to the Johns Hopkins University system in Senseval-2,
which was the best performing system. “JHU” indicates the systems from the Johns Hopkins
University implemented after Senseval-2 (Cucerzan and Yarowsky, 2003; Florian et al., 2002).
Finally, “NUS” (National University of Singapore) stands for the systems presented in (Lee

6McNemar’s significance test has been applied with a 95% confidence interval.
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Method Group Smoothing Recall
Combination IXA Complex (best) 66.7
Combination JHU 66.5 ⇒ Best result to date
VSM IXA Ng 66.2
Combination IXA Basic (best) 66.0
SVM IXA 65.8
SVM NUS 65.4 ⇒ 2nd best result to date
DL IXA Ft 64.4
Combination JHU-S2 64.2 ⇒ Senseval-2 winner
NB IXA E 63.8
AdaBoost NUS 62.7
NB NUS “Add one” 62.7
Mixture Models JHU 62.5
Decision Trees NUS 57.2

Table V.5: Comparison with the best systems in the Senseval-2 competition and the recent
literature.

and Ng, 2002). In addition to the methods that we applied; there are Mixture Models (MM),
AdaBoost, and Decision Trees. The table is sorted by recall.

We can see that our systems achieve high performance, and that the combination of systems is
able to beat the best results. However, we chose the best smoothing algorithm for the methods
using the testing data (instead of using cross-validation on training, which would require to
construct the smoothing tables for each fold). This fact makes the combined system not directly
comparable. In any case, it seems clear that the system benefits from smoothing, and obtains
results similar to the best figures reported to date.

V.8 Evaluation on Senseval-3

In this section we present the results obtained by our systems in two different tasks of the
Senseval-3 competition (English and Basque lexical-sample tasks). An analysis of the supervised
systems competing in the English task is given in section II.8. We used the augmented feature
set described in section V.4, including domain features.

We applied the smoothing techniques and the ensemble of methods studied in this chapter.
After evaluating the algorithms on the Senseval-3 training data by means of cross-validation, we
submitted two systems for each task: the best ensemble, and the best single method.

Table V.6 shows the performance obtained by our systems and the winning systems (which
are described in detail in section II.8) in the Senseval-3 evaluation. We can see that we are very
close to the best algorithms in both languages.

Our best ensemble for English (in Senseval-3 training, by means of cross-validation) was
formed by three systems: DL (with Ft smoothing), VSM (with Ng smoothing), and SVM. The
combination of methods was useful for the final task, where we improve the recall of the best
single system (VSM, with Ng smoothing) in 0.3%, reaching 72.3%. This difference is statistically
significant according to McNemar’s test. Our disambiguation procedure shows a similar behavior
on the Senseval-2 and Senseval-3 data for English, where the ensemble works best, followed by
VSM. The smoothing methods contribute to increase the recall in both cases.

However, the results are different for the Basque task. The cross-validation experiments
indicate that the best combination is formed by the following systems: NB (Ng smoothing),
VSM (Ng smoothing), and SVM. The best single system is SVM. In this case, the combination
of methods does not improve the results, and the SVM method alone provides better results
(69.9% recall), although the difference is not significant applying McNemar’s test. In general,
the profit from the smoothing methods is much lower, and some algorithms (like VSM) seem to
perform below the expectations. We think that the Basque feature set needs more analysis.

Overall, this task showed that the ensemble of algorithms (with the help of smoothing)
provides a more robust system for WSD, and is able to achieve state-of-the-art performance.
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Task System Code Method Recall
Eng. Senseval-3 Winner RLSC - kernel 72,9
Eng. BCU comb DL(Ft)-VSM(Ng)-SVM 72,3
Eng. BCU-English VSM(Ng) 72,0
Basq. Senseval-3 Winner AB 70,4
Basq. BCU-Basque SVM 69,9
Basq. BCU-Basque comb NB(Ng)-VSM(Ng)-SVM 69,5

Table V.6: Official results for the English and Basque lexical tasks (recall).

V.9 Conclusions

In this work, we have studied the smoothing method proposed in (Yarowsky, 1995a), and we
present a detailed algorithm for its application to WSD. We have described the parameters
used, and we have applied the method on three different ML algorithms: DL, NB, and VSM.
We also analyzed the impact of several smoothing strategies, and the combination of algorithms
to construct a robust WSD system.

The evaluation on Senseval-2 data indicated that the smoothing method explored in this
chapter is able to make all three methods perform at very high precisions, comparable and in
some cases superior to the best result attained in the Senseval-2 competition. We also showed
that a simple combination of the methods and a fourth system based on SVM attains the
best result for the Senseval-2 competition reported so far (although only in its more successful
configuration, as the system was not “frozen” using cross-validation). We also applied this
architecture to the English and Basque lexical-sample tasks in Senseval-3. We submitted two
systems for each task after tuning on cross-validation: the best ensemble, and the best single
method. Our systems obtained good results, very close to the winning systems in both tasks.

For English, our disambiguation method shows a similar behavior on the Senseval-2 and
the Senseval-3 datasets (both in cross-validation and against the testing part). The ensemble
performs best in all cases, followed by VSM. The smoothing methods contribute to increase the
recall in both cases. VSM has proved to be a competitive single system, while the ensemble of
algorithms provides robustness, achieving state-of-the-art performance.

The results for Basque are different, in this case the best single system is SVM, and the
combination of methods does not improve the results. In general, the profit from the smoothing
methods is much lower, and some algorithms (like VSM) seem to perform below the expectations.
Our main conclusion for Basque is that the chosen feature set should be revised, as it is not
clear how to represent the context in case of agglutinative languages. Using a “cleaner” feature
set would also help the smoothing techniques. Another improvement for the Basque system
would come from the inclusion of domain tags as features, using the information available in the
Senseval-3 dataset7.

For further study of the smoothing method, we would like to extend this work to X/Y
features for Y greater than 1, and try other grouping criteria, e.g. taking into account the
class of the word. We would also like to compare our results to other more general smoothing
techniques (Good, 1953; Jelinek and Mercer, 1980; Chen, 1996).

An interesting application of the smoothing techniques is to detect good features, even in the
case of low amounts of training data (as it is the case for most of the words in WSD). These
features could be used as seeds to obtain new examples automatically, in a fashion similar to
the method in (Leacock et al., 1998), which will be studied and applied throughout the next
chapter. They could also be integrated in a bootstrapping process using DLs, as in (Yarowsky,
1995b). The DL algorithm is well suited for this task, as it relies on a single piece of evidence
(feature) to choose the correct sense, and it has been shown to perform significantly better with
smoothing.

Finally, we would like to apply our last version of the algorithm, which has been shown to
perform with state-of-the-art recall on the lexical sample, to an all-words task. The smoothing

7A single experiment adding this simple feature to the best Basque system (VSM) showed an improvement of
0.6% recall, beating the Senseval-3 winner by 0.1%.
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techniques would help us to address the sparse data problem; and the knowledge acquisition
problem will be attacked with the algorithm to be presented in the next chapter.



VI. CHAPTER

Automatic acquisition of sense-tagged examples

VI.1 Introduction

One of the main drawbacks for supervised WSD is the knowledge acquisition bottleneck: the
systems need large amounts of costly hand-tagged data. The situation is more dramatic for
lesser studied languages, like Basque. In order to overcome this problem, different research lines
have been explored. The following are the most studied: bootstrapping techniques (Yarowsky,
1995b), active learning (Argamon-Engelson and Dagan, 1999), and automatic acquisition of
training examples (Mihalcea, 2002). We will introduce each of these lines in the “related work”
section. In this work, we have focused on the automatic acquisition of examples.

When supervised systems have no specific training examples for a target word, they need
to rely on publicly available all-words sense-tagged corpora like Semcor, which is tagged with
WordNet word senses. The systems performing best in the English all-words tasks in Senseval-
2 and Senseval-3 (cf. chapter II) were basically supervised systems trained on Semcor and
similar sources, like WordNet examples. Unfortunately, for most of the words, these corpora
only provide a handful of tagged examples. In fact, only a few systems could overcome the
MFS baseline1 in the different editions of the Senseval all-words task. In our approach, we will
also rely on Semcor as the basic resource, both for training examples and as an indicator of the
distribution of the senses of the target word.

The goal of this chapter is to evaluate up to which point we can automatically acquire
examples for word senses and train accurate supervised WSD systems on them. This is a very
promising line of research, but one which remains relatively under-studied (cf. section VI.2).
The method we applied is based on the monosemous relatives of the target words (Leacock et al.,
1998), and we studied some parameters that affect the quality of the acquired corpus, such as
the distribution of the number of training instances per each word sense (bias), and the type of
features used for disambiguation (local vs. topical).

Basically, we built three systems with different degrees of supervision that would be applicable
to an all-words task:

• Fully supervised: using examples from Semcor and automatically acquired examples.

• Minimally supervised: using the distribution of senses in Semcor and automatically acquired
examples.

• Fully unsupervised: using an automatically acquired sense rank (McCarthy et al., 2004)
and automatically acquired examples.

This chapter is structured as follows. First, section VI.2 describes previous work on the
field. section VI.3 introduces the experimental setting for evaluating the acquired corpus, and
section VI.4 presents the feature set. section VI.5 is devoted to the process of building the
corpus, which is evaluated in section VI.6. Finally, the conclusions are given in section VI.7.

1This value was obtained assigning the most frequent sense in Semcor.
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VI.2 Related work

As we mentioned in the introduction, three main lines of research on the knowledge acquisition
bottleneck are bootstrapping techniques, active learning, and automatic acquisition of training
examples. We will briefly introduce the former two, and then we will focus on related work on
automatic acquisition of examples, which is the goal of this chapter.

Bootstrapping techniques consist on algorithms that learn from labeled and unlabeled data.
Among them, we can highlight co-training (Blum and Mitchell, 1998) and their derivatives
(Collins and Singer, 1999; Abney, 2002). These techniques are very appropriate for WSD and
other NLP tasks because of the wide availability of untagged data and the scarcity of tagged
data. However, there is no published positive results for WSD. In his well-known work, Yarowsky
(1995b) applied an iterative bootstrapping process to induce a classifier based on DLs. With
a minimum set of seed (annotated) examples, disambiguation results comparable to supervised
methods were obtained in a limited set of binary sense distinctions, but this work has not been
extended to fine-grained senses.

Active learning is used to choose informative examples for hand-tagging, in order to reduce
the manual cost. Argamon-Engelson and Dagan (1999) describe two main types of active learn-
ing: membership queries and selective sampling. In the first approach, the learner constructs
examples and asks a teacher to label them. This approach would be difficult to apply to WSD.
Instead, in selective sampling the learner selects the most informative examples from unlabeled
data. In one of the few works directly applied to WSD, Fujii et al. (1998) applied selective sam-
pling to the acquisition of examples for disambiguation of verb senses, in an iterative process
with human taggers. The informative examples were chosen following two criteria: maximum
number of neighbors in unsupervised data, and minimum similarity with the supervised example
set. Another active learning approach is the Open Mind Word Expert (Mihalcea and Chklovski,
2003), which is a project to collect sense-tagged examples from web users. The system selects the
examples to be tagged applying a selective sampling method based on two different classifiers,
choosing the unlabeled examples where there is disagreement. The collected data was used in
the Senseval-3 English lexical-sample task (cf. section II.3).

In automatic acquisition of training examples, an external lexical source (WordNet, for in-
stance) or a sense-tagged corpus is used to obtain new examples from a very large untagged
corpus (e.g. the Internet). In (Leacock et al., 1998), a method to obtain sense-tagged examples
using monosemous relatives from WordNet is presented. Our approach, which will be described
in section VI.5, is based on this early work. In their algorithm, Leacock et al. (1998) retrieve the
same number of examples per each sense, and they give preference to monosemous relatives that
consist in a multiword containing the target word. Their experiment is evaluated on 3 words
(a noun, a verb, and an adjective) with coarse sense-granularity and few senses. The results
showed that the monosemous corpus provided precision comparable to hand-tagged data.

In another approach, Mihalcea and Moldovan (1999) used information in WordNet (e.g.
monosemous synonyms and glosses) to construct queries, which were later fed into the Altavista2

web search engine. Four procedures were used sequentially, in a decreasing order of precision,
but with increasing levels of coverage. Results were evaluated by hand, finding out that over
91% of the examples were correctly retrieved among a set of 1,080 instances of 120 word senses.
However, the number of examples acquired did not have to correlate with the frequency of senses,
and the corpus resulting from the experiment was not used for training a real WSD system.

In a related work, Mihalcea (2002) generated a sense tagged corpus (GenCor) by using a set
of seeds consisting of sense-tagged examples from four sources: SemCor, WordNet, examples cre-
ated using the method above, and hand-tagged examples from other sources (e.g. the Senseval-2
corpus). By means of an iterative process, the system obtained new seeds from the retrieved
examples. In total, a corpus with about 160,000 examples was gathered. The evaluation in the
lexical-sample task showed that the method was useful for a subset of the Senseval-2 testing
words (results for 5 words were provided).

2http://www.altavista.com
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VI.3 Experimental Setting

For the experiments in this chapter we chose the “Senseval2B” setting (cf. section III.3.3.4).
In this setting, the examples on the Senseval-2 testing data tagged with multiwords, phrasal
verbs, and proper nouns are previously removed in order to focus on the sense distinctions of
each word.

The experiments were performed on the 29 nouns available for the Senseval-2 lexical-sample
task. We separated these nouns in 2 sets, depending on the number of examples they have in
Semcor: Set A contained the 16 nouns with more than 10 examples in Semcor, and Set B the
remaining low-frequency words.

It is important to note that the training part of Senseval-2 lexical-sample was not used in the
process, as our goal was to test the performance we could achieve with the minimal resources
(i.e. those available for any word).

VI.4 Feature set

As features, we relied on a basic set of local and topical features. In previous chapters we have
seen that richer features can improve the performance of the system, but in this case we focused
on the comparison of hand-tagged and automatically-obtained corpora, and therefore the overall
performance of the systems was not relevant.

Previous work on automatic acquisition of examples (Leacock et al., 1998) has reported
lower performance when using local collocations formed by PoS tags or closed-class words. We
analyzed the results using local and topical features separately, and also the combination of both
types:

• Local features: Bigrams and trigrams, formed by the word-form, lemma, and part-of-speech
of the surrounding words. Also the content lemmas in a ±4 word window around the target.

• Topical features: All the content lemmas in the context.

VI.5 Building the monosemous relatives web corpus

In order to build this corpus3, we have acquired 1,000 Google snippets for each monosemous word
in WordNet 1.7. Then, for each word sense of the ambiguous words, we gathered the examples
of its monosemous relatives (see below). This method is inspired in (Leacock et al., 1998), and
has shown to be effective in experiments of topic signature acquisition (Agirre and Lopez, 2004).
This last paper also shows that it is possible to gather examples based on monosemous relatives
for nearly all noun senses in WordNet4.

The basic assumption is that for a given word sense of the target word, if we had a monose-
mous synonym of the word sense, then the examples of the synonym should be very similar
to the target word sense, and could therefore be used to train a classifier of the target word
sense. The same, but in a lesser extent, can be applied to other monosemous relatives, such as
direct hyponyms, direct hypernyms, siblings, indirect hyponyms, etc. The expected reliability
decreases with the distance in the hierarchy from the monosemous relative to the target word
sense.

The monosemous-corpus was built using the simplest technique: we collected examples from
the web for each of the monosemous relatives. The relatives have an associated number (type),
which correlates roughly with the distance to the target word, and indicates their relevance: the
higher the type, the less reliable the relative. A sample of monosemous relatives for different
senses of church, together with its sense inventory in WordNet 1.7 is shown in figure VI.1.

Distant hyponyms receive a type number equal to the distance to the target sense. Note that
we assigned a higher type value to direct hypernyms than to direct hyponyms, as the latter are
more useful for disambiguation. We also decided to include siblings, but with a high type value.

In the following subsections we will describe step by step the method to construct the corpus.
First we will explain the acquisition of the highest possible amount of examples per sense; then
we will explain different ways to limit the number of examples per sense for a better performance;
finally we will see the effect of training on local or topical features on this kind of corpora.

3The automatically acquired corpus will be referred indistinctly as web-corpus, or monosemous-corpus
4All the examples in this work are publicly available in http://ixa2.si.ehu.es/pub/sensecorpus
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• Sense inventory (church)xs

– Sense 1: A group of Christians; any group professing

Christian doctrine or belief.

– Sense 2: A place for public (especially Christian)

worship.

– Sense 3: A service conducted in a church.

• Monosemous relatives for different senses (of church)

– Synonyms (Type 0): church building (sense 2), church

service (sense 3) ...

– Direct hyponyms (Type 1): Protestant Church (sense 1),

Coptic Church (sense 1) ...

– Direct hypernyms (Type 2): house of prayer (sense 2),

religious service (sense 3) ...

– Distant hyponyms (Type 2,3,4...): Greek Church

(sense 1), Western Church (sense 1)...

– Siblings (Type 3): Hebraism (sense 2), synagogue

(sense 2) ...

Figure VI.1: Sense inventory and a sample of monosemous relatives in WordNet 1.7 for church.

VI.5.1 Collecting the examples

The examples are collected following these steps:
1: We query Google5 with the monosemous relatives for each sense, and we extract the

snippets as returned by the search engine. All snippets returned by Google are used (up to
1,000). The list of snippets is sorted in reverse order. This is done because the top hits usually
are titles and incomplete sentences that are not useful.

2: We extract the sentences (or fragments of sentences) around the target search term. Some
of the sentences are discarded, according to the following criteria: length shorter than 6 words,
having more non-alphanumeric characters than words divided by two, or having more words in
uppercase than in lowercase.

3: The automatically acquired examples contain a monosemous relative of the target word.
In order to use these examples to train the classifiers, the monosemous relative (which can be a
multiword term) is substituted by the target word. In the case of the monosemous relative being
a multiword that contains the target word (e.g. Protestant Church for church) we can choose
not to substitute, because Protestant, for instance, can be a useful feature for the first sense
of church. In these cases, we decided not to substitute and keep the original sentence, as our
preliminary experiments on this corpus suggested (although the differences were not significant).

4: For a given word sense, we collect the desired number of examples (see following section)
in order of type: we first retrieve all examples of type 0, then type 1, etc. up to type 3 until
the necessary examples are obtained. We did not collect examples from type 4 upwards. We
did not make any distinctions between the relatives from each type. Leacock et al. (1998) give
preference to multiword relatives containing the target word, which could be an improvement
in future work.

On average, we have acquired roughly 24,000 examples for each of the target words used in
this experiment.

VI.5.2 Number of examples per sense (bias)

Previous work (Agirre and Martinez, 2000) has reported that the distribution of the number
of examples per word sense (bias for short) has a strong influence in the quality of the results.
That is, the results degrade significantly whenever the training and testing samples have different
distributions of the senses.

As we are extracting examples automatically, we have to decide how many examples we will
use for each sense. In order to test the impact of bias, different settings have been tried:

5We use the offline XML interface kindly provided by Google for research.
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Sense 0 1 2 3 Total Semcor
church#1 0 476 524 0 1,000 60
church#2 306 100 561 0 967 58
church#3 147 0 20 0 167 10
Overall 453 576 1,105 0 2,134 128

Table VI.1: Examples per type (0,1,...) that are acquired from the web for the three senses of
church following the Semcor bias, and total number of examples in Semcor.

Web corpus Senseval

Sense
Semcor

Web bias Semcor Pr Semcor MR Auto. MR test
#ex % #ex % #ex % #ex % #ex % #ex %

authority#1 18 60 338 0.5 338 33.7 324 59.9 138 19.3 37 37.4
authority#2 5 16.7 44932 66.4 277 27.6 90 16.6 75 10.5 17 17.2
authority#3 3 10 10798 16 166 16.6 54 10.0 93 13.0 1 1.0
authority#4 2 6.7 886 1.3 111 11.1 36 6.7 67 9.4 0 0
authority#5 1 3.3 6526 9.6 55 5.5 18 3.3 205 28.6 34 34.3
authority#6 1 3.3 71 0.1 55 5.5 18 3.3 71 9.9 10 10.1
authority#7 0 0 4106 6.1 1 0.1 1 0.2 67 9.4 0 0

Overall 30 100 67657 100 1003 100 541 100 716 100 99 100

Table VI.2: Distribution of examples for the senses of authority in different corpora. Pr (pro-
portional) and MR (minimum ratio) columns correspond to different ways to apply Semcor
bias.

• No bias: we take an equal amount of examples for each sense.

• Web bias: we take all examples gathered from the web.

• Automatic ranking: the number of examples is given by a ranking obtained following the
method described in (McCarthy et al., 2004). They used a thesaurus automatically created
from the BNC corpus with the method from (Lin, 1998a), coupled with WordNet-based
similarity measures.

• Semcor bias: we take a number of examples proportional to the bias of the word senses in
Semcor.

For example, table VI.1 shows the number of examples per type (0,1,...) that are acquired
for church following the Semcor bias. The last column gives the number of examples in Semcor.

We have to note that the three first methods do not require any hand-labeled data, and that
the fourth relies in Semcor.

The way to apply the bias is not straightforward in some cases. In our first approach for
Semcor-bias, we assigned 1,000 examples to the major sense in Semcor, and gave the other senses
their proportion of examples (when available). But in some cases the distribution of the Semcor
bias and that of the actual examples in the web would not fit. The problem is caused when
there are not enough examples in the web to fill the expectations of a certain word sense.

We therefore tried another distribution. We computed, for each word, the minimum ratio of
examples that were available for a given target bias and a given number of examples extracted
from the web. We observed that this last approach would reflect better the original bias, at the
cost of having less examples.

Table VI.2 presents the different distributions of examples for authority. There we can see the
Senseval-testing and Semcor distributions, together with the total number of examples in the
web; the Semcor proportional distribution (Pr) and minimum ratio (MR); and the automatic
distribution (MR). The table illustrates how the proportional Semcor bias produces a corpus
where the percentage of some of the senses is different from that in Semcor, e.g. the first sense
only gets 33.7% of the examples, in contrast to the 60% it had in Semcor.

We can also see how the distributions of senses in Semcor and Senseval-test have important
differences, although the main sense is the same. For the web and automatic distributions, the
first sense is different; and in the case of the web distribution, the first hand-tagged sense only
accounts for 0.5% of the examples retrieved from the web. Similar distribution discrepancies
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Word Web bias Semcor bias Automatic bias
art 15,387 10,656 2,610
authority 67,657 541 716
bar 50,925 16,627 5,329
bum 17,244 2,555 4,745
chair 24,625 8,512 2,111
channel 31,582 3,235 10,015
child 47,619 3,504 791
church 8,704 5,376 6,355
circuit 21,977 3,588 5,095
day 84,448 9,690 3,660
detention 2,650 1,510 511
dyke 4,210 1,367 843
facility 11,049 8,578 1,196
fatigue 6,237 3,438 5,477
feeling 9,601 1,160 945
grip 20,874 2,209 277
hearth 6,682 1,531 2,730
holiday 16,714 1,248 1,846
lady 12,161 2,959 884
material 100,109 7,855 6,385
mouth 648 287 464
nation 608 594 608
nature 32,553 24,746 9,813
post 34,968 4,264 8,005
restraint 33,055 2,152 2,877
sense 10,315 2,059 2,176
spade 5,361 2,458 2,657
stress 10,356 2,175 3,081
yew 10,767 2,000 8,013

Average 24,137 4,719 3,455
Total 699,086 136,874 100,215

Table VI.3: Number of examples following different sense distributions for the Senseval-2 nouns.
Minimum-ratio is applied for the Semcor and automatic bias.

can be observed for most of the words in the test set. The Semcor MR column shows how using
minimum ratio we get a better reflection of the proportion of examples in Semcor, compared
to the simpler proportional approach (Semcor Pr) . For the automatic bias we only used the
minimum ratio.

To conclude this section, table VI.3 shows the number of examples acquired automatically
for each word following three approaches: the web bias, the Semcor bias with minimum ratio,
and the Automatic bias with minimum ratio. We can see that retrieving all the examples we
get 24,137 examples in average per word; and respectively 4,700 or 3,400 if we apply the Semcor
bias or the Automatic bias.

VI.5.3 Local vs. topical features

Previous work on automatic acquisition of examples (Leacock et al., 1998) has reported lower
performance when using local collocations formed by PoS tags or closed-class words. We per-
formed an early experiment comparing the results using local features, topical features, and a
combination of both. In this case we used the web corpus with Senseval training bias, distributed
according to the MR approach, and always substituting the target word. The recall (per word
and overall) is given in table VI.4.

In this setting, we observed that local collocations achieved the best precision overall, but
the combination of all features obtained the best recall. Local features achieve 58.5% precision
for 96.7% coverage overall, while topical and combination of features have full-coverage.

There were clear differences in the results per word, suggesting that estimating the best
feature-set per word would improve the performance. For the evaluation experiments, we chose
to work with the combination of all features.
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Local Feats. Topical Feats. Combination
Word Coverage Precision Recall Recall Recall
art 94.4 57.4 54.2 45.6 47.0
authority 93.4 51.2 47.8 43.2 46.2
bar 98.3 53.0 52.1 55.9 57.2
bum 100 81.2 81.2 87.5 85.0
chair 100 88.7 88.7 88.7 88.7
channel 73.5 54.0 39.7 53.7 55.9
child 100 56.5 56.5 55.6 56.5
church 100 67.7 67.7 51.6 54.8
circuit 88.7 51.1 45.3 54.2 56.1
day 98.6 60.2 59.4 54.7 56.8
detention 100 87.5 87.5 87.5 87.5
dyke 100 89.3 89.3 89.3 89.3
facility 98.2 29.1 28.6 21.4 21.4
fatigue 100 82.5 82.5 82.5 82.5
feeling 100 55.1 55.1 60.2 60.2
grip 100 19.0 19.0 38.0 39.0
hearth 100 73.4 73.4 75.0 75.0
holiday 100 96.3 96.3 96.3 96.3
lady 100 80.4 80.4 73.9 73.9
material 100 43.2 43.2 44.2 43.8
mouth 100 36.8 36.8 38.6 39.5
nation 100 80.6 80.6 80.6 80.6
nature 100 44.4 44.4 39.3 40.7
post 98.3 44.7 43.9 40.5 40.5
restraint 79.5 37.1 29.5 37.5 37.1
sense 93.0 62.5 58.1 37.2 38.4
spade 100 74.2 74.2 72.6 74.2
stress 100 53.9 53.9 46.1 48.7
yew 100 81.5 81.5 81.5 81.5
Overall 96.7 58.5 56.5 56.0 57.0

Table VI.4: Results per feature type (local, topical, and combination), using the monosemous
corpus with Senseval-2 training bias (MR, and substitution). Coverage and precision are given
only for local features (topical and combination have full coverage).

VI.6 Evaluation

In all experiments, the recall of the systems is presented as evaluation measure. There is total
coverage (because of the high overlap of topical features) and the recall and precision are the
same.

In order to evaluate the acquired corpus, our first task was to analyze the impact of bias.
The overall results are shown in table VI.5. There are 2 figures for each distribution: obtained
simply assigning the first ranked sense (1st sense), and using the monosemous corpus following
the predetermined bias (Train exam.). As we described in section VI.3, the testing part of
the Senseval-2 lexical sample data was used for evaluation. We also include the results using
Senseval2 bias, which is taken from the training part. The recall per word for some distributions
can be seen in table VI.4.

The results show clearly that when bias information from a hand-tagged corpora is used
the recall improves significantly, even when the bias comes from a corpus -Semcor- different
from the target corpus -Senseval-. The bias is useful by itself, and we see that the higher the
performance of the 1st ranked sense heuristic, the lower the gain using the monosemous corpus.
We want to note that in fully unsupervised mode we attain a recall of 43.2% with the automatic
ranking. Using the minimally supervised information of bias, we get 49.8% if we have the bias
from an external corpus (Semcor) and 57.5% if we have access to the bias of the target corpus
(Senseval6). This results show clearly that the acquired corpus has useful information about the
word senses, and that bias is extremely important.

The results per word are given in table VI.6. We can see that if we do not use some kind of
sense-distributional information the results for some words drop below 10% precision using web
bias: child, day, grip, ...

6Bias obtained from the training-set.
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Bias Type 1st sense Train exam. Diff.
no bias 18.3 38.0 +19.7
web bias unsuperv. 33.3 39.8 +6.5
autom. ranking 36.1 43.2 +7.1
Semcor bias minimally- 47.8 49.8 +2.0
Senseval2 bias supervised 55.6 57.5 +1.9

Table VI.5: Performance (recall) on the Senseval-2 lexical-sample, using different biases to create
the corpus. The type column shows the kind of system.

Unsupervised Supervised
Word

No bias Web bias Autom. ranking Semcor bias Senseval2 bias
art 34.0 61.1 45.6 55.6 44.9
authority 20.9 22.0 40.0 41.8 46.2
bar 24.7 52.1 26.4 51.6 57.2
bum 36.7 18.8 57.5 5.0 85.0
chair 61.3 62.9 69.4 88.7 88.7
channel 42.2 28.7 30.9 16.2 57.4
child 40.3 1.6 34.7 54.0 58.9
church 43.8 62.1 49.7 48.4 51.6
circuit 44.3 52.8 49.1 41.5 58.0
day 15.3 2.2 12.5 48.0 60.4
detention 52.1 16.7 87.5 52.1 87.5
dyke 92.9 89.3 80.4 92.9 89.3
facility 19.6 26.8 22.0 26.8 21.4
fatigue 58.8 73.8 75.0 82.5 82.5
feeling 27.2 51.0 42.5 60.2 60.2
grip 11.3 8.0 28.2 16.0 38.0
hearth 57.8 37.5 60.4 75.0 75.0
holiday 70.4 7.4 72.2 96.3 96.3
lady 24.3 79.3 23.9 80.4 73.9
material 51.7 50.8 52.3 54.2 42.9
mouth 39.5 39.5 46.5 54.4 39.5
nation 80.6 80.6 80.6 80.6 80.6
nature 21.9 44.4 34.1 46.7 40.7
post 36.8 47.4 47.4 34.2 40.5
restraint 26.3 9.1 31.4 27.3 37.1
sense 44.8 18.6 41.9 47.7 48.8
spade 74.2 66.1 85.5 67.7 74.2
stress 38.6 52.6 27.6 2.6 48.7
yew 70.4 85.2 77.8 66.7 81.5
Overall 38.0 39.8 43.2 49.8 57.5

Table VI.6: Performance (recall) on the Senseval-2 lexical-sample per word, using different biases
to create the corpus.

We will present two further experiments performed with the monosemous corpus resource.
The goal of the first will be to measure the WSD performance that we achieve using Semcor as the
only supervised data source. In our second experiment, we will compare the performance of our
totally unsupervised approach (monosemous corpus and automatic bias) with other unsupervised
approaches in the Senseval-2 English lexical task.

VI.6.1 Monosemous corpus and Semcor bias

In this experiment we compared the performance using the monosemous corpus (with Semcor
bias and minimum ratio), and the examples from Semcor. We noted that there were clear dif-
ferences depending on the number of training examples for each word, therefore we studied each
word-set described in section VI.3 separately. The results per word-set are shown in table VI.7.
The figures correspond to the recall training in Semcor, the web-corpus, and the combination of
both.

If we focus on set B (words with less than 10 examples in Semcor), we see that the MFS
figure is very low (40.1%). There are some words that do not have any occurrence in Semcor,
and thus the sense is chosen at random. It made no sense to train the DL for this set, therefore
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Word-set MFS Semcor Web
Semcor +
Web

MFS &
Web

set A (> 10) 51.9 50.5 50.9 51.6 51.9
set B (< 10) 40.1 - 47.7 47.8 47.8
all words 47.8 47.4 49.8 50.3 50.5

Table VI.7: Recall training in Semcor, the acquired web corpus (Semcor bias), and a combination
of both, compared to that of the Semcor MFS.

this result is not in the table. For this set, the bias information from Semcor is also scarce, but
the DLs trained on the web-corpus raise the performance to 47.8%.

For set A, the average number of examples is higher, and this raises the results for Semcor
MFS (51.9%). We see that the recall for DL training in Semcor is lower that the MFS baseline
(50.5%). The main reasons for these low results are the differences between the training and
testing corpora (Semcor and Senseval). There have been previous works on portability of hand-
tagged corpora that show how some constraints, like the genre or topic of the corpus, affect
heavily the results (Martinez and Agirre, 2000). If we train on the web-corpus the results
improve, and the best results are obtained with the combination of both corpora, reaching
51.6%. We need to note, however, that this is still lower than the Semcor MFS.

Finally, we will examine the results for the whole set of nouns in the Senseval-2 lexical-sample
(last row in table VI.7), where we see that the best approach relies on the web-corpus. In order
to disambiguate the 29 nouns using only Semcor, we apply MFS when there are less than 10
examples (set B), and train the DLs for the rest.

The results in table VI.7 show that the web-corpus raises recall, and the best results are
obtained combining the Semcor data and the web examples (50.3%). As we noted, the web-
corpus is specially useful when there are few examples in Semcor (set B), therefore we made
another test, using the web-corpus only for set B, and applying MFS for set A. The recall was
slightly better (50.5%), as is shown in the last column.

VI.6.2 Monosemous corpus and Automatic bias (unsupervised
method)

In this experiment we compared the performance of our unsupervised system with other ap-
proaches. For this goal, we used the resources available from the Senseval-2 competition, where
the answers of the participating systems in the different tasks were available7. This made pos-
sible to compare our results and those of other systems deemed unsupervised by the organizers
on the same test data and set of nouns.

From the 5 unsupervised systems presented in the Senseval-2 lexical-sample task as unsu-
pervised, the WASP-Bench system relied on lexicographers to hand-code information semi-
automatically (Tugwell and Kilgarriff, 2001). This system does not use the training data, but
as it uses manually coded knowledge we think it falls clearly in the supervised category.

The results for the other 4 systems and our own are shown in table VI.8. We show the results
for the totally unsupervised system and the minimally unsupervised system (Semcor bias). We
classified the UNED system
(Fernandez-Amoros et al., 2001) as minimally supervised. It does not use hand-tagged examples
for training, but some of the heuristics that are applied by the system rely on the bias information
available in Semcor. The distribution of senses is used to discard low-frequency senses, and also
to choose the first sense as a back-off strategy. On the same conditions, our minimally supervised
system attains 49.8 recall, nearly 5 points more.

The rest of the systems are fully unsupervised, and they perform significantly worse than our
system.

VI.7 Conclusions

This chapter explores the large-scale acquisition of sense-tagged examples for WSD, which is
a very promising line of research, but remains relatively under-studied. We have applied the

7http://www.senseval.org.
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Method Type Recall
Web corpus (Semcor bias) minimally- 49.8
UNED supervised 45.1
Web corpus (Autom. bias) 43.3
Kenneth Litkowski-clr-ls unsupervised 35.8
Haynes-IIT2 27.9
Haynes-IIT1 26.4

Table VI.8: Our minimally supervised and fully unsupervised systems compared to the unsu-
pervised systems (marked in bold) in the 29 noun subset of the Senseval-2 Lexical Sample.

“monosemous relatives” method to construct automatically a web corpus which we have used to
train three systems based on DL: one fully supervised (applying examples from Semcor and the
web corpus), one minimally supervised (relying on the distribution of senses in Semcor and the
web corpus) and another fully unsupervised (using an automatically acquired sense rank and
the web corpus). Those systems were tested on the Senseval-2 lexical sample test set.

We have shown that the fully supervised system combining our web corpus with the examples
in Semcor improves over the same system trained on Semcor alone. This improvement is specially
noticeable in the nouns that have less than 10 examples in Semcor. Regarding the minimally
supervised and fully unsupervised systems, we have shown that they perform well better than
the other systems of the same category presented in the Senseval-2 lexical-sample competition.
The system can be trained for all nouns in WordNet, using the data collected from the web, and
it is publicly available8.

The research also highlights the importance of bias. Knowing how many examples are to be
fed into the ML system is a key issue. We have explored several possibilities, and we have seen
that assigning directly the first sense in a ranking obtained from hand-tagged data (or even with
automatic means on raw corpora) can be a good approximation for disambiguation. However,
the DL algorithm is always able to improve this heuristic training on the automatically acquired
examples.

We think that this research opens the opportunity for further improvements. We have to note
that the MFS heuristic and the supervised systems based on the Senseval-2 training data are
well ahead of our results, and our research aims at investigating ideas to close this gap. Some
experiments in the line of adding automatically retrieved examples to available hand-tagged
data (Semcor and Senseval-2) have been explored. The preliminary results indicate that this
process has to be performed carefully, taking into account the bias of the senses and applying a
quality-check of the examples before they are included in the training data.

In order to improve the system, in the future we would like to apply more powerful ML meth-
ods, like the ensemble constructed on chapter V. We would also like to tune the algorithm that
chooses the monosemous relatives, giving preference, for instance, to multiwords that contain
the target word as in (Leacock et al., 1998). The method could also benefit from sophisticated
tools to acquire examples that are now available, like ExRetriever (Fernandez et al., 2004), which
could open the way to examples with less noise and better performance. Another idea to enrich
the system would be to retrieve examples by queries based on collocations. These collocations
would have a strong relation with specific senses, and could be detected with the smoothing
techniques described in chapter V.

We would also like to apply this method for new languages and testbeds. An interesting
approach could be to retrieve examples for languages that count on lexical databases like Word-
Net, but do not have an all-words sense-tagged corpora (e.g. Basque). Moreover, now that the
monosemous corpus is available for all nouns in English, we would like to test the system on the
all-words task, analyzing specially words with low amounts of available hand-tagged data.

Finally, we want to note that our results suggest that there is a portability problem when
extending hand-tagged corpora with new examples (see also (Escudero et al., 2000c)). In this
chapter, we have addressed the problem by means of sense-rankings, obtained from hand-tagged
data and automatically. However, in order to construct a robust system, we should take into

8http://ixa2.si.ehu.es/pub/sensecorpus.
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account how the change of corpora and domain affects WSD performance. We will address this
issue in the next chapter, relying on the DSO corpus, which contains examples from two different
corpora (BC and WSJ).
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VII. CHAPTER

Portability and genre/topic of corpora

VII.1 Introduction

The previous chapter has presented us the difficulties of extending available hand-tagged data by
automatic means. We emphasized the importance of the bias of the sense distribution, and we
showed that, without some prior information, the performance drops dramatically when training
on automatically-acquired examples. However, another factor that has to be taken into account
when we add new examples to a corpus is portability. In previous work, the application of WSD
systems trained on a given corpus to be tested on a different one has shown a drop in performance,
even when applying tuning techniques (Escudero et al., 2000c). One of the drawbacks of using
different corpora, highlighted by Ng et al. (1999), is that when the hand-tagging of the same
corpus is performed by independent teams of researchers there is low inter-tagger agreement.
Another important issue is the fact that new examples come usually from different genre and
topics.

In order to be able to alleviate the knowledge acquisition bottleneck and extend our corpora,
we have to study the reasons for this degradation of performance. In the early nineties, two
famous papers claimed that the behavior of word senses in texts adhered to two principles: one
sense per discourse (Gale et al., 1993) and one sense per collocation (Yarowsky, 1993). The
first constraint states that words the occurrences of a word tend to have the same meaning
in a given discourse. The “one sense per collocation” rule mantains that the collocations in
the nearby context contain strong clues that serve to determin the meaning of a word. These
principles (specially the second) have been widely used to construct supervised WSD systems.
The hypotheses were shown to hold for some particular corpora (totaling 380 Mwords) on words
with 2-way ambiguity. The word sense distinctions came from different sources (translations into
French, homophones, homographs, pseudo-words, etc.), but no dictionary or lexical resource was
linked to them. In the case of the “one sense per collocation” paper, several corpora were used,
but no study was done to show whether the collocations hold across corpora. We think that
revisiting these hypotheses in the present framework of supervised WSD (with fine-grained sense
distinctions and new resources), could provide us insight on the portability of WSD systems.

Krovetz (1998) showed that the “one sense per discourse” hypothesis does not hold for fine-
grained senses in SemCor and DSO, as 33% of the words in these corpora had multiple meanings
in the same discourse. His results have been confirmed in our own experiments. We will therefore
concentrate on the “one sense per collocation” hypothesis, considering these two questions:

1. Does the collocation hypothesis hold for fine-grained sense distinctions (compared to ho-
mograph level granularity)?

2. Does the collocation hypothesis hold across corpora, that is, across genre and topic varia-
tions (compared to a single corpus, probably with little genre and topic variations)?

In order to try to answer the above questions, we will rely on the DSO collection (cf. sec-
tion II.3), which comprises texts from two different corpora: BC and WSJ. We will first compare
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the strength of the “one sense per collocation” hypothesis in cross-corpora tagging with the fig-
ures obtained using one single corpus. Then we will measure the effect of the discourse (deriving
training and testing examples from the same documents) on the results. Finally, we will test the
influence of the genre and topic of the examples in WSD performance across different sections
of the BC, which cover different genres and topics. We think that this study will highlight the
factors that come into play when porting a WSD system to a new corpus, and help us to build
more robust WSD algorithms.

This chapter is organized as follows. Section VII.2 described related work on portability of
WSD systems. The resources used and the experimental settings are presented in section VII.3.
Section VII.4 presents the collocations considered. Sections VII.5 and VII.6 show the in-corpus
and cross-corpora experiments, respectively. Section VII.7 discusses the effect of drawing train-
ing and testing data from the same documents. Section VII.8 evaluates the impact of genre
and topic variations, which is further discussed in section VII.9. Finally, section VII.10 presents
some conclusions.

VII.2 Related work

The portability of large-scale hand-tagged corpora was first analyzed in the work by Ng et al.
(1999). This work relied on the overlapping examples in the DSO and Semcor corpora, which
belonged to the BC corpus. They measured the tagger agreement for the two teams that devel-
oped DSO and Semcor. They report low values both in precision (56.7%) and Kappa coefficient1

(0.317). They also present an algorithm that builds coarser senses from the human annotations,
and they suggest that this inventory can be used to better evaluate WSD algorithms.

Escudero et al. (2000c) perform a set of experiments on cross-corpora tagging using four
different ML methods (including AB and NB). They test the portability of the systems using
the two parts of DSO: WSJ and BC. These corpora is combined in several ways; for instance,
training on the whole DSO and testing on BC. They apply cross-validation when training and
testing parts overlap. The results reported in cross-corpora tagging are low, in some cases below
the MFS baseline. In another experiment from this article, they tested a tuning method that
consisted on including for training some examples from the target corpus. The goal was to
test whether having some examples from the target corpus would be enough to profit from a
different corpus. They analyzed the learning curve, adding more examples from the target at
each step. The results were not good, as AB was the only ML method that profited slightly
from the different corpus.

In their analysis, Escudero et al. (2000c) studied the differences in the sense distributions in
WSJ and BC, but they did not take into account the different genre and topic of the documents.
While in the WSJ corpus all the texts come from press articles, the BC is balanced, with some
sections belonging to the “press” domain (cf. section II.3). We used this information for our
work on this chapter, in order to study the effect of the domain on portability.

In (McCarthy et al., 2004), they implement a method to obtain automatically a ranking of
senses for the corpus they want to disambiguate. The algorithm, which we described briefly in
section VI.5.2, proceeds building a thesaurus with the method from (Lin, 1998a), and applying
WordNet-based similarity measures. As it is shown in their experiments, the algorithm is able
to acquire information of the preferred senses for different domains. They note that the first
sense heuristic is used by many WSD systems as back-off strategy (specially for all-words tasks),
and it is also applied for lexical acquisition. We already applied this technique in chapter VI,
in order to obtain bias information for the automatic acquisition of examples from the web. As
we showed, using their ranking method and the examples from the web, we were able to build
a totally unsupervised WSD system that outperformed other systems in the Senseval-2 English
lexical-sample task. We think that the technique from (McCarthy et al., 2004) offers promising
results for the portability of WSD systems.

1The Kappa coefficient measures the agreement between annotators after factoring out the effect of chance
agreement. A value of 0 indicates that the agreement is purely due to chance, while the maximum value of 1
indicates full agreement.



VII.3 Experimental setting 103

VII.3 Experimental setting

The experiments in this chapter were performed using the WSJ&BC setting (section III.3.3.2),
which consisted on the DSO corpora, and the C word-set (21 nouns and verbs). The two sources
of the DSO corpus (WSJ and BC) are used separately for cross-tagging experiments.

As mentioned earlier, the WSJ contains press articles, and the BC is balanced, with the
texts classified according some predefined categories (as we can see in section II.3). These
categories have been previously used in genre detection experiments (Karlgren and Cutting,
1994), where each category was used as a genre. We think that the categories not only reflect
genre variations but also topic variations (e.g. the Religion category follows topic distinctions
rather than genre). Nevertheless we are aware that some topics can be covered in more than
one category. Unfortunately we could not find a topically tagged corpus which also have word
sense tags. We thus speak of genre and topic variation, knowing that further analysis would be
needed to measure the effect of each of them.

As usual, we use 10-fold cross-validation when training and testing on the same corpus. When
comparing the performance on decision lists trained on two different corpora (or sub-corpora) we
always take an equal amount of examples per word from each corpora. This is done to discard
the amount-of-data factor.

VII.4 Feature set

In order to test the “one sense per collocation” rule presented in (Yarowsky, 1993), we will
adopt the broad definition of collocations used in that work, which corresponds to the basic
feature types we are using throughout this dissertation. Therefore, from now on we will speak
indistinctly of collocations and features, although the term “collocations” is often applied to
refer to non-compositional, high-frequency word co-occurrences (Firth, 1957). If a more strict
linguistic perspective is taken, rather than collocations we should speak about co-occurrence
relations.

The collocations that we studied were classified into three subsets: local content word colloca-
tions, local part-of-speech and function-word collocations, and global content-word collocations.
The “local content word” subset is the only one that would adhere to the narrower definition
of collocation. We only considered those collocations that could be easily extracted from a part
of speech tagged corpus, like “word to left”, “word to right”, etc. Local content word collo-
cations comprise bigrams (“word to left”, “word to right”) and trigrams (“two words to left”,
“two words to right”, and “both words to right and left”). At least one of those words needs
to be a content word. Local function-word collocations comprise also all kinds of bigrams and
trigrams, as before, but the words need to be function words. Local PoS collocations take the
Part of Speech of the words in the bigrams and trigrams. Finally, global content word colloca-
tions comprise the content words around the target word in two different contexts: a window of
±4 words around the target word, and all the words in the sentence. Table VII.1 summarizes
the collocations used. These collocations have been used in other word sense disambiguation
research and are also referred to as features (Gale et al., 1993; Ng and Lee, 1996; Escudero et al.,
2000c).

Compared to (Yarowsky, 1993), who also took into account grammatical relations, we only
share the content-word-to-left and the content-word-to-right collocations. We did not lemmatize
content words, and we therefore do take into account the form of the target word. For instance,
governing body and governing bodies are different collocations for the sake of this chapter.

VII.5 In-corpus experiments

We extracted the collocations in the BC section of the DSO corpus and, using 10-fold cross-
validation, tagged the same corpus. The same procedure was followed for the WSJ part. The
precision and coverage results are shown in tables VII.2 and VII.3, where the collocation groups
are given in bold. We can observe the following:

• The best kinds of collocations are local content word collocations, especially if two words
from the context are taken into consideration, but the coverage is low. Function words to
right and left also attain remarkable precision.
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Local content word collocations
Word-to-left Content Word
Word-to-right Content Word
Two-words-to-left
Two-words-to-right At least one Content Word
Word-to-right-and-left

Local PoS and function word collocations
Word-to-left Function Word&PoS
Word-to-right Function Word&PoS
Two-words-to-left Both Function Words&PoS
Two-words-to-right PoS
Word-to-right-and-left PoS

Global content word collocations
Word in Window of ±4w

Content Word
Word in sentence

Table VII.1: Types of collocations.

Nouns Verbs Overall
Collocations

Pr. Cov. Pr. Cov. Pr. Cov.
Word-to-right 64.4 20.3 43.2 23.0 56.2 21.2
Word-to-left 62.6 12.4 77.0 13.9 68.1 12.9
Two-words-to-right 65.7 14.6 50.0 10.3 61.3 13.1
Two-words-to-left 74.0 9.2 81.9 12.2 77.4 10.3
Word-to-right-and-left 64.7 8.8 68.6 11.4 66.3 9.8
Overall local content 67.5 40.5 63.5 40.4 66.1 40.5
Word-to-right 48.0 50.3 45.2 40.6 47.1 46.8
Word-to-left 41.4 63.9 57.2 52.7 46.4 59.9
Two-words-to-right 52.0 18.3 62.4 11.3 54.7 15.8
Two-words-to-left 42.0 13.1 64.8 17.3 51.6 14.6
Word-to-right-and-left 54.9 23.8 65.4 16.0 57.7 21.0
PoS-to-right 34.0 99.2 35.6 99.2 34.6 99.2
PoS -to-left 35.0 99.4 48.3 99.2 39.8 99.3
Two- PoS -to-right 40.6 92.3 42.2 87.6 41.2 90.6
Two- PoS -to-left 39.6 79.2 53.9 89.7 45.2 82.9
PoS -to-right-and-left 41.6 92.1 54.5 88.5 46.1 90.8
Overall local PoS&Fun 48.6 100 56.0 100 51.2 100
Word in sentence 54.5 100,0 49.2 100,0 52.6 100,0
Word in Window of 4 55.0 97.2 52.5 95.1 54.1 96.4
Overall global content 54.9 100 50.3 100 53.3 100
OVERALL 57.7 100 56.4 100 57.2 100

Table VII.2: Train on BC, tag BC.

• Collocations are stronger in the WSJ, surely due to the fact that the BC is balanced, and
therefore includes more genres and topics. This is a first indicator that genre and topic
variations have to be taken into account.

• Collocations for fine-grained word-senses are sensibly weaker than those reported by
Yarowsky (1993) for two-way ambiguous words. Yarowsky reports 99% precision, while
our highest results do not reach 80%.

It has to be noted that the test and training examples come from the same corpus, which
means that, for some test cases, there are training examples from the same document. In some
sense we can say that one sense per discourse comes into play. This point will be further explored
in section VII.7.

In the rest of this chapter, only the overall results for each subset of the collocations will be
shown. We will pay special attention to local-content collocations, as they are the strongest,
and also closer to strict definitions of collocation.

As an example of the learned collocations, table VII.4 shows some strong local content word
collocations for the noun state, and figure VII.1 shows the word senses of state (6 out of the 8
senses are shown as the rest were not present in the corpora).
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Nouns Verbs Overall
Collocations

Pr. Cov. Pr. Cov. Pr. Cov.
Word-to-right 76.8 25.4 52.9 26.4 68.0 25.8
Word-to-left 72.4 18.5 86.7 18.2 77.5 18.4
Two-words-to-right 78.4 19.1 62.3 11.3 74.4 16.3
Two-words-to-left 81.1 16.0 86.2 17.9 83.0 16.6
Word-to-right-and-left 82.0 16.9 72.8 12.9 79.3 15.5
Overall local content 76.4 50.2 73.7 49.7 75.5 50.0
Word-to-right 60.0 45.7 52.7 37.0 57.7 42.6
Word-to-left 54.5 60.9 62.9 47.2 57.0 56.0
Two-words-to-right 63.8 13.3 68.7 8.4 65.0 11.6
Two-words-to-left 60.0 14.0 65.7 10.8 61.7 12.8
Word-to-right-and-left 72.1 22.0 69.4 13.8 71.4 19.1
PoS-to-right 49.0 99.3 48.8 99.3 48.9 99.3
PoS -to-left 46.5 99.1 58.4 99.4 50.8 99.2
Two- PoS -to-right 52.6 91.8 53.4 87.9 52.9 90.4
Two- PoS -to-left 51.8 82.2 61.4 91.2 55.5 85.4
PoS -to-right-and-left 55.5 91.8 63.4 89.1 58.3 90.8
Overall local PoS&Fun 62.2 100 64.0 100 62.9 100
Word in sentence 61.1 100 57.2 100 59.7 100
Word in Window of 4 62.7 97.9 61.1 97.5 62.2 97.7
Overall global content 61.7 100 58.0 100 60.4 100
OVERALL 66.1 100 63.5 100 65.2 100

Table VII.3: Train on WSJ, tag WSJ.

1. state -- (the group of people comprising the government of a

sovereign state)

2. state, province -- (the territory occupied by one of the

constituent administrative districts of a nation)

3. state, nation, country, land, commonwealth, res publica, body

politic -- (a politically organized body of people under a

single government)

4. state -- (the way something is with respect to its main

attributes)

5. Department of State, State Department, State -- (the federal

department that sets and maintains foreign policies)

6. country, state, land, nation -- (the territory occupied by a

nation)

Figure VII.1: Word senses for state in WordNet 1.6 (6 out of 8 are shown).

VII.6 Cross-corpora experiments

In these experiments we train on the BC and tag the WSJ corpus and vice versa. Tables VII.5
and VII.6, when compared to tables VII.2 and VII.3 show a significant drop in performance
(both precision and coverage) for all kinds of collocations (we only show the results for each
subset of collocations). For instance, table VII.5 shows a drop in 16% in precision for local
content collocations when compared to table VII.3.

These results confirm those by Escudero et al. (2000c) who conclude that the information
learned in one corpus is not useful by itself to tag the other.

In order to analyze the reason for this performance degradation, we compared the local
content word collocations extracted from one corpus and the other. Table VII.7 shows the
amount of collocations extracted from each corpus, how many of the collocations are shared
on average and how many of the shared collocations are in contradiction. The low amount of
collocations shared between both corpora could explain the poor figures, but for some words
(e.g. point) there is a worrying proportion of contradicting collocations.

We inspected some of the contradicting collocations and saw that in all the cases they were
caused by errors (or at least differing criteria) of the hand-taggers when dealing with words with
difficult sense distinctions. For instance, table VII.8 shows some collocations of point which
receive contradictory senses in the BC and the WSJ. The collocation point of view, for instance,
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Sense of state
Collocation Log

#1 #2 #3 #4 #5 #6
State government 3.68 - - - - 4 -
six states 3.68 - - - - 4 -
State ’s largest 3.68 - - - - 4 -
State of emergency 3.68 - 4 - - - -
Federal , state 3.68 - - - - 4 -
State , including 3.68 - - - - 4 -
Current state of 3.40 - 3 - - - -
State aid 3.40 - - - 3 - -
State where Farmers 3.40 3 - - - - -
State of mind 3.40 - 3 - - - -
Current state 3.40 - 3 - - - -
State thrift 3.40 - - - 3 - -
Distributable state aid 3.40 - - - 3 - -
State judges 3.40 - - - - 3 -
a state court 3.40 - - 3 - - -
said the state 3.40 - - - - 3 -
Several states 3.40 - - - - 3 -
State monopolies 3.40 - - - 3 - -
State laws 3.40 - - 3 - - -
State aid bonds 3.40 - - - 3 - -
Distributable state 3.40 - - - 3 - -
State and local 2.01 - - 1 1 15 -
Federal and state 1.60 - - - 1 5 -
State court 1.38 - - 12 - 3 -
Other state . 1.38 4 - - - 1 -
State governments 1.09 1 - - - 3 -

Table VII.4: Local content-word collocations for state in the WSJ. For each sense and collocation,
the number of examples is given.

Nouns Verbs Overall
Collocations

Pr. Cov. Pr. Cov. Pr. Cov.
Overall local content 59.7 33.8 59.1 35.6 59.5 34.4
Overall local PoS&Fun 47.8 99.9 49.1 99.7 48.3 99.8
Overall global content 44.2 100 45.5 99.9 44.7 100
OVERALL 48.5 100 49.7 100 48.9 100

Table VII.5: Cross-corpora tagging: train on BC, tag WSJ.

Nouns Verbs Overall
Collocations

Pr. Cov. Pr. Cov. Pr. Cov.
Overall local content 51.2 27.3 55.6 33.6 53 29.5
Overall local PoS&Fun 42.1 100 48.6 100 44.4 100
Overall global content 39.2 100 42.3 100 40.3 100
OVERALL 42.9 100 48.3 100 44.8 100

Table VII.6: Cross-corpora tagging: train on WSJ, tag BC.

is assigned the fourth sense in 13 out of 15 occurrences in the BC, and the second sense in all
19 occurrences in the WSJ.

We can therefore conclude that the “one sense per collocation” holds across corpora, because
the contradictions found were due to tagging errors. The low amount of collocations in common
would explain by itself the low figures on cross-corpora tagging.

But yet, we wanted to further study the reasons for the low number of collocations in common,
which affects the cross-corpora performance. We thought of different factors that could come
into play:

a. Effect of discourse: the training and test examples from the in-corpus experiments are
taken at random, and they could be drawn from the same document. This could make
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Word PoS Coll. BC Coll. WSJ % Coll. Shared % Coll. Contradict.
Age N 45 60 27 0
Art N 24 35 34 20
Body N 12 20 12 0
Car N 92 99 17 0
Child N 77 111 40 05
Cost N 88 88 32 0
Head N 77 95 07 33
Interest N 80 141 32 33
Line N 110 145 20 38
Point N 44 44 32 86
State N 196 214 28 48
Thing N 197 183 66 52
Work N 112 149 46 63
Become V 182 225 51 15
Fall V 36 68 19 60
Grow V 61 71 36 33
Lose V 63 56 47 43
Set V 94 113 54 43
Speak V 34 38 28 0
Strike V 12 17 14 0
Tell V 137 190 45 57

Table VII.7: Collocations shared and in contradiction between BC and WSJ.

BC WSJ
Collocation

#2 #4 Others #2 #4 Others
important point 3 0 0 0 2 0
point of view 1 13 1 19 0 0

Table VII.8: Contradictory senses of point in BC and WSJ.

the results appear better for in-corpora experiments. On the contrary, in the cross-corpora
experiments, training and testing examples come always from different documents.

b. Genre and topic changes caused by the shift from one corpus to the other.

c. Corpora have intrinsic features that cannot be captured by sole genre and topic variations.

d. The size of the data, being small, would account for the low amount of collocations shared.

We explore the factor a) in section VII.7, and b) in section VII.8. The latter points c) and
d) are discussed in section VII.9.

VII.7 Effect of discourse

In order to test whether drawing training and testing examples from the same document explains
the different performance in in-corpora and cross-corpora tagging, we performed the following
experiment. Instead of organizing the 10 random subsets for cross-validation on the examples,
we chose 10 subsets of the documents (also at random). This way, the testing examples and
training examples are guaranteed to come from different documents. We also think that this
experiment would show more realistic performance figures, as a real application should not
expect to find examples from the documents used for training.

Unfortunately, there are not any explicit document boundaries, neither in the BC nor in
the WSJ. In the BC, we took files as documents, even if files might contain more than one
excerpt from different documents. This procedure guarantees that document boundaries are not
crossed. It has to be noted that following this organization the target examples would share
fewer examples from the same topic. The 168 files from the BC were divided in 10 subsets at
random: we took 8 subsets with 17 files and 2 subsets with 16 files.

For the WSJ, the only cue was the directory organization. In this case we were unsure about
the meaning of this organization, but hand inspection showed that document boundaries were
not crossing discourse boundaries. The 61 directories were divided in 9 subsets with 6 directories
and 1 subset with 7.
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Overall Local content
PoS

Pr. Cov. Diff. Pr. Cov. Diff.
N 49.9 100 -7.8 57.3 30.7 -10.2
V 54.3 100 -2.1 60.8 37.9 -2.7
Overall 51.4 100 -5.8 58.7 33.3 -7.4

Table VII.9: Train on BC, tag BC, cross-validation according to files.

Overall Local content
PoS

Pr. Cov. Diff. Pr. Cov. Diff.
N 65.0 100 -1.1 76.2 48.6 -0.2
V 63.4 100 -0.1 69.7 49.4 -4.0
Overall 64.4 100 -1.1 73.8 48.9 -1.7

Table VII.10: Train on WSJ, tag WSJ, cross-validation according to files.

Testing Corpus In-corpora(examples) In-corpora(files) Cross-corpora
BC 57.2 51.4 44.8
WSJ 65.2 64.4 48.9

Table VII.11: Overall results in different experiments tagging WSJ and BC (overall features).

Again, 10-fold cross-validation was used on these subsets and the results in tables VII.9 and
VII.10 were obtained. The tables show the results per each part of speech using the main
collocation groups: all the features (overall), and the local content features. The Diff. column
shows the change in precision with respect to tables VII.2 and VII.3, which separate the folds
according to examples instead of documents.

Table VII.9 shows that for the BC, precision and coverage are degraded significantly, com-
pared to table VII.2. On the contrary, the results for the WSJ are nearly the same (cf. tables
VII.10 and VII.3).

The results for WSJ indicate that drawing training and testing data from the same or different
documents in itself does not affect so much the results. The degradation of the BC results could
be explained by the greater variation in topic and genre. This factor will be further studied in
section VII.8.

Finally, table VII.11 summarizes the overall results on WSJ and BC for each of the different
experiments performed. The figures show that drawing training and testing data from the same
or different documents would not in any case explain the low figures in cross-corpora tagging.

VII.8 Effect of genre/topic variations

Trying to shed some light on this issue, we observed that the category press:reportage in BNC,
is related to the genre/topic of the WSJ. We therefore designed the following experiment: we
tagged each category in the BC with the DLs trained on the rest of the categories in the BC,
and also with the DLs trained on the WSJ.

Tables VII.12 and VII.13 show respectively the results for the local content collocation and
the overall collocation set. As the latter set has full coverage, only precision figures are given.
For local content-word collocations, table VII.12 illustrates that training on the WSJ attains
the best precision and coverage for press:reportage, both compared to the results for the other
categories, and to the results reached by the rest of the BC on press:reportage.

Therefore we can say that:

1. From all the categories, the local content collocations from press: reportage are the most
similar to those of WSJ.

2. WSJ contains collocations which are closer to those of press: reportage, than those from
the rest of the BC.
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Train on WSJ Train on rest of BC
Testing BC Category

prec. cov. prec. cov.
Press: Reportage 62.5 33.0 54.1 28.5
Skills and Hobbies 56.9 29.6 57.1 30.2
Romance and ... 56.1 27.1 59.5 34.0
Adventure and ... 55.1 22.3 70.2 31.2
Miscellaneous 53.4 32.1 53.4 30.4
General Fiction 52.5 23.9 60.5 32.1
Mystery and ... 52.3 24.3 61.8 36.9
Learned 51.8 25.7 56.3 28.0
Humor 51.6 32.1 52.4 33.7
Belles Lettres, ... 51.6 27.2 52.4 31.4
Press: Editorial 50.4 28.3 59.3 33.4
Popular Lore 48.8 30.4 56.3 35.3
Science Fiction 45.9 21.1 58.6 30.7
Press: Reviews 43.8 26.8 48.8 40.4
Religion 40.9 30.6 53.7 32.6

Table VII.12: Tagging different categories in BC (local content features). Results sorted by
precision training on WSJ. Best precision results are shown in bold.

Testing BC Category Train on WSJ Train on rest of BC
Mystery and ... 55.1 66.4
Humor 52.0 57.0
Adventure and ... 49.7 62.8
Press: Reportage 48.3 45.7
Miscellaneous 47.5 40.2
Romance and ... 47.0 56.5
Popular Lore 46.4 50.7
General Fiction 44.6 57.5
Press: Editorial 44.1 46.4
Learned 43.8 46.1
Skills and Hobbies 43.5 46.8
Science Fiction 41.0 56.5
Belles Lettres, ... 40.9 47.8
Press: Reviews 40.9 42.9
Religion 37.2 45.8

Table VII.13: Precision tagging different categories in BC (overall features). Results sorted by
precision training on WSJ. Best precision results are shown in bold.

As for table VII.13, we see that introducing the whole set of collocations (with weaker col-
locations that have higher coverage) shows some changes in the results. In this case, the better
performing category when training on WSJ is not press:reportage, although it is between the
best. However, we see that this category is the only to improve (together with Miscellaneous)
when trained on WSJ, as happened with local features.

In this table, we can see that the inclusion of weak features increases the overlapping between
the collocations for all categories, at the cost of being less reliable. This factor will normally
decrease the precision, although for some categories these features work surprisingly well (Mys-
tery, Humor, ...). The effect of the genre/topic is less noticeable in these conditions, however,
the results show again that the press:reportage category in the BC is more related to the WSJ
corpus than to the rest of BC. In other words, having related genre/topic helps having common
collocations, and therefore better WSD performance.

VII.9 Discussion

The goal of sections VII.7 and VII.8 was to explore the possible causes for the low number
of collocations in common between BC and WSJ. Section VII.7 concludes that drawing the
examples from different files is not the main reason for the degradation. This is specially true
when the corpus has low genre/topic variation (e.g. WSJ). Section VII.8 shows that sharing
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genre/topic is a key factor, as the WSJ corpus attains better results on the press:reportage
category than the rest of the categories on the BC itself. Texts on the same genre/topic share
more collocations than texts on disparate genre/topics, even if they come from different corpora.

This seems to also rule out explanation c) in section VII.6 (corpora have intrinsic features
unattainable from different sources), as a good measure of topic/genre similarity would help
overcome cross-corpora problems.

That only leaves the low amount of data available for this study (explanation d). It is
true that data scarcity can affect the number of collocations shared across corpora. We think
that larger data will make this number grow, especially if the corpus draws texts from different
genres and topics. Nevertheless, the figures in table VII.12 indicate that even in these conditions
genre/topic relatedness would help to find common collocations.

VII.10 Conclusions

This chapter shows that the one sense per collocation hypothesis is weaker for fine-grained
word sense distinctions (e.g. those in WordNet): from the 99% precision mentioned for 2-
way ambiguities in (Yarowsky, 1993) we drop to 70% figures. These figures could perhaps be
improved using more available data.

We also show that one sense per collocation does hold across corpora, but that collocations
vary from one corpus to other, following genre and topic variations. This explains the low results
when performing word sense disambiguation across corpora. In fact, we demonstrated that when
two independent corpora share a related genre/topic, the WSD results are better.

This has considerable impact in future work on WSD, as genre and topic are shown to be
crucial parameters. A system trained on a specific genre/topic would have difficulties to adapt
to new genre/topics. Besides, methods that try to extend automatically the amount of examples
for training need also to account for genre and topic variations. We think that techniques like
the one presented in (McCarthy et al., 2004) can help to adapt WSD systems to new domains.

As a side effect, we have shown that the results on cross-validation WSD exercises, which
mix training and test data drawn from the same documents, are higher than those from a
more realistic setting. We also discovered several hand-tagging errors, which distorted extracted
collocations. We did not evaluate the extent of these errors, but they certainly affected the
performance on cross-corpora tagging.

In order to extend this work, one of the factors that should be analyzed is the separate
influence of the genre and topic variations. The behaviour of different words through different
corpora should also be addressed. Finally, ways to integrate genre/topic parameters into the
WSD models have to be devised in order to build a general WSD system, as well as for lexical
acquisition methods.



VIII. CHAPTER

Conclusions

We started this dissertation motivating a WSD tool in order to get more insight in our way to
automatic natural language understanding. As we pointed out in the introduction, there are
several complex factors that have to be addressed for this task. We tried to enumerate the
main issues involving this problem in the introduction chapter, and the dissertation has been
organized around these points:

1. The description of the problem: Explicit WSD with a closed list of senses may not be a
correct way to model the intermediate task required for NLP.

2. The selection of a sense inventory: It is important that the senses of the words are repre-
sented with a good level of generalization, in order to be useful for NLP applications.

3. The application of ML algorithms: When choosing the methods that are being adapted from
the ML community, the peculiarities of the WSD problem have to be taken into account.

4. The feature sets used to model the language: In order to be robust, the ML methods should
rely in as much information from the texts as possible. Features obtained with complex
analysis of the text (morphological, syntactic, semantic, domain, etc.) and the combination
of different types of features could be used.

5. The sparse data problem: In NLP most of the events occur rarely, even when large quantities
of training data are available. This problem is specially noticeable in WSD, where hand-
tagged data is difficult to obtain.

6. Need for extra training data: Existing hand-tagged corpora do not seem enough for cur-
rent state-of-the-art WSD systems. Hand-tagged data is difficult and costly to obtain.
Estimations of the required tagging effort are not optimistic, and methods to obtain data
automatically should be explored.

7. Portability. The porting of the WSD systems to be tested on a different corpora than the
one used for training also presents difficulties. Previous work (Ng et al., 1999; Escudero
et al., 2000c) has shown that there is a loss of performance when training on one corpora
and testing on another. This has happened with automatically-tagged corpora, and also
with corpora hand-tagged by independent teams of researchers.

In this dissertation, we have focused on the points 3–7, and the two first issues are out of
the scope of our research. As we said in the introduction, there are other ways to approach the
lexical ambiguity problem (see for instance (Kilgarriff and Tugwell, 2002)), but we explored the
supervised approach to explicit WSD.

Thus, the points 3–7 comprise the main contents of the dissertation: baseline WSD system,
feature types, smoothing, acquisition of examples, and portability. This book has been organized
as follows: the issues 3 and 5 in the list (ML methods and sparse data problem) were addressed
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in chapter V; and each of the other issues was covered in a separate chapter with the same
number they have in the list.

From the experiments on each of the aspects of supervised WSD, we were able to extract
some conclusions. We will try first to summarize what we consider the main contributions of
this dissertation, and then, in a more focalized way, we will describe the conclusions derived
from each of the studied issues.

VIII.1 Contributions of our work

We will now describe the main contributions of this work, which were already advanced in
chapter I. We will first present the main research results, and then we will introduce the
tools and resources that have been built during this work:

• Syntactic features: In chapter IV, we explored the contribution of an extensive set of
syntactic features to WSD performance. The experiments showed that basic and syntactic
features contain complementary information, and that their integration is useful for WSD.
The study included two different ML methods (DL and AB), and a precision/coverage trade-
off system using different feature types. The contribution of syntactic features is specially
noticeable for the algorithm AB in the standard setting, and for DLs when applying the
precision/coverage trade-off.

• Semantic features: Also in chapter IV, we applied two approaches to study the contri-
bution of semantic features using the WordNet hierarchy and the Semcor all-words corpus.
On the one hand, we constructed new feature types based on the synsets surrounding the
target word, the hypernyms of these synsets (at different levels), and also their semantic
files. On the other hand, we learned different models of selectional preferences for verbs, us-
ing the relations extracted from the Semcor corpus by Minipar. Our main conclusions were
that the “bag-of-synsets” approach that we applied does not improve the results; however,
selectional preference acquisition offers promising results with a view to their integration
with other feature types.

• Automatic acquisition of examples: In chapter VI, we applied a method to auto-
matically acquire tagged examples from the web. This method, based on (Leacock et al.,
1998), obtained good performance on three systems with different supervision requirements:
fully supervised (automatic examples added to hand-tagged corpora), minimally supervised
(requiring information about sense distributions), and unsupervised (without hand-tagged
examples). We showed that the fully supervised system, combining our web corpus with
the examples in Semcor, improves over the same system trained on Semcor alone (specially
for nouns with few examples in Semcor). Regarding the minimally supervised and fully un-
supervised systems, we demonstrated that they perform well better than the other systems
of the same category presented in the Senseval-2 lexical-sample competition. Our system
can be trained for all nouns in WordNet, using the data collected from the web.

• Genre/topic shift: In chapter VII, we studied the strength of the “one sense per collo-
cation” hypothesis (Yarowsky, 1993) using different corpora for training and testing. Our
experiments show that the hypothesis is weaker for fine-grained word sense distinctions,
and that it does hold across corpora, but that collocations vary from one corpus to other,
following genre and topic variations. This would explain the low performance for WSD
across corpora. In fact, we showed that when two independent corpora share a related
genre/topic, the WSD results are better. Thus, this factor should be taken into account
when extending the training data.

Other interesting results that came out from our work are the following tools:

• High-precision WSD tool for English (chapter IV): We tested on Senseval-2 data
different systems that could provide high precision at the cost of coverage. The results were
promising, as two methods based on DLs reached 93% precision at 7% coverage (decision-
threshold method), and 86% precision at 26% coverage (feature selection method). Syntactic
features are specially helpful for feature selection.
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• Supervised WSD tool for English (chapter V): We developed a supervised system
based on the combination of different ML methods and smoothing techniques. In the
Senseval-3 English lexical-sample task, it ranked 5th among 47 submissions, only 0.6% lower
than the best system. This system also participated in the all-words task, as a component
of the “Meaning” system, which ranked 5th among 26 systems.

• Supervised WSD tool for Basque (chapter V): We have adapted our models to
Basque, which is an agglutinative language and presents new challenges when defining the
feature set. We have tested this tool on the Senseval-3 Basque lexical-sample task data,
and it outperforms the results of other systems that took part in the event.

• Unsupervised WSD tool for English (chapter VI): We built an unsupervised system
relying on automatically obtained examples, which shows promising results for alleviating
the knowledge acquisition bottleneck. It has been tested on the Senseval-2 English lexical-
sample task, presenting the best performance of this kind of systems.

There are also some lexical resources (available for research) that have been developed as
a result of our work:

• Selectional preferences (chapter IV): Using the syntactic dependencies (object and
subject) extracted from Semcor, we constructed and evaluated selectional preferences for
verb and noun classes in WordNet. This database, consisting on weighted relations between
synsets, is available by means of a Meaning license, or by personal request.

• Sense tagged corpus (chapter VI): We constructed automatically a sense-tagged corpus
for all nouns in WordNet. This resource is publicly available, and can be downloaded from
http://ixa2.si.ehu.es/pub/sensecorpus.

Finally, during this research, we have published our results in different articles. The complete
list is given in appendix A.

VIII.2 Detailed conclusions

In order to achieve the results described in the previous section, we followed a path through
different WSD issues, which served to organize the chapters of this dissertation. The conclusions
derived from our analysis were presented at the end of each chapter. We will now devote this
section to summarize the main results.

Baseline WSD system under different conditions (3rd chapter)

These are our conclusions from our study on DL, “classic” features, and currently available
hand-tagged data on different conditions:

• Performance: Semcor provides enough data to perform some basic general disambigua-
tion, at 68% precision on any general running text. The performance on different words
is similar, as ambiguity and number of examples are balanced in this corpus. The main
differences are given by the PoS of the target words: the verbs present the highest polisemy
and lowest precision. DSO provides large amounts of data for specific words, allowing for
improved precision. However, it is unable to overcome the 70% barrier for our target word
set. Finally, when applied to the Senseval-2 dataset, the system gets lower performance,
with a recall of around 57% for the lexical-sample and all-words tasks. The main reasons for
the low results are the high ambiguity of the target word-set (for the lexical-sample task),
and the unavailability of training data (for the all-words task).

• Relation between polisemy/bias/frequency and performance: The highest results
can be expected for words with a dominating word sense, but the difference to the MFS
baseline is lower. Words with high polisemy tend to be the most frequent, which makes the
polisemy and frequency factors balance each other.
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• Local features vs. topical features: In Semcor, topical features were better for nouns,
but not for other categories. For DSO, the local features achieved better performance than
the topical set for all categories. This could be due to the much higher number of examples
in DSO. It is important to note that single words exhibit different behavior, suggesting that
the best policy could be the construction of word-experts with specific feature sets (Hoste
et al., 2002).

• Learning curve: The learning curve in Semcor shows that more data would help to
improve the WSD system. In DSO, the system keeps learning with more data, but it
stabilizes with 80% of all the available data, which indicates that a plateau has been reached
for this system with 930 examples per noun and 1,370 examples per verb.

• Noise in the data: Our conclusion was that when we have few examples to train, as in
Semcor, the noise affects the performance heavily, and it is necessary to use bigger amounts
of data in order to minimize the damage.

• Coarse-grained disambiguation: The precision we obtain with semantic files is 83%,
both in DSO and Semcor; but with slightly lower coverage in Semcor. The improvement
is specially noticeable for verbs, where the reduction of sense granularity allows to reach
91% recall in DSO. An open issue is to find applications where coarse disambiguation would
help.

• Performance for Basque: Our aim was to imitate the expressiveness of the well-studied
features for English WSD, and we introduced several different feature types with that goal.
However, a better study of the contribution of single features should be done. All in all, the
results in the Senseval-2 task are encouraging, with our system only 2% below the winner
JHU system (while the difference was 8% between these systems for English), which would
indicate that our feature set represented better the context than the JHU set, although
their ML method was clearly better.

Richer feature sets (4th chapter):

The types of features we have analyzed in this chapter are divided in three groups: syntactic
features, semantic features, and selectional preferences. These were the main conclusions of our
experiments:

• Syntactic features on Semcor and DSO: the performance in this setting was low,
specially in Semcor (both precision and coverage). For DSO, the precision was slightly better
than the basic set, but the coverage was low. The syntactic features did not contribute
significantly in combination. Another study was conducted separately for the different
feature types, and we observed that some syntactic features achieved comparatively good
recall for verbs, specially ngrams, suggesting that some subcategorization information had
been acquired. For further analysis, we focused on some words in the Semcor experiment,
and analyzed the learned decision lists. These are the main problems observed:

– Low coverage because of the sparse data.

– Redundancy with basic types.

– Presence of noisy features.

– Parsing errors.

• Syntactic features on the Senseval-2 corpus

The results were significantly better in this corpus for syntactic features. Syntactic features
alone obtained better F1 value than the MFS baseline. The F1 value was much higher in
this experiment than in the DSO task, even when the recall of the MFS baseline was higher
in DSO. In our next experiment, we tested the combination of basic and syntactic features
using the two ML methods. We extracted these conclusions:
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– AB outperforms DL in all cases, except for local features.

– Syntactic features get worse results than local features.

– Syntactic features prove to be useful in the combination. DLs profit from the additional
syntactic features but the difference is only statistically significant for verbs. AB is able
to attain significant improvement (1.8% overall, 2.7% for verbs).

• Syntactic features and high precision systems

We analyzed two systems based on DL (Feature selection and Decision-threshold), and one
based on AB (Decision-threshold). These are the main observations:

– Syntactic features always help to improve the F1 of the basic set.

– Adjusting the methods to a minimum loss of coverage (discarding the most difficult
testing examples), the overall F1 improves for the three methods.

– The methods based on DL reach 93% precision at 7% coverage (decision-threshold),
and 86% precision at 26% coverage (feature selection). Syntactic features are specially
helpful for feature selection.

– AB does not achieve high precision figures, but it obtains the highest F1 score in this
setting, with 66.7% precision and 84.5% coverage.

• Semantic features:

This feature set was defined using the WordNet hierarchy, and the information from the
semantic files. The experiments were performed on Semcor, which means that there were
few examples to train, but also that the system would be applicable to an all-words task.
The results show that overall, the system is able to improve the performance of the topical
feature set, using the NB algorithm. This could be useful when the local contexts are not
reliable, as could happen with automatically acquired features (cf. chapter VI). Another
case where the recall is improved is for adjectives, with a gain of 3% recall.

All in all, the experiments suggest that other ways should be tried to benefit from these
features. Instead of the “bag-of-synsets” approach, the usage of dependency relations seems
a better way to explore semantic generalization.

• Selectional preferences:

We tested the performance of two models in object/subject relations: word-to-class, and
class-to-class. The goal was to disambiguate the nouns in the relations. The two main
experiments, which were performed for a sample of nouns, and for all the nouns in four
Semcor files, took us to the following conclusions:

– The class-to-class model obtains better recall than the word-to-class model, with only
a small loss in precision. Class-to-class learns selectional preferences for senses of verbs
that do not occur in the corpus, via inheritance.

– The recall of the class-to-class model gets close to the MFS baseline. We have to note
that this is a hard baseline for this kind of all-words systems, as we have seen in our
study of the literature (cf. section IV.2.2).

– The preferences are acquired from a small set of tagged examples, and for some words
the results are very low. The words with more examples to train show better perfor-
mance.

The main limitation of the selectional preference approach was the low coverage, and also
that no cut-off values or smoothing is applied, and the algorithm is forced to make decisions
with few data. Applying a threshold could help to improve precision at the cost of coverage.
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There are other experiments we would like to explore at this point: the use of a big untagged
corpus to learn the preferences, the disambiguation of words with other PoS than nouns,
and the inclusion of other features than object and subject.

Sparse data problem and smoothing (5th chapter):

In this chapter we studied different smoothing techniques and ML methods. We built an en-
semble of ML methods that was evaluated on Senseval-2 and Senseval-3, and applied to Basque
and English.

• Evaluation on Senseval-2: The evaluation on Senseval-2 data indicated that the smooth-
ing method explored in this chapter is able to make all three methods perform at very
high precisions, comparable and in some cases superior to the best result attained in the
Senseval-2 competition. We also showed that a simple combination of the methods and a
fourth system based on SVM attains the best result for the Senseval-2 competition reported
so far (although only in its more successful configuration, as the system was not “frozen”
using cross-validation).

• Evaluation on Senseval-3: We participated with our system in the English and Basque
lexical-sample tasks in Senseval-3. We submitted two systems for each task after tuning on
cross-validation: the best ensemble, and the best single method. Our systems obtained good
results, very close to the winning systems in both tasks. For English, our disambiguation
method shows a similar behavior on the Senseval-2 and the Senseval-3 datasets (both in
cross-validation and against the testing part). The ensemble performs best in all cases,
followed by VSM. The smoothing methods contribute to increase the recall in both cases.
The results for Basque are different, in this case the best single system is SVM, and the
combination of methods does not improve the results. For Basque, the profit from the
smoothing methods is much lower, and some algorithms (like VSM) seem to perform below
the expectations.

• Smoothing techniques: For further study, it would be interesting to extend this work to
X/Y features for Y greater than 1, and try other grouping criteria, e.g. taking into account
the class of the word. We would also like to compare our results to other more general
smoothing techniques (Good, 1953; Jelinek and Mercer, 1980; Chen, 1996).

Automatic acquisition of examples to alleviate the knowledge acquisition
bottleneck (6th chapter):

We have applied the “monosemous relatives” method to construct automatically a web corpus
which we have used to train three systems based on DL: one fully supervised (applying examples
from Semcor and the web corpus), one minimally supervised (relying on the distribution of senses
in Semcor and the web corpus) and another fully unsupervised (using an automatically acquired
sense rank and the web corpus). The systems were tested on the Senseval-2 lexical sample test
set.

• Performance: We have shown that the fully supervised system combining our web corpus
with the examples in Semcor improves over the same system trained on Semcor alone.
This improvement is specially noticeable in the nouns that have less than 10 examples
in Semcor. Regarding the minimally supervised and fully unsupervised systems, we have
shown that they perform well better than the other systems of the same category presented
in the Senseval-2 lexical-sample competition. The system can be trained for all nouns in
WordNet, using the data collected from the web1.

• Importance of bias: Knowing how many examples are to be fed into the ML system is a
key issue. We have explored several possibilities, and we have seen that assigning directly the
first sense in a ranking obtained from hand-tagged data (or even with automatic means on
raw corpora) can be a good approximation for disambiguation. However, the DL algorithm
is always able to improve this heuristic training on the automatically acquired examples.

1This corpus is available at http://ixa2.si.ehu.es/pub/sensecorpus.
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• Limitations of the system: One of the limitations of our system is that it relies only
on DL as learning method. In order to improve performance, more powerful ML methods
could be applied, like the ensemble constructed on chapter V. We would also like to tune
the algorithm that chooses the monosemous relatives, giving preference, for instance, to
multiwords that contain the target word as in (Leacock et al., 1998). The method could
as well benefit from sophisticated tools to acquire examples that are now available, like
ExRetriever (Fernandez et al., 2004), which could open the way to examples with less noise
and better performance.

Genre/topic of examples and portability (7th chapter):

In this section we studied the one sense per collocation hypothesis for fine-grained sense distri-
butions, and across genre and topic variations. Here we summarize our main conclusions:

• Fine-grained disambiguation: This chapter shows that the one sense per collocation
hypothesis is weaker for fine-grained word sense distinctions (e.g. those in WordNet): from
the 99% precision mentioned for 2-way ambiguities in (Yarowsky, 1993) we drop to 70%
figures. These figures could perhaps be improved using more available data.

• Cross-corpora disambiguation: We also show that one sense per collocation does hold
across corpora, but that collocations vary from one corpus to other, following genre and
topic variations. This explains the low results when performing word sense disambiguation
across corpora. In fact, we demonstrated that when two independent corpora share a related
genre/topic, the WSD results are better. This has considerable impact in future work on
WSD, as genre and topic are shown to be crucial parameters. A system trained on a specific
genre/topic would have difficulties to adapt to new genre/topics. Besides, methods that try
to extend automatically the amount of examples for training need also to account for genre
and topic variations.

• Cross-validation performance and hand-tagging errors: As a side effect, we have
shown that the results on cross-validation WSD exercises, which mix training and test data
drawn from the same documents, are higher than those from a more realistic setting. We
also discovered several hand-tagging errors, which distorted extracted collocations. We
did not evaluate the extent of these errors, but they certainly affected the performance on
cross-corpora tagging.

VIII.3 Further work

There are open research lines in this work that can be explored further. We will describe here
the main experiments that we would like to perform in the future.

• Integration of selectional preferences in the supervised setting: We think that
despite their low coverage, selectional preferences would help to improve the overall perfor-
mance of a supervised system, although it is not straightforward how to integrate them with
other feature types. One possibility would be to include the sense chosen by the selectional
preference model in the feature set, in a fashion similar to (Stevenson and Wilks, 1999).
The generalization of syntactic dependencies using WordNet offers promising results, as has
been shown in (Mihalcea and Faruque, 2004)2.

• Smoothing for automatic acquisition of examples: An interesting application of the
smoothing techniques is to detect good features, even in the case of low amounts of training
data. These features could be used as seeds to obtain new examples automatically, in a
fashion similar to the method applied in chapter VI for monosemous relatives. They could
also be integrated in a bootstrapping process using DLs, as in (Yarowsky, 1995b). The
DL algorithm is well suited for this task, as it relies on a single piece of evidence (feature)
to choose the correct sense, and it has been shown to perform significantly better with
smoothing.

2The system “SenseLearner” has been described in section II.8.
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• Automatic acquisition of examples for improved all-words WSD: As we mentioned
in chapter VI, an automatically obtained corpus was compiled for all nouns in WordNet.
We would like to apply this resource to be tested in an all-words task. We would focus on
the improvement for words with low amounts of hand-tagged data available.

• Adaptation to the domain: As we have seen in chapter VII, the performance drops
when we train the WSD system on one domain and apply it to another. In order to work
on different types of corpora, one promising way would be to apply the automatic ranking
by McCarthy et al. (2004) to determine the bias of the senses, and use this information
to determine the number of training examples for each sense to learn. For that, we would
require a big database of examples, which could be obtained by the method presented in
chapter VI. Finally, in order to extend our work on domain, one of the factors that should
be analyzed is the separate influence of the genre and topic variations.

• Improvements of the Basque system: Our main conclusion for Basque is that the
chosen feature set should be revised, as it is not clear how to represent the context in case
of agglutinative languages. Using a “cleaner” feature set would also help the smoothing
techniques. Another interesting experiment would be to rely on the relations in the Basque
WordNet to obtain an all-words sense-tagged corpus automatically.

• Application of high-precision WSD to other tasks: Regarding the high-precision
systems tested on this dissertation, we would like to extend our approaches (based on DLs)
to other ML methods. We think that the integration of different high-precision systems
could improve the coverage without loss in precision. More importantly, we would like to
apply this kind of systems to tasks that could benefit from a partially tagged corpora, like
lexical acquisition.
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Escudero G., Màrquez L. and Rigau G. On the Portability and Tuning of Supervised Word Sense
Disambiguation Systems. In In Proceedings of the joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora, EMNLP/VLC . Hong Kong,
China, 2000c.

Fellbaum C. WordNet: An Electronic Lexical Database. MIT Press, 1998.

Fernandez J., Castillo M., Rigau G., Atserias J. and Turmo J. Automatic Acquisition of Sense
Examples using ExRetriever . In Proceedings of the 4th International Conference on Language
Resources and Evaluation (LREC). Lisbon, Portugal, 2004.

Fernandez-Amoros D., Gonzalo J. and Verdejo F. The UNED Systems at Senseval-2 . In Pro-
ceedings of the SENSEVAL-2 Workshop. In conjunction with ACL. Toulouse, France, 2001.

Firth J.R. Modes of meaning (1951). In J.R. Firth, ed., Papers in linguistics 1934-1951 , pp.
190–215. Oxford University Press, Oxford, 1957.

Florian R., Cucerzan S., Schafer C. and Yarowsky D. Combining Classifiers for Word Sense
Disambiguation. In Journal of Natural Language Engineering , 8 (4). Cambridge University
Press, 2002.

Francis W. and Kucera H. Brown Corpus Manual of Information. Department of Linguistics,
Brown University, 1964.

Francis W. and Kucera H. Frequency Analysis of English Usage: Lexicon and Grammar .
Houghton Mifflin, 1982.

Freund Y. and Schapire R. A Decision-Theoretic Generalization of On-line Learning and an
Application to Boosting , pp. 119–139. 55(1), 1997.

Fujii A., Inui K., Tokunaga T. and Tanaka H. Selective Sampling for Example-based Word Sense
Disambiguation. In Computational Linguistics, 24(4), pp. 573–598, 1998.

Gale W., Church K. and Yarowsky D. A Method for Disambiguating Word Senses in a Large
Corpus, pp. 415–439. 26, 1993.

Gliozzo A., Magnini B. and Strapparava C. Unsupervised Domain Relevance Estimation for
Word Sense Disambiguation. In Proceedings of the 2004 Conference on Empirical Methods in
Natural Language Processing . Barcelona, Spain, 2004.

Good I.J. The Population Frequencies of Species and the Estimation of Population Parameters.
Biometrika, volume 40, pp. 237–264, 1953.

Grozea C. Finding optimal parameters for high performance word sense disambiguation. In
Proceedings of the 3rd ACL workshop on the Evaluation of Systems for the Semantic Analysis
of Text (SENSEVAL).. Barcelona, Spain, 2004.



122 BIBLIOGRAPHY

Hawkins P. and Nettleton D. Large Scale WSD Using Learning Applied to SENSEVAL, pp.
135–140. 34 (2), 2000.

Hoste V., Hendrickx I., Daelemans W. and van den Bosch A. Parameter Optimization for
Machine-Learning of Word Sense Disambiguation. In Natural Language Engineering, Special
Issue on Word Sense Disambiguation Systems, 8 (4), pp. 311–325, 2002.

Hoste V., Kool A. and Daelemans W. Classifier Optimization and Combination in the English
All Words Task . In Proceedings of the SENSEVAL-2 Workshop. In conjunction with ACL.
Toulouse, France, 2001.

Ide N. and Veronis J. Introduction to the Special Issue on Word Sense Disambiguation: The
State of the Art . Computational Linguistics, volume 24(1), pp. 1–40, 1998.

Jelinek F. and Mercer R. Interpolated estimation of Markov source parameters from sparse data,
pp. 381–397. Amsterdam : North Holland Publishing Co., 1980.

Joachims T. Making Large–Scale SVM Learning Practical . In B. Schölkopf, C.J.C. Burges and
A.J. Smola, eds., Advances in Kernel Methods — Support Vector Learning , pp. 169–184. MIT
Press, Cambridge, MA, 1999.

Jurafsky D. and Martin J. An Introduction to Natural Language Processing, Computational
Linguistics, and Speech Recognition. Prentice-Hall, Upper Saddle River, NJ 07458, 2000.

Karlgren J. and Cutting D. Recognizing Text Genres with Simple Metrics Using Discriminant
Analysis. In Proceedings of the International Conference on Computational Linguistics COL-
ING . Kyoto, 1994.

Katz S. Estimation of probabilities from sparse data for the language model component of a
speech recognizer . In IEEE Transactions on Acoustics Speech and Signal Processing , 1987.

Kilgarriff A. I don’t believe in word senses. In Computers and the Humanities, 31 (2), pp.
91–113, 1997.

Kilgarriff A. SENSEVAL: An exercise in evaluating word sense disambiguation programs. In
Proceedings of the International Conference on Language Resources and Evaluation (LREC),
pp. 581–588. Granada, Spain, 1998.

Kilgarriff A. English Lexical Sample Task Description. In Proceedings of the Second International
Workshop on evaluating Word Sense Disambiguation Systems. Toulouse, France, 2001.

Kilgarriff A. and Rosenzweig J. Framework and Results for English SENSEVAL, pp. 15–48. 34
(2), 2000.

Kilgarriff A. and Tugwell D. Sketching words. In Lexicography and Natural Language Processing:
A Festschrift in Honour of B.T.S. Atkins, 2002.

Krovetz R. More Than One Sense Per Discourse. In Proceedings of SENSEVAL and the
Lexicography Loop Workshop, 1998.

Kunze C. and Lemnitzer L. Standardizing Wordnets in a Web-compliant Format: The Case of
GermaNet . In Proceedings of LREC 2002 Workshop on Wordnet Structures and Standardis-
ation, and how these affect Wordnet Applications and Evaluations, pp. 24–29. Las Palmas de
Gran Canaria, Spain, 2002.

Leacock C., Chodorow M. and Miller G.A. Using Corpus Statistics and WordNet Relations for
Sense Identification. In Computational Linguistics, volume 24, pp. 147–165, 1998.

Lee Y. and Ng H. An Empirical Evaluation of Knowledge Sources and Learning Algorithms for
Word Sense Disambiguation. In Proceedings of the 2002 Conference on Empirical Methods in
Natural Language Processing (EMNLP-2002), pp. 41–48, 2002.



BIBLIOGRAPHY 123

Lesk M. Automated sense disambiguation using machine-readable dictionaries: How to tell a
pinecone from an ice cream cone. In Proceedings of the SIGDOC Conference, 1986.

Lin D. Automatic retrieval and clustering of similar words. In In Proceedings of COLING-ACL.
Montreal, Canada, 1998a.

Lin D. Dependency-based Evaluation of MINIPAR. In Workshop on the Evaluation of Parsing
Systems. Granada, Spain, 1998b.
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B. APPENDIX

Additional tables

B.1 Word Sets

Tables of different word sets used throughout the thesis.

Nouns Verbs Adjectives Indeterminates
-n N -v N -a N -p N
accident 267 amaze 70 brilliant 229 band 302
behaviour 279 bet 177 deaf 122 bitter 373
bet 274 bother 209 floating 47 hurdle 323
disability 160 bury 201 generous 227 sanction 431
excess 186 calculate 217 giant 97 shake 356
float 75 consume 186 modest 270
giant 118 derive 216 slight 218
knee 251 float 229 wooden 195
onion 214 invade 207
promise 113 promise 224
rabbit 221 sack 178
sack 82 scrap 186
scrap 156 seize 259
shirt 184
steering 176
TOTAL 2756 TOTAL 2501 TOTAL 1406 TOTAL 1785

Table B.1: The 41 words selected for the English task in Senseval-1, their distribution
according to PoS, and the numbers of test instances associated with each (N). Source:
http://www.senseval.org.
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Word PoS Senses Examples Word PoS Senses Examples
blind A 7 55 nature N 7 46
colourless A 2 35 post N 13 79
cool A 6 52 restraint N 8 45
faithful A 3 23 sense N 9 53
fine A 11 70 spade N 6 33
fit A 3 29 stress N 6 39
free A 17 82 yew N 3 28
graceful A 2 29 begin V 8 280
green A 17 94 call V 23 66
local A 2 38 carry V 27 66
natural A 23 103 collaborate V 2 30
oblique A 3 29 develop V 15 69
simple A 6 66 draw V 32 41
solemn A 2 25 dress V 14 59
vital A 7 38 drift V 9 32
art N 17 98 drive V 15 42
authority N 9 92 face V 7 93
bar N 20 151 ferret V 1 1
bum N 4 45 find V 17 68
chair N 7 69 keep V 27 67
channel N 8 73 leave V 14 66
child N 7 64 live V 10 67
church N 6 64 match V 8 42
circuit N 14 85 play V 25 66
day N 16 145 pull V 33 60
detention N 4 32 replace V 4 45
dyke N 2 28 see V 21 69
facility N 5 58 serve V 12 51
fatigue N 6 43 strike V 26 54
feeling N 5 51 train V 9 63
grip N 6 51 treat V 6 44
hearth N 3 32 turn V 43 67
holiday N 6 31 use V 7 76
lady N 8 53 wander V 4 50
material N 16 69 wash V 13 12
mouth N 10 60 work V 21 60
nation N 4 37

Table B.2: The 73 words selected for the English lexical-sample task in Senseval-2. For each
word and PoS, the number of senses and the number of testing examples is given (there is
approximately twice as much for training each word). Data available at http://www.senseval.org.

Word PoS Senses Examples Word PoS Senses Examples
apal A 4 44 koroa N 4 31
arin A 8 47 lantegi N 4 42
astun A 6 56 masa N 3 36
automatiko A 2 39 tentsio N 2 51
borrokalari A 2 37 ur N 3 47
gordin A 5 43 altxatu V 7 44
hotz A 6 36 azaldu V 2 36
natural A 3 35 baliatu V 3 36
xehe A 6 35 ebaki V 4 37
zahar A 5 36 edan V 4 35
bide N 13 50 ekarri V 6 52
egun N 8 53 erre V 3 47
eliza N 7 36 etorri V 6 47
enplegu N 3 43 galdu V 7 57
gai N 3 55 garbitu V 5 36
herri N 14 51 gidatu V 3 53
ibilbide N 4 49 ikusi V 7 51
kanal N 3 37 iraun V 4 47
kantu N 5 47 jaio V 2 38
kapitain N 3 42 jantzi V 3 48

Table B.3: The 40 words selected for the Basque lexical-sample task in Senseval-2. For each
word and PoS, the number of senses and the number of testing examples is given (there is
approximately twice as much for training). Data available at http://www.senseval.org.
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Word PoS Examples Word PoS Examples
different A 50 begin V 79
hot A 43 climb V 67
important A 19 decide V 62
simple A 18 eat V 87
solid A 29 encounter V 65
argument N 111 expect V 78
arm N 133 express V 55
atmosphere N 81 hear V 32
audience N 100 lose V 36
bank N 132 mean V 40
degree N 128 miss V 30
difference N 114 note V 67
difficulty N 23 operate V 18
disc N 100 play V 52
image N 74 produce V 94
interest N 93 provide V 69
judgment N 32 receive V 27
organization N 56 remain V 70
paper N 117 rule V 30
party N 116 smell V 55
performance N 87 suspend V 64
plan N 84 talk V 73
shelter N 98 treat V 57
sort N 96 use V 14
source N 32 wash V 34
activate V 114 watch V 51
add V 132 win V 39
appear V 133 write V 23
ask V 131

Table B.4: The 57 words selected for the English lexical-sample task in Senseval-3. For each
word and PoS, the number of testing examples is given (there is approximately twice as much
for training). Data available at http://www.senseval.org.

Word PoS Examples Word PoS Examples
apal A 60 koroa N 66
arin A 93 lantegi N 55
astun A 70 masa N 45
automatiko A 45 tentsio N 63
borrokalari A 14 ur N 47
gordin A 82 azaldu V 45
hotz A 48 baliatu V 37
natural A 69 berdindu V 107
xehe A 37 edan V 41
zahar A 73 entrenatu V 66
bide N 62 etorri V 49
egun N 64 galdu V 85
eliza N 42 gidatu V 60
enplegu N 43 igo V 75
gai N 66 ikusi V 92
herri N 83 irabazi V 56
ibilbide N 50 iraun V 56
kanal N 68 jaio V 47
kantu N 45 jaitsi V 68
kapitain N 55 jokatu V 71

Table B.5: The 40 words selected for the Basque lexical-sample task in Senseval-3. For each
word and PoS, the number of testing examples is given (there is approximately twice as much
for training). Data available at http://www.senseval.org.
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set A set B set C
Word PoS Sense # Word PoS Sense # Word PoS Sense #
All A 2 Age N 5 Age N 5
Long A 10 Church N 3 Art N 4
Most B 3 Head N 30 Body N 9
Only B 7 Interest N 7 Car N 5
Account N 10 Member N 5 Child N 6
Age N 5 Fall V 32 Cost N 3
Church N 3 Give V 45 Head N 28
Duty N 3 Know V 11 Interest N 8
Head N 30 Line N 28
Interest N 7 Point N 20
Member N 5 State N 6
People N 4 Thing N 11
Die V 11 Work N 6
Fall V 32 Become V 4
Give V 45 Fall V 17
Include V 4 Grow V 8
Know V 11 Lose V 10
Seek V 5 Set V 20
Understand V 5 Speak V 5

Strike V 17
Tell V 8

Table B.6: Sets of words A, B, and C (cf. section III.3.1.1). The different PoS are separated by
horizontal lines.
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B.2 Semantic files

Semantic files in WordNet 1.7.

Nouns Verbs
Tops body
act change

animal cognition
artifact communication

attribute competition
body consumption

cognition contact
communication creation

event emotion
feeling motion
food perception
group possession

location social
motive stative
object weather
person

phenomenon
plant

possession
process
quantity
relation
shape
state

substance
time

Table B.7: List of Semantic Files in WordNet (version 1.7) for nouns and verbs.
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B.3 Complete list of relations from Minipar

List of relations extracted from Minipar.

Table B.8: Complete list of relations from Minipar. For each relation we
indicate his type, give a short description, and some examples and comments.
We distinguish four kinds of relations: “Rel” (main relation, the relations
that seem more useful for disambiguation), “Aux” (auxiliar relations: auxiliar
verbs, clauses, etc.), “Fun” (relations that seem irrelevant, but could help on
disambiguation), “No” (relations that seem useless for disambiguation).

Relation Rel Aux Fun No Description Examples Comments
abbrev x Abbreviation NMR → Nuclear

...
age x Age John, 7, ...

amod x Adverbial
modif.

Well thought

Merely provide
appo x Apposition John, director gen-

eral, ...
appo-mod x Apposition

modif.
Often
wrong

as-arg x
as1 x
as2 x
aux x Aux. Verb John should be

promoted
John -s→ resign
←aux- should
←be- be

be x ”be” as aux.
Verb

is ←be- sleeping

being x ”being” as
aux verb

by-subj x Subj. with
passives

c x Clausal com-
plement

... that ←c- John
loves Mary
I go there for +
infinitive clause go
←mod- (inf) ←c-
for ←i- mainverb

cn x? Nominalized
clause

to issue is great
be ←s inf ←cn inf
←i issue

Often
wrong

comp1 x Complement
(PP, inf/fin
clause) of
noun

... one of the boys
one (N P)
←comp1- of
← pcomp-n- boy ..

”boy in the
garage” is
MOD

grants to finance
hospitals
grants (N C) ←
c1- (inf) ←i- fi-
nance
... resolution
which voted ...
resolution (N C)
←c1- (fin) ←i-
voted

comp2 x ????? Few occur-
rences

conj x Conjunction Indirectly,
to find obj

desc x Description ... make a man a
child
make ←desc- child

Occurs fre-
quently

.... become eclectic
dest x Destination Often

wrong
det x Determinant

Continued on next page
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Table B.8: Complete list of relations from Minipar. For each relation we
indicate his type, give a short description, and some examples and comments.
We distinguish four kinds of relations: “Rel” (main relation, the relations
that seem more useful for disambiguation), “Aux” (auxiliar relations: auxiliar
verbs, clauses, etc.), “Fun” (relations that seem irrelevant, but could help on
disambiguation), “No” (relations that seem useless for disambiguation).

Relation Rel Aux Fun No Description Examples Comments
expletive x It, ... it was disclosed

it -exp→ disclose
it means, it seems
....

fc x Finite com-
plement(?)

... said there is ...
say ←fc- (fin) ←i-
mainverb

gen x Genitive court’s -gen→
ward

guest x Adjunts(?) make house←g- at
church

have x ”have” as
aux. Verb

head x Dep. be-
tween query
and main
verb

should I go....
Q ←inv-aux-
should ← head-go

i x See c and
fc, dep. be-
tween clause
and main
verb

inside x
inv-aux x See head
inv-be x

inv-have x
lex-dep ? ? ?? rep., mayor, Mr. ... It has errors
lex-mod ? ? ?? Multi-

word terms ?
oil-filed
filed←lex-mod- oil

makes a sin-
gle lexical
entry: oil-
filed, ”edge
up”, ”grand
jury”

to edge up
edge← up
grand jury
jury ←lex-mod
grand
child welfare ser-
vice
”The Constitu-
tion”
now and then

location x
mod x Modifier Strikes increase as

workers demand...
increase ←mod as
←comp1 fin←i de-
mand
raises to cope with
situation
raise←mod inf←i
cope ←mod with
←pcomp-n situa-
tion
lost ←mod- al-
ready
satisfactory -
mod→ condition

neg x
nn x noun-noun

modifier, see
also lex-mod

field services sector
secotr ←nn field
←nn service

Continued on next page
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Table B.8: Complete list of relations from Minipar. For each relation we
indicate his type, give a short description, and some examples and comments.
We distinguish four kinds of relations: “Rel” (main relation, the relations
that seem more useful for disambiguation), “Aux” (auxiliar relations: auxiliar
verbs, clauses, etc.), “Fun” (relations that seem irrelevant, but could help on
disambiguation), “No” (relations that seem useless for disambiguation).

Relation Rel Aux Fun No Description Examples Comments
obj x Object
obj2 x Indirect ob-

ject
Sometimes
wrong

p-spec x pp specifier back -p-spec→ to
pcomp-c x Clause of pp in voting itself

in ←pcomp-c vpsc
←i- votig

pcomp-n x Nominal
head of pp

in the house
in ←pcomp-n
house

pnmod x Postnominal
mod.

person ←pnmod
missing

poss x Only for ’s use gen
post x The thing af-

ter det
few ideas, the first
man

pre x The thig be-
fore det

all the men, such
men

pred x Predicative
(can be A or
N)

John is beatuful
(fin) ←i- is ←pred
beautiful ←subj
John

rel x Relative
clause

earnings which
grow
earning ←rel fin
←whn which ←i
grow

s x Surface sub-
ject, better
to use subj

sc x Sentential
complement

force John to do
force ←sc-do

self x Himself...
spellout x

subj x
vrel x Passive verb

modifier of
nouns

fund ←vrel-
granted

When ”pn-
mod”, is
tagged as
adj. (often
wrongly),
here is
tagged as
verb

wha x
whn x
whp x
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B.4 Performance of single features using Semcor

In the following 4 tables, the results obtained using single features are shown. The first two
tables illustrate the results for nouns sorted by precision and recall, respectively. The last two
tables are devoted to nouns. Many syntactic features do not appear in the training corpus, and
are not included in the tables. Some semantic features that have been tested in other works
have not been removed from the tables and appear as “basic” features (win syn 4w, win anc 0s,
win anc3 0s, win hyper 0s, win level4 0s...).

Table B.9: Results in Semcor for the whole set of features disambiguating
nouns (sorted by precision).

Feature Type Precision Coverage Recall
Mod Prep pcomp-n N word indirect 100 3.3 3.3
Mod Prep pcomp-n N synset indirect 100 3.1 3.1
Mod lem IGR-direct 100 1 1
Mod synset IGR-direct 100 1 1
Mod word IGR-direct 100 1 1
postI lem IGR-direct 100 0.7 0.7
postI word IGR-direct 100 0.7 0.7
Has relat mod C i VI indirect 100 0.7 0.7
sI lem IGR-direct 100 0.6 0.6
sI synset IGR-direct 100 0.6 0.6
sI word IGR-direct 100 0.6 0.6
subjI lem IGR-direct 100 0.6 0.6
subjI synset IGR-direct 100 0.6 0.6
subjI word IGR-direct 100 0.6 0.6
has relat mod perI GR-bigr-direct 100 0.6 0.6
postI synset IGR-direct 100 0.5 0.5
has relat guestI GR-bigr-direct 100 0.5 0.5
has relat mod fromI GR-bigr-direct 100 0.5 0.5
genI synset IGR-direct 100 0.4 0.4
objI lem IGR-direct 100 0.4 0.4
objI word IGR-direct 100 0.4 0.4
has relat vrelI GR-bigr-direct 100 0.4 0.4
has relat mod forI GR-bigr-direct 100 0.3 0.3
conjI lem IGR-direct 100 0.2 0.2
conjI synset IGR-direct 100 0.2 0.2
guestI lem IGR-direct 100 0.2 0.2
guestI word IGR-direct 100 0.2 0.2
nn lem IGR-direct 100 0.2 0.2
nn synset IGR-direct 100 0.2 0.2
nn word IGR-direct 100 0.2 0.2
possI lem IGR-direct 100 0.2 0.2
possI word IGR-direct 100 0.2 0.2
vrelI lem IGR-direct 100 0.2 0.2
vrelI synset IGR-direct 100 0.2 0.2
vrelI word IGR-direct 100 0.2 0.2
has relat appo GR-bigr-direct 100 0.2 0.2
has relat gen GR-bigr-direct 100 0.2 0.2
has relat mod asI GR-bigr-direct 100 0.2 0.2
has relat mod outI GR-bigr-direct 100 0.2 0.2
has relat possI GR-bigr-direct 100 0.2 0.2
comp1 C i V lem indirect 100 0.2 0.2
comp1 C i V synset indirect 100 0.2 0.2
comp1 C i V word indirect 100 0.2 0.2
comp1 Prep pcomp-n NI lem indirect 100 0.2 0.2
comp1 Prep pcomp-n NI synset indirect 100 0.2 0.2
comp1 Prep pcomp-n NI word indirect 100 0.2 0.2
has relat s CN cn C i VI indirect 100 0.2 0.2
mod Prep pcomp-n NI synset indirect 96.3 2.8 2.7
obj word IGR-direct 95.9 5.1 4.9
mod Prep pcomp-n N lem indirect 94.7 4 3.8
modI synset IGR-direct 94.1 7.1 6.7
obj lem IGR-direct 93.3 6.1 5.7
modI lem IGR-direct 92.6 8.5 7.9
modI word IGR-direct 92.6 8.5 7.9

Continued on next page
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Table B.9: Results in Semcor for the whole set of features disambiguating
nouns (sorted by precision).

Feature Type Precision Coverage Recall
mod Prep pcomp-n NI word indirect 91.4 2.4 2.2
mod Prep pcomp-n NI lem indirect 90 3.1 2.8
obj synset IGR-direct 88.7 5.5 4.9
trig wf +1 basic 88.1 23.7 20.9
trig lem +1 basic 87.8 24.8 21.8
nnI synset IGR-direct 86.8 3.1 2.7
nnI lem IGR-direct 85.7 4.4 3.8
detI synset IGR-direct 85.6 1.4 1.2
nnI word IGR-direct 85.4 4.3 3.7
big wf +1 basic 84.9 62.3 52.9
win syn 4w basic 84.8 41.3 35
big lem +1 basic 84.6 65.2 55.2
genI lem IGR-direct 84 12 10.1
genI word IGR-direct 83.6 11.8 9.9
win wf 3w basic 83.3 59.4 49.5
comp1 Prep pcomp-n N lem indirect 83.3 0.6 0.5
comp1 Prep pcomp-n N word indirect 83.3 0.6 0.5
trig wf 0 basic 83.1 25.3 21
trig lem 0 basic 82.4 25.6 21.1
win wf 4w basic 82.1 71.2 58.5
has relat postI GR-bigr-direct 81.5 1.2 1
has relat mod ofI GR-bigr-direct 80 10.9 8.7
win syn 50w basic 79.9 99.9 79.8
win syn 1s basic 79.9 98.5 78.7
win syn 20w basic 79.8 97.4 77.7
trig wf -1 basic 79.1 16.7 13.2
has relat obj GR-bigr-direct 78.9 21.3 16.8
win lem 50w basic 78.8 100 78.8
trig lem -1 basic 78.7 17.3 13.6
has relat mod inI GR-bigr-direct 78.7 2.7 2.1
has relat comp1 Prep pcomp-n N indirect 78.4 1.5 1.2
win lem 0s basic 78.3 100 78.3
win syn 0s basic 78.2 84 65.7
win lem 1s basic 78.1 100 78.1
win lem 20w basic 77.8 100 77.8
win lem 4w basic 77.4 99.8 77.2
win anc 0s basic 77.1 97.2 74.9
has relat genI GR-bigr-direct 77.1 15.7 12.1
has relat comp1 ofI GR-bigr-direct 76.9 1.4 1.1
win anc3 0s basic 76.8 97.1 74.6
Pred synset IGR-direct 76.7 1.8 1.4
Win wf 0s basic 76.6 97.4 74.6
Win hyper 0s basic 76.5 93.1 71.2
Win level4 0s basic 75.9 91 69.1
has relat subj GR-bigr-direct 75.4 16.2 12.2
pcomp-n lem IGR-direct 75.1 30 22.5
pcomp-n word IGR-direct 75.1 30 22.5
subj lem IGR-direct 75 5 3.8
has relat pred GR-bigr-direct 75 2.9 2.2
has relat comp1 Prep pcomp-n NI indirect 75 1.3 1
win sf 20w basic 74.5 100 74.5
win sf 4w basic 74.2 99.9 74.1
subj word IGR-direct 74.2 3.7 2.7
has relat objI GR-bigr-direct 74.2 2.8 2.1
s word IGR-direct 74.1 3.7 2.7
big lem -1 basic 74 70.4 52.1
big wf -1 basic 74 63.3 46.8
subj synset IGR-direct 73.8 4.6 3.4
trig subpos 0 basic 73.5 81.6 60
trig subpos -1 basic 73.2 65.6 48
win sf 0s basic 73 100 73
win sf 50w basic 72.7 100 72.7
pred lem IGR-direct 72.3 2.6 1.9
has relat sI GR-bigr-direct 72.1 3.5 2.5
win sf 1s basic 71.7 100 71.7

Continued on next page
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Table B.9: Results in Semcor for the whole set of features disambiguating
nouns (sorted by precision).

Feature Type Precision Coverage Recall
trig subpos +1 basic 71.3 82.9 59.1
big subpos +1 basic 70.8 97 68.7
has relat s GR-bigr-direct 70.7 15.7 11.1
has relat nnI GR-bigr-direct 70.4 10.2 7.2
pred Prep pcomp-n N word indirect 70 0.5 0.4
has relat nn GR-bigr-direct 69.6 2.4 1.7
pred word IGR-direct 69.2 1.3 0.9
detI word IGR-direct 69.1 27.9 19.3
detI lem IGR-direct 68.9 28.5 19.6
s lem IGR-direct 68.8 4.7 3.2
has relat subjI GR-bigr-direct 68.8 4.1 2.8
has relat mod GR-bigr-direct 66.7 1.6 1.1
has relat mod withI GR-bigr-direct 66.7 0.6 0.4
has relat comp1 C i V indirect 66.7 0.6 0.4
trig pos +1 basic 66.6 96.7 64.4
trig pos 0 basic 66.3 97.3 64.5
trig pos -1 basic 64.8 82.8 53.7
big pos +1 basic 64.2 99.6 63.9
has relat mod Prep pcomp-n N indirect 63.5 26.4 16.8
s synset IGR-direct 63.2 3.6 2.3
big subpos -1 basic 63 97.5 61.4
has relat detI GR-bigr-direct 61.5 30.4 18.7
has relat pnmodI GR-bigr-direct 60.8 0.5 0.3
has relat by-subj Prep pcomp-n N indirect 60.8 0.5 0.3
has relat modI GR-bigr-direct 59.1 22.3 13.2
has relat conj GR-bigr-direct 58.6 3.4 2
big pos -1 basic 58.4 99.3 58
has relat mod Prep pcomp-n NI indirect 56 20.9 11.7
has relat conjI GR-bigr-direct 55.8 3.7 2.1
has relat pcomp-n GR-bigr-direct 52.1 34.4 17.9
has relat mod onI GR-bigr-direct 50.2 0.4 0.2
has relat lex-mod GR-bigr-direct 49.6 0.8 0.4
has relat appoI GR-bigr-direct 43.2 0.7 0.3
has relat mod toI GR-bigr-direct 42.9 0.7 0.3
preI lem IGR-direct 33.3 0.3 0.1
preI word IGR-direct 33.3 0.3 0.1
has relat preI GR-bigr-direct 33.3 0.3 0.1
comp1 Prep pcomp-n N synset indirect 33.3 0.3 0.1
has relat mod atI GR-bigr-direct 29.4 0.7 0.2
has relat mod Prep pcomp-c C i VI indirect 20.3 0.5 0.1
has relat pred Prep pcomp-n N indirect 16.7 0.6 0.1
pred Prep pcomp-n N lem indirect 16.7 0.6 0.1
pred Prep pcomp-n N synset indirect 16.7 0.6 0.1

Table B.10: Results in Semcor for the whole set of features disambiguating
verbs (sorted by precision).

Feature Type Precision Coverage Recall
has relat descI GR-bigr-direct 100 0.3 0.3
conj synset IGR-direct 100 0.2 0.2
conjI lem IGR-direct 100 0.2 0.2
conjI synset IGR-direct 100 0.2 0.2
guestI synset IGR-direct 100 0.2 0.2
has relat mod atI GR-bigr-direct 100 0.2 0.2
has relat mod InI GR-bigr-direct 100 0.2 0.2
mod C i V synset indirect 84.6 1 0.8
sc lem IGR-direct 83.3 0.5 0.4
sc word IGR-direct 83.3 0.5 0.4
sc synset IGR-direct 80 0.4 0.3
mod C i V lem indirect 75.2 1.6 1.2
modI synset IGR-direct 73.4 1.2 0.9
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Table B.10: Results in Semcor for the whole set of features disambiguating
verbs (sorted by precision).

Feature Type Precision Coverage Recall
has relat mod C i V indirect 68.7 6.7 4.6
has relat mod aboutI GR-bigr-direct 68.4 1.5 1
has relat by-subj byI GR-bigr-direct 66.7 0.5 0.3
has relat by-subj Prep pcomp-n NI indirect 66.7 0.5 0.3
has relat vrel GR-bigr-direct 63.4 0.9 0.6
fc C i V synset indirect 57.5 1.5 0.9
has relat amodI GR-bigr-direct 56.7 11.3 6.4
fc C i VI word indirect 56.7 7.1 4
has relat fc C i VI indirect 56.6 16.4 9.3
mod C i V word indirect 56.6 1.1 0.6
modI word IGR-direct 55.8 1.9 1.1
fc C i V word indirect 55.4 1.4 0.8
amodI synset IGR-direct 54.8 7.8 4.3
trig wf 0 basic 54.3 28.7 15.6
amodI lem IGR-direct 54 8.3 4.5
amodI word IGR-direct 54 8.3 4.5
sI synset IGR-direct 53.7 5.5 3
trig lem 0 basic 53.3 31.5 16.8
mod Prep pcomp-n NI word indirect 52.8 1.8 1
trig lem -1 basic 52.7 25.2 13.3
has relat sc GR-bigr-direct 52.2 2.4 1.3
conj lem IGR-direct 51.8 0.3 0.2
modI lem IGR-direct 51.7 2.1 1.1
fc C i VI lem indirect 51.6 8.8 4.5
has relat comp1 C i V indirect 50.8 6.9 3.5
subjI lem IGR-direct 50.7 40.8 20.7
subjI word IGR-direct 50.7 36.9 18.7
big lem -1 basic 50.2 75.9 38.1
trig wf +1 basic 50 27.3 13.7
pred C i V word indirect 50 0.2 0.1
win lem 20w basic 49.9 100 49.9
win lem 50w basic 49.9 100 49.9
trig wf -1 basic 49.9 22.6 11.3
win hyper 0s basic 49.8 89.6 44.6
win syn 50w basic 49.5 100 49.5
sI lem IGR-direct 49.2 39 19.2
win anc 0s basic 49.1 93.2 45.8
win anc3 0s basic 49 92.9 45.5
win wf 3w basic 48.9 61.7 30.2
win syn 1s basic 48.8 98.8 48.2
big wf -1 basic 48.8 62.8 30.6
trig lem +1 basic 48.7 30.7 15
win lem 0s basic 48.6 100 48.6
win syn 20w basic 48.6 97.8 47.5
win lem 4w basic 48.5 100 48.5
win wf 4w basic 48.5 75.3 36.5
sI word IGR-direct 48.5 35.2 17.1
objI synset IGR-direct 48.5 7.2 3.5
subjI synset IGR-direct 48.3 6.3 3
win wf 0s basic 48.1 94.8 45.6
win syn 0s basic 48 81.1 38.9
win lem 1s basic 47.7 100 47.7
win syn 4w basic 47.6 47.9 22.8
auxI lem IGR-direct 47.4 20.8 9.9
auxI word IGR-direct 47.4 20.8 9.9
GR-ngram3 GR-ngram 47.2 66.4 31.3
big lem +1 basic 46.4 74.1 34.4
obj2I synset IGR-direct 46.4 2.2 1
has relat auxI GR-bigr-direct 46.2 23 10.6
win sf 4w basic 46.1 100 46.1
obj2I lem IGR-direct 45.9 2.9 1.3
win level4 0s basic 45.6 85.9 39.2
win sf 50w basic 45.4 100 45.4
win sf 20w basic 45.3 100 45.3
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Table B.10: Results in Semcor for the whole set of features disambiguating
verbs (sorted by precision).

Feature Type Precision Coverage Recall
GR-ngram1 GR-ngram 45.3 99.7 45.2
big wf +1 basic 45 64.8 29.2
win sf 1s basic 44.9 100 44.9
win sf 0s basic 44.8 98.8 44.3
has relat subjI GR-bigr-direct 44.8 62 27.8
trig subpos 0 basic 44.7 80.8 36.1
big subpos +1 basic 44.3 98 43.4
has relat sI GR-bigr-direct 44.3 60.3 26.7
big subpos -1 basic 44.2 98.5 43.5
has relat mod Prep pcomp-c C i V indirect 43.9 1.2 0.5
has relat mod asI GR-bigr-direct 43.6 0.5 0.2
big pos +1 basic 43.3 99.6 43.1
trig pos 0 basic 43.1 98 42.2
trig subpos -1 basic 42.7 80.8 34.5
big pos -1 basic 42.6 99.5 42.4
trig pos -1 basic 42.2 92.2 38.9
has relat mod byI GR-bigr-direct 42.2 0.6 0.3
GR-ngram2 GR-ngram 41.9 92.7 38.8
trig pos +1 basic 41.8 97.6 40.8
has relat mod ofI GR-bigr-direct 41.6 4.6 1.9
beI lem IGR-direct 41.4 5.8 2.4
beI word IGR-direct 41.4 5.8 2.4
trig subpos +1 basic 41.2 82.8 34.1
objI lem IGR-direct 40.5 23.4 9.5
comp1 C i V synset indirect 40.1 0.8 0.3
fc C i V lem indirect 39.6 1.9 0.8
obj2I word IGR-direct 39.4 2.6 1
has relat fc C i V indirect 39.2 6.2 2.4
fc C i VI synset indirect 38.6 5.8 2.2
mod Prep pcomp-n NI lem indirect 38.4 2.5 1
objI word IGR-direct 38.3 20.3 7.8
haveI lem IGR-direct 36.4 4.8 1.7
haveI word IGR-direct 36.4 4.8 1.7
has relat s CN cn C i V indirect 34.2 1.8 0.6
has relat s CN cn C i VI indirect 33.8 0.6 0.2
has relat mod onI GR-bigr-direct 33.3 0.5 0.2
has relat mod intoI GR-bigr-direct 33.3 0.2 0.1
comp1 C i V lem indirect 32.9 3.3 1.1
has relat beI GR-bigr-direct 30.1 6.2 1.9
comp1 C i V word indirect 30.1 2.8 0.8
has relat modI GR-bigr-direct 28.6 7.2 2.1
has relat mod Prep pcomp-n NI indirect 27.8 17.3 4.8
has relat haveI GR-bigr-direct 27.4 5.1 1.4
has relat conj GR-bigr-direct 24.3 2 0.5
has relat mod C i VI indirect 21.3 3.4 0.7
has relat objI GR-bigr-direct 20 52.1 10.4
has relat mod inI GR-bigr-direct 19.2 3.1 0.6
mod C i VI synset indirect 16.7 0.5 0.1
has relat conjI GR-bigr-direct 15.3 2.2 0.3
guestI lem IGR-direct 14.7 2.6 0.4
guestI word IGR-direct 14.7 2.6 0.4
mod C i VI word indirect 14.3 0.6 0.1
mod Prep pcomp-n NI synset indirect 13.3 1.2 0.2
pred C i V lem indirect 12 0.6 0.1
mod C i VI lem indirect 11.1 0.7 0.1
has relat pred C i V indirect 9.5 0.7 0.1
has relat guestI GR-bigr-direct 6.2 6.2 0.4
has relat mod forI GR-bigr-direct 5.6 1 0.1
has relat mod toI GR-bigr-direct 2.8 2.3 0.1
has relat obj2I GR-bigr-direct 1.4 9.6 0.1



142 Additional tables

Table B.11: Results in Semcor for the whole set of features disambiguating
nouns (sorted by recall).

Feature Type Precision Coverage Recall
Win syn 50w basic 79.9 99.9 79.8
Win lem 50w basic 78.8 100 78.8
win syn 1s basic 79.9 98.5 78.7
win lem 0s basic 78.3 100 78.3
win lem 1s basic 78.1 100 78.1
win lem 20w basic 77.8 100 77.8
win syn 20w basic 79.8 97.4 77.7
win lem 4w basic 77.4 99.8 77.2
win anc 0s basic 77.1 97.2 74.9
win anc3 0s basic 76.8 97.1 74.6
win wf 0s basic 76.6 97.4 74.6
win sf 20w basic 74.5 100 74.5
win sf 4w basic 74.2 99.9 74.1
win sf 0s basic 73 100 73
win sf 50w basic 72.7 100 72.7
win sf 1s basic 71.7 100 71.7
win hyper 0s basic 76.5 93.1 71.2
win level4 0s basic 75.9 91 69.1
big subpos +1 basic 70.8 97 68.7
win syn 0s basic 78.2 84 65.7
trig pos 0 basic 66.3 97.3 64.5
trig pos +1 basic 66.6 96.7 64.4
big pos +1 basic 64.2 99.6 63.9
big subpos -1 basic 63 97.5 61.4
trig subpos 0 basic 73.5 81.6 60
trig subpos +1 basic 71.3 82.9 59.1
win wf 4w basic 82.1 71.2 58.5
big pos -1 basic 58.4 99.3 58
big lem +1 basic 84.6 65.2 55.2
trig pos -1 basic 64.8 82.8 53.7
big wf +1 basic 84.9 62.3 52.9
big lem -1 basic 74 70.4 52.1
win wf 3w basic 83.3 59.4 49.5
trig subpos -1 basic 73.2 65.6 48
big wf -1 basic 74 63.3 46.8
win syn 4w basic 84.8 41.3 35
pcomp-n lem IGR-direct 75.1 30 22.5
pcomp-n word IGR-direct 75.1 30 22.5
trig lem +1 basic 87.8 24.8 21.8
trig lem 0 basic 82.4 25.6 21.1
trig wf 0 basic 83.1 25.3 21
trig wf +1 basic 88.1 23.7 20.9
detI lem IGR-direct 68.9 28.5 19.6
detI word IGR-direct 69.1 27.9 19.3
has relat detI GR-bigr-direct 61.5 30.4 18.7
Has relat pcomp-n GR-bigr-direct 52.1 34.4 17.9
has relat obj GR-bigr-direct 78.9 21.3 16.8
has relat mod Prep pcomp-n N indirect 63.5 26.4 16.8
trig lem -1 basic 78.7 17.3 13.6
trig wf -1 basic 79.1 16.7 13.2
has relat modI GR-bigr-direct 59.1 22.3 13.2
has relat subj GR-bigr-direct 75.4 16.2 12.2
has relat genI GR-bigr-direct 77.1 15.7 12.1
has relat mod Prep pcomp-n NI indirect 56 20.9 11.7
has relat s GR-bigr-direct 70.7 15.7 11.1
genI lem IGR-direct 84 12 10.1
genI word IGR-direct 83.6 11.8 9.9
has relat mod ofI GR-bigr-direct 80 10.9 8.7
modI lem IGR-direct 92.6 8.5 7.9
modI word IGR-direct 92.6 8.5 7.9
has relat nnI GR-bigr-direct 70.4 10.2 7.2
modI synset IGR-direct 94.1 7.1 6.7
obj lem IGR-direct 93.3 6.1 5.7
obj word IGR-direct 95.9 5.1 4.9
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Table B.11: Results in Semcor for the whole set of features disambiguating
nouns (sorted by recall).

Feature Type Precision Coverage Recall
obj synset IGR-direct 88.7 5.5 4.9
mod Prep pcomp-n N lem indirect 94.7 4 3.8
nnI lem IGR-direct 85.7 4.4 3.8
subj lem IGR-direct 75 5 3.8
nnI word IGR-direct 85.4 4.3 3.7
subj synset IGR-direct 73.8 4.6 3.4
Mod Prep pcomp-n N word indirect 100 3.3 3.3
s lem IGR-direct 68.8 4.7 3.2
Mod Prep pcomp-n N synset indirect 100 3.1 3.1
mod Prep pcomp-n NI lem indirect 90 3.1 2.8
has relat subjI GR-bigr-direct 68.8 4.1 2.8
mod Prep pcomp-n NI synset indirect 96.3 2.8 2.7
nnI synset IGR-direct 86.8 3.1 2.7
subj word IGR-direct 74.2 3.7 2.7
s word IGR-direct 74.1 3.7 2.7
has relat sI GR-bigr-direct 72.1 3.5 2.5
s synset IGR-direct 63.2 3.6 2.3
mod Prep pcomp-n NI word indirect 91.4 2.4 2.2
has relat pred GR-bigr-direct 75 2.9 2.2
has relat mod inI GR-bigr-direct 78.7 2.7 2.1
has relat objI GR-bigr-direct 74.2 2.8 2.1
has relat conjI GR-bigr-direct 55.8 3.7 2.1
has relat conj GR-bigr-direct 58.6 3.4 2
pred lem IGR-direct 72.3 2.6 1.9
has relat nn GR-bigr-direct 69.6 2.4 1.7
pred synset IGR-direct 76.7 1.8 1.4
detI synset IGR-direct 85.6 1.4 1.2
has relat comp1 Prep pcomp-n N indirect 78.4 1.5 1.2
has relat comp1 ofI GR-bigr-direct 76.9 1.4 1.1
has relat mod GR-bigr-direct 66.7 1.6 1.1
Mod lem IGR-direct 100 1 1
Mod synset IGR-direct 100 1 1
mod word IGR-direct 100 1 1
has relat postI GR-bigr-direct 81.5 1.2 1
has relat comp1 Prep pcomp-n NI indirect 75 1.3 1
pred word IGR-direct 69.2 1.3 0.9
postI lem IGR-direct 100 0.7 0.7
postI word IGR-direct 100 0.7 0.7
has relat mod C i VI indirect 100 0.7 0.7
sI lem IGR-direct 100 0.6 0.6
sI synset IGR-direct 100 0.6 0.6
sI word IGR-direct 100 0.6 0.6
subjI lem IGR-direct 100 0.6 0.6
subjI synset IGR-direct 100 0.6 0.6
subjI word IGR-direct 100 0.6 0.6
has relat mod perI GR-bigr-direct 100 0.6 0.6
postI synset IGR-direct 100 0.5 0.5
has relat guestI GR-bigr-direct 100 0.5 0.5
has relat mod fromI GR-bigr-direct 100 0.5 0.5
comp1 Prep pcomp-n N lem indirect 83.3 0.6 0.5
comp1 Prep pcomp-n N word indirect 83.3 0.6 0.5
genI synset IGR-direct 100 0.4 0.4
objI lem IGR-direct 100 0.4 0.4
objI word IGR-direct 100 0.4 0.4
has relat vrelI GR-bigr-direct 100 0.4 0.4
pred Prep pcomp-n N word indirect 70 0.5 0.4
has relat mod withI GR-bigr-direct 66.7 0.6 0.4
has relat comp1 C i V indirect 66.7 0.6 0.4
has relat lex-mod GR-bigr-direct 49.6 0.8 0.4
has relat mod forI GR-bigr-direct 100 0.3 0.3
has relat pnmodI GR-bigr-direct 60.8 0.5 0.3
has relat by-subj Prep pcomp-n N indirect 60.8 0.5 0.3
has relat appoI GR-bigr-direct 43.2 0.7 0.3
has relat mod toI GR-bigr-direct 42.9 0.7 0.3
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Table B.11: Results in Semcor for the whole set of features disambiguating
nouns (sorted by recall).

Feature Type Precision Coverage Recall
conjI lem IGR-direct 100 0.2 0.2
conjI synset IGR-direct 100 0.2 0.2
guestI lem IGR-direct 100 0.2 0.2
guestI word IGR-direct 100 0.2 0.2
nn lem IGR-direct 100 0.2 0.2
nn synset IGR-direct 100 0.2 0.2
nn word IGR-direct 100 0.2 0.2
possI lem IGR-direct 100 0.2 0.2
possI word IGR-direct 100 0.2 0.2
vrelI lem IGR-direct 100 0.2 0.2
vrelI synset IGR-direct 100 0.2 0.2
vrelI word IGR-direct 100 0.2 0.2
has relat appo GR-bigr-direct 100 0.2 0.2
has relat gen GR-bigr-direct 100 0.2 0.2
has relat mod asI GR-bigr-direct 100 0.2 0.2
has relat mod outI GR-bigr-direct 100 0.2 0.2
has relat possI GR-bigr-direct 100 0.2 0.2
comp1 C i V lem indirect 100 0.2 0.2
comp1 C i V synset indirect 100 0.2 0.2
comp1 C i V word indirect 100 0.2 0.2
comp1 Prep pcomp-n NI lem indirect 100 0.2 0.2
comp1 Prep pcomp-n NI synset indirect 100 0.2 0.2
comp1 Prep pcomp-n NI word indirect 100 0.2 0.2
has relat s CN cn C i VI indirect 100 0.2 0.2
has relat mod onI GR-bigr-direct 50.2 0.4 0.2
has relat mod atI GR-bigr-direct 29.4 0.7 0.2
preI lem IGR-direct 33.3 0.3 0.1
preI word IGR-direct 33.3 0.3 0.1
has relat preI GR-bigr-direct 33.3 0.3 0.1
comp1 Prep pcomp-n N synset indirect 33.3 0.3 0.1
has relat mod Prep pcomp-c C i VI indirect 20.3 0.5 0.1
has relat pred Prep pcomp-n N indirect 16.7 0.6 0.1
pred Prep pcomp-n N lem indirect 16.7 0.6 0.1
pred Prep pcomp-n N synset indirect 16.7 0.6 0.1

Table B.12: Results in Semcor for the whole set of features disambiguating
verbs (sorted by recall).

Feature Type Precision Coverage Recall
win lem 20w basic 49.9 100 49.9
win lem 50w basic 49.9 100 49.9
win syn 50w basic 49.5 100 49.5
win lem 0s basic 48.6 100 48.6
win lem 4w basic 48.5 100 48.5
win syn 1s basic 48.8 98.8 48.2
win lem 1s basic 47.7 100 47.7
win syn 20w basic 48.6 97.8 47.5
win sf 4w basic 46.1 100 46.1
win anc 0s basic 49.1 93.2 45.8
win wf 0s basic 48.1 94.8 45.6
win anc3 0s basic 49 92.9 45.5
win sf 50w basic 45.4 100 45.4
win sf 20w basic 45.3 100 45.3
GR-ngram1 GR-ngram 45.3 99.7 45.2
win sf 1s basic 44.9 100 44.9
win hyper 0s basic 49.8 89.6 44.6
win sf 0s basic 44.8 98.8 44.3
big subpos -1 basic 44.2 98.5 43.5
big subpos +1 basic 44.3 98 43.4
big pos +1 basic 43.3 99.6 43.1
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Table B.12: Results in Semcor for the whole set of features disambiguating
verbs (sorted by recall).

Feature Type Precision Coverage Recall
big pos -1 basic 42.6 99.5 42.4
trig pos 0 basic 43.1 98 42.2
trig pos +1 basic 41.8 97.6 40.8
win level4 0s basic 45.6 85.9 39.2
win syn 0s basic 48 81.1 38.9
trig pos -1 basic 42.2 92.2 38.9
GR-ngram2 GR-ngram 41.9 92.7 38.8
big lem -1 basic 50.2 75.9 38.1
win wf 4w basic 48.5 75.3 36.5
trig subpos 0 basic 44.7 80.8 36.1
trig subpos -1 basic 42.7 80.8 34.5
big lem +1 basic 46.4 74.1 34.4
trig subpos +1 basic 41.2 82.8 34.1
GR-ngram3 GR-ngram 47.2 66.4 31.3
big wf -1 basic 48.8 62.8 30.6
win wf 3w basic 48.9 61.7 30.2
big wf +1 basic 45 64.8 29.2
has relat subjI GR-bigr-direct 44.8 62 27.8
has relat sI GR-bigr-direct 44.3 60.3 26.7
win syn 4w basic 47.6 47.9 22.8
subjI lem IGR-direct 50.7 40.8 20.7
sI lem IGR-direct 49.2 39 19.2
subjI word IGR-direct 50.7 36.9 18.7
sI word IGR-direct 48.5 35.2 17.1
trig lem 0 basic 53.3 31.5 16.8
trig wf 0 basic 54.3 28.7 15.6
trig lem +1 basic 48.7 30.7 15
trig wf +1 basic 50 27.3 13.7
trig lem -1 basic 52.7 25.2 13.3
trig wf -1 basic 49.9 22.6 11.3
has relat auxI GR-bigr-direct 46.2 23 10.6
has relat objI GR-bigr-direct 20 52.1 10.4
auxI lem IGR-direct 47.4 20.8 9.9
auxI word IGR-direct 47.4 20.8 9.9
objI lem IGR-direct 40.5 23.4 9.5
has relat fc C i VI indirect 56.6 16.4 9.3
objI word IGR-direct 38.3 20.3 7.8
has relat amodI GR-bigr-direct 56.7 11.3 6.4
has relat mod Prep pcomp-n NI indirect 27.8 17.3 4.8
has relat mod C i V indirect 68.7 6.7 4.6
amodI lem IGR-direct 54 8.3 4.5
amodI word IGR-direct 54 8.3 4.5
fc C i VI lem indirect 51.6 8.8 4.5
amodI synset IGR-direct 54.8 7.8 4.3
fc C i VI word indirect 56.7 7.1 4
has relat comp1 C i V indirect 50.8 6.9 3.5
objI synset IGR-direct 48.5 7.2 3.5
sI synset IGR-direct 53.7 5.5 3
subjI synset IGR-direct 48.3 6.3 3
beI lem IGR-direct 41.4 5.8 2.4
beI word IGR-direct 41.4 5.8 2.4
has relat fc C i V indirect 39.2 6.2 2.4
fc C i VI synset indirect 38.6 5.8 2.2
has relat modI GR-bigr-direct 28.6 7.2 2.1
has relat mod ofI GR-bigr-direct 41.6 4.6 1.9
has relat beI GR-bigr-direct 30.1 6.2 1.9
haveI lem IGR-direct 36.4 4.8 1.7
haveI word IGR-direct 36.4 4.8 1.7
has relat haveI GR-bigr-direct 27.4 5.1 1.4
has relat sc GR-bigr-direct 52.2 2.4 1.3
obj2I lem IGR-direct 45.9 2.9 1.3
mod C i V lem indirect 75.2 1.6 1.2
modI word IGR-direct 55.8 1.9 1.1
modI lem IGR-direct 51.7 2.1 1.1
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Table B.12: Results in Semcor for the whole set of features disambiguating
verbs (sorted by recall).

Feature Type Precision Coverage Recall
comp1 C i V lem indirect 32.9 3.3 1.1
has relat mod aboutI GR-bigr-direct 68.4 1.5 1
mod Prep pcomp-n NI word indirect 52.8 1.8 1
obj2I synset IGR-direct 46.4 2.2 1
obj2I word IGR-direct 39.4 2.6 1
mod Prep pcomp-n NI lem indirect 38.4 2.5 1
modI synset IGR-direct 73.4 1.2 0.9
fc C i V synset indirect 57.5 1.5 0.9
mod C i V synset indirect 84.6 1 0.8
fc C i V word indirect 55.4 1.4 0.8
fc C i V lem indirect 39.6 1.9 0.8
comp1 C i V word indirect 30.1 2.8 0.8
has relat mod C i VI indirect 21.3 3.4 0.7
has relat vrel GR-bigr-direct 63.4 0.9 0.6
mod C i V word indirect 56.6 1.1 0.6
has relat s CN cn C i V indirect 34.2 1.8 0.6
has relat mod inI GR-bigr-direct 19.2 3.1 0.6
has relat mod Prep pcomp-c C i V indirect 43.9 1.2 0.5
has relat conj GR-bigr-direct 24.3 2 0.5
sc lem IGR-direct 83.3 0.5 0.4
sc word IGR-direct 83.3 0.5 0.4
guestI lem IGR-direct 14.7 2.6 0.4
guestI word IGR-direct 14.7 2.6 0.4
has relat guestI GR-bigr-direct 6.2 6.2 0.4
has relat descI GR-bigr-direct 100 0.3 0.3
sc synset IGR-direct 80 0.4 0.3
has relat by-subj byI GR-bigr-direct 66.7 0.5 0.3
has relat by-subj Prep pcomp-n NI indirect 66.7 0.5 0.3
has relat mod byI GR-bigr-direct 42.2 0.6 0.3
comp1 C i V synset indirect 40.1 0.8 0.3
has relat conjI GR-bigr-direct 15.3 2.2 0.3
conj synset IGR-direct 100 0.2 0.2
conjI lem IGR-direct 100 0.2 0.2
conjI synset IGR-direct 100 0.2 0.2
guestI synset IGR-direct 100 0.2 0.2
has relat mod atI GR-bigr-direct 100 0.2 0.2
has relat mod InI GR-bigr-direct 100 0.2 0.2
conj lem IGR-direct 51.8 0.3 0.2
has relat mod asI GR-bigr-direct 43.6 0.5 0.2
has relat s CN cn C i VI indirect 33.8 0.6 0.2
has relat mod onI GR-bigr-direct 33.3 0.5 0.2
mod Prep pcomp-n NI synset indirect 13.3 1.2 0.2
pred C i V word indirect 50 0.2 0.1
has relat mod intoI GR-bigr-direct 33.3 0.2 0.1
mod C i VI synset indirect 16.7 0.5 0.1
mod C i VI word indirect 14.3 0.6 0.1
pred C i V lem indirect 12 0.6 0.1
mod C i VI lem indirect 11.1 0.7 0.1
has relat pred C i V indirect 9.5 0.7 0.1
has relat mod forI GR-bigr-direct 5.6 1 0.1
has relat mod toI GR-bigr-direct 2.8 2.3 0.1
has relat obj2I GR-bigr-direct 1.4 9.6 0.1


