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Abstract tion (WSD) adaptation, and in this paper we fo-
cus on supervised WSD adaptation. We compare
The lack of positive results on super-  the performance of similar supervised WSD sys-
vised domain adaptation for WSD have  tems on three different scenarios. In thmirce
cast some doubts on the utility of hand-  to target scenario the WSD system is trained on
tagging general corpora and thus devel-  the source domain and tested on the target do-
oping generic supervised WSD systems.  main. In thetarget scenario the WSD system

In this paper we show for the first time s trained and tested on the target domain (using
that our WSD system trained on a general  cross-validation). In thedaptation scenario the
source corpus (BC) and the targetcorpus,  \WSD system is trained on both source and target

obtains up to 22% error reduction when  domain and tested in the target domain (also using
compared to a system trained on the tar-  cross-validation over the target data). The source
get corpus alone. In addition, we show  tg target scenario represents a weak baseline for
that as little as 40% of the target corpus  domain adaptation, as it does not use any exam-
(when supplemented with the source cor-  ples from the target domain. The target scenario
pus) is sufficient to obtain the same results  represents the hard baseline, and in fact, if the do-
as training on the full target data. The key  majin adaptation scenario does not yield better re-
for success is the use of unlabeled data  gyits, the adaptation would have failed, as it would

with svD, a combination of kernels and  mean that the source examples are not useful when
SVM. we do have hand-labeled target examples.

Previous work shows that current state-of-the-
art WSD systems are not able to obtain better re-
In many Natural Language Processing (NLP)sults on the adaptation scenario compared to the
tasks we find that a large collection of manually-target scenario (Escudero et al., 2000; Agirre and
annotated text is used to train and test superviseartinez, 2004; Chan and Ng, 2007). This would
machine learning models. While these modelgnean that if a user of a generic WSD system (i.e.
have been shown to perform very well when testedbased on hand-annotated examples from a generic
on the text collection related to the training datacorpus) would need to adapt it to a specific do-
(what we call thesource domain), the perfor- main, he would be better off throwing away the
mance drops considerably when testing on texgeneric examples and hand-tagging domain exam-
from other domains (callethrget domains). ples directly. This paper will show that domain

In order to build models that perform well in adaptation is feasible, even for difficult domain-
new (target) domains we usually find two settings'elated words, in the sense that generic corpora
(Daune l11, 2007). In the semi-supervised setting,can be reused when deploying WSD systems in
the training hand-annotated text from the sourceépecific domains. We will also show that, given
domain is supplemented with unlabeled data fronthe source corpus, our technique can save up to
the target domain. In the supervised setting, wé&0% of effort when tagging domain-related occur-
use training data from both the source and targetences.
domains to test on the target domain. We performed on a publicly available corpus

In (Agirre and Lopez de Lacalle, 2008) we which was designed to study the effect of domains
studied semi-supervised Word Sense Disambiguan WSD (Koeling et al., 2005). It comprises 41
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nouns which are highly relevant in theeSRTS not help when tagging the target corpus, show-
and ANANCES domains, with 300 examples for ing that tagged corpora from each domain would
each. The use of two target domains strengthersuffice, and concluding that hand tagging a large
the conclusions of this paper. general corpus would not guarantee robust broad-
Our system uses Singular Value Decomposicoverage WSD. Agirre and Maniez (2000) used
tion (svD) in order to find correlations between the DSO corpus in the supervised scenario to show
terms, which are helpful to overcome the scarcitythat training on a subset of the source corpora that
of training data in WSD (Gliozzo et al., 2005). is topically related to the target corpus does allow
This work explores how this ability ofvb and  for some domain adaptation.

a combination of the resulting feature spaces im- \jore recently, Chan and Ng (2007) performed
proves domain adaptation. We present two waygpervised domain adaptation on a manually se-
to combine the reduced spaces: kernel combingacted subset of 21 nouns from the DSO corpus.
tion with Support Vector Machinesym), andk  They used active learning, count-merging, and
Nearest-Neighborsk¢NN) combination. predominant sense estimation in order to save tar-
The paper is structured as follows. Section 2 reget annotation effort. They showed that adding
views prior work in the area. Section 3 presentjust 30% of the target data to the source exam-
the data sets used. In Section 4 we describgles the same precision as the full combination of
the learning features, including the application oftarget and source data could be achieved. They
svD, and in Section 5 the learning methods anchlso showed that using the source corpus allowed
the combination. The experimental results are preto significantly improve results when only 10%-
sented in Section 6. Section 7 presents the discug0o of the target corpus was used for training.
sion and some analysis of this paper and finallyunfortunately, no data was given about the target

Section 8 draws the conclusions. corpus results, thus failing to show that domain-
. adaptation succeeded. In followup work (Zhong et
2 Prior work al., 2008), the feature augmentation approach was

. o . combined with active learning and tested on the
Domain adaptation is a practical problem attract- 9

. . . ntoNotes corpus, on a large domain-adaptation
ing more and more attention. In the superwsedO bus, 9 P

setting, a recent paper by Daérl (2007) shows experiment. The_zy reduced S|gn|f|c_:antly the .ef
. . fort of hand-tagging, but only obtained domain-
that a simple feature augmentation method for . .
. . adaptation for smaller fractions of the source and

SvM is able to effectively use both labeled tar-

. . target corpus. Similarly to these works we show
get and source data to provide the best domain; 9 P y

. ) . that we can save annotation effort on the target
adaptation results in a number of NLP tasks. His . ) 9

. . corpus, but, in contrast, we do get domain adap-
method improves or equals over previously eX_tation when using the full dataset. In a way our
plored more sophisticated methods (Daurtl g ' Y

and Marcu, 2006; Chelba and Acero, 2004). Theapproach is complementary, and we could also ap-

. L ! ly active learning to furhter reduce the number of
feature augmentation consists in making three ve|}-) y 9

: . target examples to be tagged.
sion of the original features: a general, a source- 9 P 99

specific and a target-specific versions. That way 1hough not addressing domain adaptation,
the augmented source contains the general arRfher works on WSD also usedvD and are
source-specific version and the augmented targéiosely related to the present paper. Ando (2006)
data general and specific versions. The idea pdlsed Alternative Structured Optimization. She
hind this is that target domain data has twice thdirst trained one linear predictor for each target
influence as the source when making prediction®/0rd, and then performesivp on 7 carefully se-
about test target data. We reimplemented thidected submatrices of the feature-to-predictor ma-
method and show that our results are better.  trix of weights. The system attained small but
Regarding WSD, some initial works made a ba_cgnsistent improvements (no §ignificance datawas
sic analysis of domain adaptation issues. EscuddVen) on the Senseval-3 lexical sample datasets
ero et al. (2000) tested the supervised adaptationSiNgSVD and unlabeled data.
scenario on the DSO corpus, which had examples Gliozzo et al. (2005) usedvD to reduce the
from the Brown corpus and Wall Street Journalspace of the term-to-document matrix, and then
corpus. They found that the source corpus diccomputed the similarity between train and test



instances using a mapping to the reduced spaaeents the BIC examples play the role of general
(similar to oursmA method in Section 4.2). They source corpora, and the INANCES and SPORTS
combined other knowledge sources into a complexamples the role of two specific domaiar get
kernel usingsvM. They report improved perfor- corpora.
mance on a number of languages in the Senseval- Compared to the DSO corpus used in prior work
3 lexical sample dataset. Our present paper dif¢cf. Section 2) this corpus has been explicitly cre-
fers from theirs in that we propose an additionalated for domain adaptation studies. DSO con-
method to usesvD (the oMT method), and that tains texts coming from the Brown corpus and the
we focus on domain adaptation. Wall Street Journal, but the texts are not classi-

In the semi-supervised setting, Blitzer et al.fied according to specific domains (e.g. Sports,
(2006) used Structural Correspondence Learninginances), which make DSO less suitable to study
and unlabeled data to adapt a Part-of-Speech tagomain adaptation. The fact that the selected
ger. They carefully select so-called ‘pivot fea- nouns are related to the target domain makes
tures’ to learn linear predictors, perforavb on  the (Koeling et al., 2005) corpus more demanding
the weights learned by the predictor, and thus learthan the DSO corpus, because one would expect
correspondences among features in both sourdbe performance of a generic WSD system to drop
and target domains. Our technique also &3, when moving to the domain corpus for domain-
but we directly apply it to all features, and thusrelated words (cf. Table 1), while the performance
avoid the need to define pivot features. In prelim-would be similar for generic words.
inary work we unsuccessfully tried to carry along In addition to the labeled data, we also use
the idea of pivot features to WSD. On the contraryunlabeled data coming from the three sources
in (Agirre and Lopez de Lacalle, 2008) we showused in the labeled corpus: the ’written’ part
that methods closely related to those presented iof the BNC (89.7M words), the IRNANCES part
this paper produce positive semi-supervised doef Reuters (32.5M words), and theeSRTSs part
main adaptation results for WSD. (9.1M words).

The methods used in this paper originated in
(Agirre et al., 2005; Agirre and Lopez de Lacalle,4 Original and svb features
2007), wheresvD over a feature-to-documents
matrix improved WSD performance with and
without unlabeled data. The use of sevekal
NN classifiers trained on a number of reduced angy 1 Features
original spaces was shown to get the best results ) ) )
in the Senseval-3 dataset and ranked second in tHe® relied on the usua_\l features u_sed N previous

WSD work, grouped in three main setd. ocal

SemEval 2007 competition. The present paper ex- locati e the bi d tri
tends this work and applies it to domain adapta-CO ocations comprise he bigrams and trigrams
tion. formed around the target word (using either lem-

mas, word-forms, or PoS tags) , those formed
3 Datasats with the previous/posterior lemma/word-form in
the sentence, and the content words ihword
The dataset we use was designed for domairWwindow around the targetSyntactic dependen-
related WSD experiments by Koeling et al. (2005),cies use the object, subject, noun-modifier, prepo-
and is publicly available. The examples comesition, and sibling lemmas, when available. Fi-
from the BNC (Leech, 1992) and ther®RrTsand  hally, Bag-of-words features are the lemmas of
FINANCES sections of the Reuters corpus (Rosethe content words in the whole context, plus the
et al., 2002), comprising around 300 examplessalient bigrams in the context (Pedersen, 2001).
(roughly 100 from each of those corpora) for eachWVe refer to these features asginal features.
of the 41 nouns. The nouns were selected be-
cause they were salient in either theckTsor 42 SvD features
FINANCES domains, or because they had senseépart from the original space of features, we have
linked to those domains. The occurrences weresed the so calledvD features, obtained from
hand-tagged with the senses from WordNetN)W the projection of the feature vectors into the re-
version 1.7.1 (Fellbaum, 1998). In our experi-duced space (Deerwester et al., 1990). Basically,

In this section, we review the features and two
methods to applgVvD over the features.



we set a term-by-document or feature-by-example¢he reduced space); We tried two different val-
matrix M from the corpus (see section below forues forp (25 and 200) in the Bc domain, and
more details) svD decomposed/ into three ma- set a dimension for each classifier/matrix combi-
trices, M = UXVT. If the desired number of nation.

dimensions in the reduced spacejsve selectp o

rows from¥. andV, yielding £, andV,, respec- 43 Motivation

tively. We can map any feature vectowhich  The motivation behind our method is that although
represents either a train or test example) into théne train and test feature vectors overlap suffi-
p-dimensional space as follows;, = t”V,S;!.  ciently in the usual WSD task, the domain dif-
Those mapped vectors hayedimensions, and ference makes such overlap more scarea/D
each of the dimensions is what we cabep fea-  implicitly finds correlations among features, as it
ture. We have explored two different variants inmaps related features into nearby regions in the re-
order to build the reduced matrix and obtain theduced space. In the case siiA, svD is applied
svD features, as follows. over the joint term-by-document matrix of labeled
Single Matrix for All target words (svD-  (and possibly unlabeled corpora), and it thus can
sMA). The method comprises the following steps:find correlations among closely related words (e.g.
(i) extract bag-of-word features (terms in this casefat anddog). These correlations can help reduce
from unlabeled corpora, (ii) build the term-by- the gap among bag-of-words features from the
document matrix, (i) decompose it wivp, and ~ source and target examples. In the caseafr,
(iv) map the labeled data (train/test). This tech-SVD over the joint feature-by-example matrix of
nique is very similar to previous work oavp labeled and unlabeled examples of a word allows
(Gliozzo et al., 2005; Zelikovitz and Hirsh, 2001). to find correlations among features that show sim-
The dimensionality reduction is performed once,lar occurrence patterns in the source and target
over the whole unlabeled corpus, and it is then apcorpora for the target word.
plied to the labeled data of each word. The re- )
duced space is constructed only with terms, whict? L €arning methods

correspond to bag-of-words features, and thus diSE—NN is a memory based learning method, where
cards the rest of the features. Given that the WSI), neighbors are themost similar labeled exam-
literature shows that all features are necessary foﬁles to the test example. The similarity among in-
optimal performance (Pradhan et al., 2007), Weances is measured by the cosine of their vectors.
propose the following alternative to construct theryg ot instance is labeled with the sense obtain-

matrix. ing the maximum sum of the weighted vote of the
OneMatrix per Target word (SvD-OMT). For k£ most similar contexts. We sétto 5 based on

each word: (i) construct a corpus with its occur-previous results published in (Agirre and Lopez de

rences in the labeled and, if desired, unlabeled col-acalle, 2007).

pora, (ii) extract all features, (iii) build the feature-  Regardingsvm, we used linear kernels, but

by-example matrix, (iv) decompose it wivD,  also purpose-built kernels for the reduced spaces

and (v) map all the labeled training and test dataand the combinations (cf. Section 5.2). We used

for the word. Note that this variant performs onethe default soft margin (C=0). In previous ex-

svD process for each target word separately, hencgeriments we learnt that C is very dependent on

its name. the feature set and training data used. As we
When building thesvp-omT matrices we can Will experiment with different features and train-

use only the training dataRAIN) or both the train  Ing datasets, it did not make sense to optimize it

and unlabeled data (WLAB). When building the ~across all settings.

SVD-SMA matrices, given the small size of the in-  We will now detail how we combined the origi-

dividual word matrices, we always use both thenal andsvp features in each of the machine learn-

train and unlabeled data¢NLAB). Regarding the ing methods.

amount of data, based also on previous work, we o

used 50% of the available data fomT, and the 51 k-NN combinations

whole corpora forsMA. An important parameter Our k-NN combination method (Agirre et al.,

when doingsvp is the number of dimensions in 2005; Agirre and Lopez de Lacalle, 2007) takes



advantage of the propertiesiofun classifiers and 32‘5 — X | 389F.,851T.2 Fs'mt‘fg

exploit the fact that a classifier can be seen as E-NN 517413 60.4-1.6

k points (number of nearest neighbor) each cast- SVM 53.9+1.3 62.9:1.6

ing one vote. This makes easy to combine sev-

eral classifiers, one for each feature space. For infable 1. Source to target results: Train oN®
stance, taking twa-NN classifiers oft = 5, C;  teston $ORTsand HNANCES.

andCs, we can combine them into a sindgle= 10
classifier, where five votes come frath and five
from C5. This allows to smoothly combine classi-
fiers from different feature spaces. n
~ In this work we built three singlé-NN classi- K Comp(xi, ;) = Z K (xi, x;)

fiers trained oroMT, sMA and the original fea- — VEi(xi, %) K (x5, %;)
tures, respectively. In order to combine them we

weight each vote by the inverse ratio of its positionyherer, is the number of single kernels explained

in the rank of the single classifigiy — r; +1)/k,  apove, and the index for the kernel type.
wherer; is the rank.

Finally, we define the kernel combination:

52 Kernd combination 6 Domain adaptation experiments

The basic idea of kernel methods is to find a suit1n this section we present the results in our two

able mapping function) in order to get a better oterence scenarios (source to target, target) and
generalization. Instead of doing this mapping eX+r reference scenario (domain adaptation). Note
plicitly, kernels give the chance to do it inside the{hat all methods presented here have full cover-
algorithm. We will formalize it as follows. First, age, i.e. they return a sense for all test examples,
we define the mapping functian: & — F. Once  gnq therefore precision equals recall, and suffices
the function is defined, we can use it in the kernel, compare among systems. We have computed
function in order to become an implicit function gjgnificance ranges for all results in this paper us-
K(x,2) = (¢(x) - ¢(2)), where(-) denotes ain- jng pootstrap resampling (Noreen, 1989). Preci-
ner product between vectors in the feature spacgjon, figures outside of these intervals are assumed

This way, we can very easily define mappingsy, pe significantly different from the related preci-
representing different information sources and usgj,n, figures < 0.05).

this mappings in several machine learning algo-
rithm. In our work we usevm.
We defined three individual kernelsiT, SMA
and original features) and the combined kernel. In this scenario our supervised WSD systems are
Theoriginal featurekernel (Ko,,) is givenby  trained on the general source corpusu(3 and
the identity function over the features X — X, tested on the specific target domains separately
defining the following kernel: (SpoRrTsand BENANCES). We do not perform any
kind of adaptation, and therefore the results are
those expected for a generic WSD system when

6.1 Sourcetotarget scenario: BNC — X

(xi - x;)

Korig(xi,x;) =

Vixi-xi) (x5 %5) applied to domain-specific texts.
where the denominator is used to normalize and Tgp1e 1 shows the results far-NN and SVM
avoid any kind of bias in the combination. trained with the original features on thevB. In

The oMT ke_rnel (K_omt) and sMA ker.nel addition, we also show the results for the Most
(Ksmq) are defined usin@MT and SMA projec-  prequent Sense baseline (MFS) taken from the
tion matrices, respectively (cf. Section 4.2). Givengc. The second column denotes the accuracies
the oMT function mappinggo,n; : R™ — RP,  gpiained when testing onP®RTS and the third
wherem is the number of the original features .o ,mn the accuracies fonfancEs. The low ac-
andp the reduced dimensionality, then we dEﬁ”ecuracy obtained withvrs, e.g. 39.0 of precision
Komi(xi,x;) as follows (s, is defined simi- iy sporTs shows the difficulty of this task. Both
larly): classifiers improve ovemFs, and svM outper-

(omt (Xi) * Pome(xj)) forms significantlyk-NN. These are weak base-

VA{Pomt (X1) - bomt (%)) (Domt(X;) - Pom (X)) lines for the domain adaptation system.




SPORTS FINANCES

P TRAIN . runias | TRAIN 4 UNLAB but the differences are not statistically signifi-
MFS 77812 - 82.3£1.3 - cant, except fok-NN-OMT on Sports. SMA de-

k-NN 84.5+1.0 - 87.1+1.0 - .
svM 85.1+1.0 - 87.0£1.0 - creases the performance compared to the classi-
k-NN-OMT 85.0+1.1 86.1+0.9 87.3+t1.1 87.6-0.8 . . o . e
SUM-OMT 820110 85011 | 853010 86.4.09 fiers trained on original features. The significant
k-NN-SMA - 8L1f11 - 832t14 improvements come when the three strategies are
SVM-SMA - 81.3+1.1 - 84.1+1.0 : -

E-NN-COMB | 860100 867110 | 879400 886108 combined in one. Both the kernel akeNN com-

SVM-COMB 86.5+0.9 88.51+0.8

binations obtain statistically significant improve-
ments over the respective single classifiers. Note
that bothk-NN and svM combinations perform
similarly.

In the combination strategy we show that unla-
beled data helps slightly, because instead of only
combiningomT and original features we have the
6.2 Target scenarioX — X opportunity to introducesMA. The difference be-

tween both it is not enough to be significant. Note

In thi nario we lay the harder line whi . . )
s scenario we lay the harder baseline Cqhatltwasnotouralmto|mprovetheresultsofthe

the domain adaptation experiments should im_basic classifiers on this scenario, but given the fact
prove (cf. next section). The WSD systems ’ 9

are trained and tested on each of the target co;[—hat we are going to apply all these techniques in

pora (S0RTsand ANANCES) using 3-fold cross- the domain adaptatlon scenario, we need to show
validation. these results as baselines. That is, in the next sec-

, , . tion we will try to obtain results which improve
Table 2 summarizes the results for this SCenarIosigniﬁcantly over the best results in this section.
TRAIN denotes that only tagged data was used to
train, tUNLAB denotes that we added unlabeled : : .
-°6.3 Domain adaptation scenario
data related to the source corpus when computlngNC Y Y Xx
svD. The rows denote the classifier and the feature
spaces used, which are organized in four sectiongn this last scenario we try to show that our WSD
On the top rows we show the three baseline classystem trained on both source NB) and tar-
sifiers on the original features. The two sectiongyet (S ORTsand ANANCES) data performs better
below show the results of those classifiers on thé¢han the one trained on the target data alone. We
reduced dimensiongMT andsMA (cf. Section also use 3-fold cross-validation for the target data,
4.2). Finally, the last rows show the results of thebut the entire source data is used in each turn. The
combination strategies (cf. Sections 5.1 and 5.2)unlabeled data here refers to the combination of
Note that some of the cells have no result, becausgnlabeled source and target data.
that combination is not applicable (e.g. using the The results are presented in table 3. Again, the
train and unlabeled data in the original space). columns denote if unlabeled data has been used in
First of all note that the results for the base-the learning process. The rows correspond to clas-
lines (MFs, svM, k-NN) are much larger than sifiers and the feature spaces involved. The first
those in Table 1, showing that this dataset is sperows report the best results in the previous sce-
cially demanding for supervised WSD, and partic-narios: BN\C — X for the source to target sce-
ularly difficult for domain adaptation experiments. nario, andX — X for the target scenario. The
These results seem to indicate that the examplagst of the table corresponds to the domain adap-
from the source general corpus could be of littletation scenario. The rows below correspond to the
use when tagging the target corpora. Note spemFsand the baseline classifiers, theT andsmA
cially the difference imrs performance. The pri- results and the combination results. The last row
ors of the senses are very different in the sourcshows the results for the feature augmentation al-
and target corpora, which is a well-known short-gorithm (Daung 11, 2007).
coming for supervised systems. Note the high re- Focusing on the results, the table shows that
sults of the baseline classifiers, which leave smallirs decreases with respect to the target scenario
room for improvement. (cf. Section 6.2) when the source data is added,
The results for the more sophisticated methodgrobably caused by the different sense distribution
show thatsvb and unlabeled data helps slightly, in BNC and the target corpora. The baseline classi-

Table 2: Target results: train and test onCRTS
train and test on INANCES, using 3-fold cross-
validation. Bold signals statistical significance
over respective baseline classifier (first rows).



SPORTS FINANCES H

T T ORI RAN T UNIAE tal line corresponds to the p_erformancewﬁ\a on
BNC— X [ 53.9E13 - 62.9£16 - the target doman. The point where the learning
X - X 86.0+0.9 86.741.0 | 87.9+0.9 88.5£0.8 . . .
VES 68.2E13 - 731E15 - curves cross the horizontal line show that domain
k-NN 81.3+1.1 - 86.0+0.9 - H
oM 847410 . 87 5t0.7 : adaptation kernel methpds need between %60 and
k-NN-oMT [ 840810 84710 | 875509  86.0E0.9 %065 less target data in order to have the same
SVM-OMT 85.1+0.9 84.740.9 | 84.2-0.8 85.5:1.0 .
E-NN-SMA - 77.0E1.2 - 8L.6E1.2 performance than the baselis&’m. The learn-
SVM-SMA - 78.1+1.2 B 80.7+1.1 R H H
o IR0 50— k0D ing curves also show that, the kernel combination
SVM-COMB - 884409 - 89.7+08 approach, no matter the amount of target data, al-
SVM-AUG 85.9+1.0 - 88.1+£0.9 E

ways is above the rest of the classifier. This shows

Table 3: BNC + X — X: train onBNC and M€ robustness of our approach.

SPORTS test onSPORTS (same forFINANCES.
Bold signals statistical significance over best re-
sults on target scenaria(— X). 85 [ e e

80 [~

fiers (k-NN andsvM) are not able to improve over
the baseline classifiers on the target data alone,

accuracy (%)

which is coherent with part research, and shows 3 = o comp
that straightforward domain adaptation does not  «f = om_or
work o
- = 60 ol al ol ul ol
The following rows show that our reduction 0 e sports (%) o

methods on themselvesiT, SMA used byk-NN

and svm) also fail to perform better than in the

target scenario, but the combinations ussg Figure 1. Learning curves forE®RTstarget do-
do manage to improve significantly, showing thatMain. The X’ axis denotes the amount of the
we were able to attain domain adaptation. In conSPORTSdomain data and” axis corresponds to
trast, the feature augmentation approasir{- the accuracy. Note thavm-ORIG and k-NN-
AUG) does not yield any improvement, showing COMB are in-domain classifiers (baselines) and

the difficulty of domain adaptation for WSD, at SVM-COMB andSvM-AUG are trained on source
least on this dataset. and target domain data.

7 Discussion and analysis

Table XXX summarizes the most improtant re-
sults. Compared to the target scenario, the ker- |

nel combination method with unlabeled data re-
duces the error on 22.1% and 17.6% over the base-
line svM (SPORTSand HNANCES respectively),
and 12.7% and 9.0% over the kernel combination

@
3
T

accuracy (%)

—&— svm_comb
—O— knn_comb

~
o
T

method. This gains are remarkable given the al- T o
ready high baseline, specially taking into consid- . . . o
eration that the 41 nouns are closely related to the %0 s 50 oo

finances (%)

domain. This differences are statistical significant
according to the Wilcoxon test with < 0.01.

In addition, we carried extra experiments toFigure 2: Learning curves forIRANCES target
check the learning curve. We fixed the sourcedomain. TheX axis denotes the amount of the
data and used increasing amounts of target datf/NANCES domain data and” axis corresponds
We chose as baselines them andk-nN-coms 10 the accuracy. Note thavm-ORIG and k-NN-
approaches on the target scenario, @wv- COMB are in-domain classifiers (baselines) and
COMB andsvM-AUG as the domain adaptation ap- SVM-COMB and SVM-AUG are trained on source
proaches. The results are shown in figure 1 foRnd target domain data.

SpoRrTsand figure 2 for FNANCES. The horizon-



8 Conclusion and futurework
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