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Abstract

We describe the systems submitted by SRI In-
ternational and the University of the Basque
Country for the Semantic Textual Similarity
(STS) SemEval-2012 task. Our systems fo-
cused on using a simple set of features, fea-
turing a mix of semantic similarity resources,
lexical match heuristics, and part of speech
(POS) information. We also incorporate pre-
cision focused scores over lexical and POS in-
formation derived from the BLEU measure,
and lexical and POS features computed over
split-bigrams from the ROUGE-S measure.
These were used to train support vector re-
gressors over the pairs in the training data.
From the three systems we submitted, two per-
formed well in the overall ranking, with split-
bigrams improving performance over pairs
drawn from the MSR Research Video De-
scription Corpus. Our third system maintained
three separate regressors, each trained specif-
ically for the STS dataset they were drawn
from. It used a multinomial classifier to pre-
dict which dataset regressor would be most ap-
propriate to score a given pair, and used it to
score that pair. This system underperformed,
primarily due to errors in the dataset predictor.

1 Introduction

Previous semantic similarity tasks, such as para-
phrase identification or recognizing textual entail-
ment, have focused on performing binary decisions.
These problems are usually framed in terms of iden-
tifying whether a pair of texts exhibit the needed
similarity or entailment relationship or not. In many
cases, such as producing a ranking over similarity

scores, a soft measure of similarity between a pair
of texts would be more desirable.

We contributed three systems for the 2012 Se-
mantic Textual Similarity (STS) task (Agirre et al.,
2012). These are:

1. System 1, which used a combination of seman-
tic similarity, lexical similarity, and precision
focused part-of-speech (POS) features.

2. System 2, which used features from System
1, with the addition of skip-bigram features
derived from the ROUGE-S (Lin, 2004) mea-
sure. POS variants of skip-bigrams were incor-
porated as well.

3. System 3, used the features from above to first
classify the dataset the pair was drawn from,
and then applied regressors trained for that
dataset.

Our systems characterize sentence pairs as feature
vectors, populated by a variety of scorers that will be
described below. During training, we used support
vector regression (SVR) to train regressors against
these vectors and their associated similarity scores.

The STS training data is divided into three
datasets, reflecting their origin: Microsoft Research
Paraphrase Corpus (MSRpar), MSR Research Video
Description Corpus (MSRvid), and WMT2008 De-
velopment dataset (SMTeuroparl). We trained indi-
vidual regressors for each of these datasets, and ap-
plied them to their counterparts in the testing set.

Both Systems 1 and 2 used the following types of
features:
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1. Resource based word to word semantic similar-
ities.

2. Cosine-based lexical similarity measure.

3. Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) lexical overlap.

4. Precision focused Part of Speech (POS) fea-
tures.

System 2 added the following features:

1. Lexically motivated skip-bigram overlap.

2. Precision focused skip-bigram POS features.

One of the primary motivations for our the choice
of features was to use relatively simple and fast fea-
tures, which can be scaled up to large datasets, given
appropriate caching and pre-generated lookups. As
the test phase included surprise datasets, whose ori-
gin was not disclosed, we also trained a fourth model
using all of the training data from all three datasets.
Systems 1 and 2 employed this strategy for the sur-
prise data.

Since the statistics for each of the training datasets
varied, directly pooling them together may not be
the best strategy when scoring the surprise data,
whose origins were unknown. To account for this,
System 3 treated this as a gated regression problem,
where pairs are considered to originate strictly from
one dataset, and to score using a model specifically
tailored for that dataset. We first trained regressors
on each of the datasets separately. Then we trained
a classifier to predict which dataset a given pair is
likeliest to have been drawn from, and then applied
the matching trained regressor to obtain its score.

This team included one of the organizers. We
want to stress that we took all measures to make our
participation on the same conditions as the rest of
participants. In particular, the organizer did not al-
low the other member of the team to access any data
or information which was not already available for
the rest of participants.

For the rest of this system description, we first
outline the scorers used to populate the feature vec-
tors used for Systems 1 and 2. We then describe
the setup for performing the regression. We follow
with an explanation of our strategies for dealing with

the surprise data, including a description of System
3. We then summarize performance over the the
datasets, and discuss future avenues of investigation.

2 Resource Based Similarity

Our system uses several resources for assessing the
word to word similarity between a pair of sentences.
In order to pool together the similarity scores for a
given pair, we employed the Semantic Matrix (Fer-
nando and Stevenson, 2008) framework. To gen-
erate the scores, we used several resources, princi-
pally those derived from the relation graph of Word-
Net (Fellbaum, 1998), and those derived from distri-
butional resources, namely Explicit Semantic Anal-
ysis (Gabrilovich and Markovitch, 2009), and the
Dekang Lin Proximity-based Thesaurus 1. We now
describe the Semantic Matrix method, and follow
with descriptions of each of the resources used.

2.1 Semantic Matrix

The Semantic Matrix is a method for pooling all
of the pairwise similarity scores between the to-
kens found in two input strings. In order to score
the similarity between a pair of strings s1 and s2
we first identify all of the unique vocabulary words
from these strings to derive their corresponding oc-
currence vectors v1 and v2. Each dimension of
these vectors corresponds to a unique vocabulary
word, and binary values were used, corresponding
to whether that word was observed. The similarity
score for pair, sim(s1, s2), is given by Formula 1.

sim(s1, s2) =
vT

1 Wv2

‖v1‖ ‖v2‖
(1)

with W being the symmetric matrix marking the
similarity between pairs of words in the vocabulary.
We note that this is similar to the Mahalanobis dis-
tance, except adjusted to produce a similarity. For
this experiment, we normalized matrix entries so all
values lay in the 0-1 range.

As named entities and other words encountered
may not appear in one or more of the resources used,
we applied the identity to W. This is equivalent to
adding a strict lexical match fallback on top of the
similarity measure.

1http://webdocs.cs.ualberta.ca/ lindek/downloads.htm
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Per (Fernando and Stevenson, 2008), a filter was
applied over the values of W. Any entries that fell
below a given threshold value were flattened to zero,
in order to prevent low scoring similarities from
overwhelming the score. From previous studies over
MSRpar, we applied a threshold of 0.9.

For our experiments, each of the word to word
similarity scorers described below were used to gen-
erate a corresponding word similarity matrix W,
with scores generated using the Semantic Matrix.

2.2 WordNet Similarity
We used several methods to obtain word to word
similarities from WordNet. WordNet is a lexical-
semantic resource that describes typed relationships
between synsets, semantic categories a word may
belong to. Similarity scoring methods identify the
synsets associated with a pair of words, and then use
this relationship graph to generate a score.

The first set of scorers were generated from the
Leacock-Chodorow, Lin, and Wu-Palmer measures
from the WordNet Similarity package (Pedersen et
al., 2004). For each of these measures, we averaged
across all of the possible synsets between a given
pair of words.

Another scorer we used was Personalized PageR-
ank (PPR) (Agirre et al., 2010), a topic sensitive
variant of the PageRank algorithm (Page et al.,
1999) that uses a random walk process to identify
the significant nodes of a graph given its link struc-
ture. We first derived a graph G from WordNet,
treating synsets as the vertices and the relationships
between synsets as the edges. To obtain a signature
for a given word, we apply topic sensitive PageRank
(Haveliwala, 2002) over G, using the synsets asso-
ciated with the word as the initial distribution. At
convergence, we convert the stationary distribution
into a vector. The similarity between two words is
the cosine similarity between their vectors.

2.3 Distributional Resources
In contrast with the structure based WordNet based
methods, distributional methods use statistical prop-
erties of corpora to derive similarity scores. We gen-
erated two scorers, one based on Explicit Seman-
tic Analysis (ESA), and the other on the Dekang
Lin Proximity-based Thesaurus. For a given word,
ESA generates a concept vector, where the con-

cepts are Wikipedia articles, and the score measures
how closely associated that word is with the textual
content of the article. To score the similarity be-
tween two words, we computed the cosine similar-
ity of their concept vectors. This method proved to
give state-of-the-art performance on the WordSim-
353 word pair relatedness dataset (Finkelstein et al.,
2002).

The Lin Proximity-based Thesaurus identifies
the neighborhood around words encountered in the
Reuters and Text Retrieval Conference (TREC). For
a given word, the Thesaurus identifies the top 200
words with the most similar neighborhoods, listing
the score based on these matches. For our experi-
ments, we treated these as feature vectors, with the
intuition being similar words should share similar
neighbors. Again, the similarity score between two
words was scored using the cosine similarity of their
vectors.

3 Cosine Similarity

Another scorer we used was the cosine similarity
over the lemmas found in the sentences in a pair.
For generating the vectors used in the cosine simi-
larity computation, we used the term frequency of
the lemmas.

4 BLEU Features

BLEU is a measure developed to automatically as-
sess how closely sentences generated by machine
translation systems match reference human gener-
ated texts. BLEU is a directional measurement, and
works on the assumption that the more lexically sim-
ilar a system generated sentence is to a reference sen-
tence, a human generated translation, the better the
system sentence is. This can also be seen as a stand-
in for the semantic similarity of the pairs, as was
shown when BLEU was applied to the paraphrase
identification identification problem in (Finch et al.,
2005).

The BLEU score for a given system sentence and
reference sentence of order N is computed using
Formula 2.

BLEU(sys, ref) = B · exp
N∑

n=1

1

N
log(pn) (2)
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B is a brevity penalty used to prevent degenerate
translations. Given this has little bearing on our ex-
periments, we set its value to 1 for our experiments.
Following (Papineni et al., 2002), we give each order
n equal weight in the geometric mean. The proba-
bility of an order n-gram from the system sentence
being found in the reference, pn, is given in Formula
3.

pn =

∑
ngram∈sys countsys∧ref (ngram)∑

ngram∈sys countsys(ngram)
(3)

countsys(ngram) is frequency of oc-
currence for the given n-gram in the sys-
tem sentence. The numerator term is
computed as countsys∧ref (ngram) =
min(countsys(ngram), countref (ngram)) where
countref (ngram) is the frequency of occurrence
of that n-gram in the reference sentence. This
is equivalent to having each n-gram have a 1-1
mapping with a matching n-gram in the reference
(if any), and counting the number of mappings.

As there is a risk of higher order system n-grams
having no matches in the reference, we apply Lapla-
cian smoothing to the n-gram counts.

BLEU is considered to be a precision focused
measure, as it only measures how much of the sys-
tem sentence matches a reference sentence. Follow-
ing (Finch et al., 2005), we obtain a modified BLEU
score for strings s1 and s2 of a pair by averaging the
BLEU scores where each takes a turn as the system
sentence, as given in Formula 4.

Score(s1, s2) =
1

2
BLEU(s1, s2) · BLEU(s2, s1)

(4)
For our experiments, we used BLEU scores of or-

der N = 1..4, over n-grams formed over the sen-
tence lemmas, and used these as features for charac-
terizing a given pair.

4.1 Precision Focused POS Features

From past experiments with paraphrase identifica-
tion over the MSR Paraphrase Corpus, we have
found including POS information to be beneficial.
To this capture this kind of information, we gen-
erated precision focused POS features, which mea-

sures the following between the sentences in a prob-
lem pair:

1. The overlap in POS tags.

2. The mismatch in POS tags.

We follow the formulation for POS vectors given
in (Finch et al., 2005). For a given sentence pair,
we identify the set of words whose lemmas were
matched in both the system and reference sentences,
Wmatch and those with no matches, Wmiss. Using
the directional notion of system and reference sen-
tences from BLEU, for each word w ∈Wmatch,

POSMatch(t, sys, ref) =

∑
w∈Wmatch

countt(w)

|sys|
(5)

where countt is 1 if wordw has the matching POS
tag, and 0 otherwise. |sys| is the token count of the
system sentence. This is deemed to be precision-
focused, as this computation is done over candidates
found in the system sentence.

To generate the score for missing POS tags, we
perform a similar computation,

POSMiss(t, sys, ref) =

∑
w∈Wmiss

countt(w)

|sys|
(6)

To score the POS match and misses between a
pair, we follow Formula 4 and average the scores
for each POS tag, where the sentences in a given
pair swap positions as the system and reference sen-
tences.

5 Split-Bigram Features

System 2 added split-bigram features, which were
derived from the ROUGE-S measure. Like bigrams,
split-bigrams consist of an ordered pair of distinct
tokens drawn from a source sentence. Unlike bi-
grams, split-bigrams allow for a number of inter-
vening tokens to appear between the split-bigram to-
kens. For example, “The cat ate fish.” would gen-
erate the following split-bigrams the→cat, the→ate,
the→fish, cat→ate, cat→fish, and ate→fish. The in-
tent of split-bigrams is to quickly capture long range
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dependencies, without requiring a parse of the sen-
tence.

Similar to ROUGE-S, we used lexical overlap
of the split-bigrams as an approximation of seman-
tic similarity. As our pairs are bidirectional, we
used the same framework (Formula 2) for obtain-
ing BLEU scores to generate split-bigram overlap
scores for our pairs. Here, counts are obtained over
split-bigrams found in the system and reference sen-
tences, and the order was set to 1.

For generating the skip-bigram overlap score for
a pair, we used a maximum distance of three.

5.1 Skip-Bigram POS Features

In the same vein as the precision focused POS
features, we used the POS tags of matched split-
bigrams as features, where the frequency of the
POS tags in split-bigrams, t → t′, were used.
Here, Bmatch represents the split-bigrams which
were found in both the system and reference sen-
tences, matched on lexical content.

SBMatch(t→ t′, sys, ref) =

∑
b∈Bmatch

countt→t′(b)

|sys|
(7)

Due to sparsity, we only considered scores from
split-bigram matches between the system and ref-
erence sentences, and do not model split-bigram
misses. As before, we generate scores for each split-
bigram tag sequence by averaging the scores where
both sentences in a pair have swapped positions. For
our experiments, we only considered split-bigram
POS features of up to distance 3. In our initial exper-
iments we found split-bigram POS features helped
only in the case of shorter sentence pairs, so we only
generated features if both the sentences in a given
pair contained ten tokens or less.

6 Experimental Setup

For all three systems, we used the Stanford
CoreNLP (Toutanova et al., 2003) package to per-
form lemmatization and POS tagging of the in-
put sentences. For regressors, we used LibSVM’s
(Chang and Lin, 2011) support vector regression ca-
pability, using radial basis kernels. Based off of tun-
ing on the training set, we set γ = 1 and the default

Dataset Mean Std.Dev
MSRpar 3.322 0.9294
MSRvid 2.135 1.595
SMTeur 4.307 0.7114

Table 1: Means and standard deviations of similarity
scores for each of the training datasets.

slack value.
From previous experience with paraphrase iden-

tification over the MSR Paraphrase Corpus, we re-
tained stop words in all of our experiments.

7 Dealing with Surprise Data

As the STS training data was broken into three sep-
arate datasets, each with their own distinct statistics,
we developed three regressors trained individually
on each of these datasets. This presented a problem
when dealing with surprise datasets, whose statistics
were not known.

The approach taken by Systems 1 and 2 was sim-
ply to pool together all three training datasets into a
single dataset and train a single regressor on that uni-
fied model. We then applied that regressor against
the two surprise datasets, OnWN and SMTnews.

Analysis of the similarity score statistics showed
that they varied greatly between each of the train-
ing sets, as given in Table 1. Thus combining the
datasets blindly, as with Systems 1 and 2, may prove
to be a suboptimal strategy. The approach taken by
System 3 was to consider the feature vectors them-
selves as capturing information about which dataset
they were drawn from, and to use a classifier to pre-
dict that dataset. We then emit the score from the
regressor trained on just that matching dataset. We
used the Stanford Classifier’s (Manning and Klein,
2003) multinomial logistic regression as our dataset
predictor, using the feature vectors from System 2.

Five-fold cross validation over the training data
showed the dataset predictor to have an overall ac-
curacy of 91.75%.

In order to assess performance over the known
datasets at test time, System 3 also applied the same
strategy for the MSRpar, MSRvid, and SMTeuroparl
test sets.
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Sys All Allnorm Mean MSRpar MSRvid SMTeur OnWN SMTnews
1 0.7513 / 11 0.8017 / 40 0.5997 / 22 0.6084 0.7458 0.4688 0.6315 0.3994
2 0.7562 / 10 0.8111 / 24 0.5858 / 33 0.6050 0.7939 0.4294 0.5871 0.3366
3 0.6876 / 21 0.7812 / 54 0.4668 / 68 0.4791 0.7901 0.2159 0.3843 0.2801

Table 2: Pearson correlation of described systems against test data, by dataset. Overall measures are All indicates the
combined Pearson, Allnorm the normalized variant, and Mean the macro average of Pearson correlations. Rank for
the system in the overall measure is given after the slash.

Guess/Gold MSRpar MSRvid SMTeur
MSRpar 664 7 75
MSRvid 7 737 10
SMTeur 79 6 649

Table 3: Confusion for the dataset predictor, used to pre-
dict which dataset a pair was drawn from. This was
ddrawn using five-fold cross validation over the training
set, with columns representing golds and guesses as rows.

8 Results and Discussion

Results on the test data for each of the systems
against the individual datasets, are given in Table
2, given in Pearson linear correlation with the gold
standard scores. Overall measures for the systems
are given, along with their overall ranking.

The split-bigram features in System 2 contributed
primarily to performance over the MSRvid dataset,
while degrading performance on the other datasets
slightly. This is likely a result of increasing spar-
sity in the feature space, but overall this system per-
formed well. System 3 underperformed on most
datasets, asides from its performance on MSRvid.
The confusion generated over five-fold cross vali-
dation over the training set is given in Table 3, and
precision, recall, and F1 scores by dataset label from
five-fold cross validation over the training set are
given in Table 4. As these show, predictor errors lay
primarily in confusing MSRpar for SMTeuroparl,
and vice versa. This error was significant enough to
reduce performance on both the MSRpar and SM-
Teuroparl test sets. This proved to be enough to re-
duce the scores between these two datasets.

9 Conclusion and Future Work

Our STS systems have shown that relatively sim-
ple syntax free methods can be employed to the
STS task. Future avenues of investigation would

Dataset Prec Rec F1
MSRpar 0.8901 0.8853 0.8877
MSRvid 0.9775 0.9827 0.9801
SMTeur 0.8842 0.8842 0.8842

Table 4: Results on classifying pairs by source dataset,
using five-fold cross validation over training data.

be to include the use of syntactic information, in
order to obtain better predicate-argument informa-
tion. Syntactic information has proven useful for
the paraphrase identification task over MSRpar, as
demonstrated in studies such as (Das and Smith,
2009) and (Socher et al., 2011). Furthermore, a
qualitative assessment of the pairs across different
datasets showed relatively significant differences,
which would strengthen the argument for develop-
ing features and methods specific to each dataset.
Another improvement would be to develop a bet-
ter dataset predictor for System 3. Also recognizing
there may be ways to normalize and rescale scores
across datasets so the regression models used do not
have to account for differing means and standard de-
viations.

Finally, there are other bodies of source data that
may be adapted for use with the STS task, such as
the paraphrasing pairs of the Recognizing Textual
Entailment challenges, human generated reference
translations for machine translation evaluation, and
human generated summaries used for summariza-
tion evaluations. Although these are gold decisions,
at the very least they could provide a source of high
similarity pairs, from which one could manufacture
lower scoring variants.
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