
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task, pages 132–137, Atlanta, Georgia, June 13-14, 2013. c©2013 Association for Computational Linguistics

UBC UOS-TYPED: Regression for Typed-similarity

Eneko Agirre
University of the Basque Country
Donostia, 20018, Basque Country

e.agirre@ehu.es

Nikolaos Aletras
University of Sheffield
Sheffield, S1 4DP, UK

n.aletras@dcs.shef.ac.uk

Aitor Gonzalez-Agirre
University of the Basque Country
Donostia, 20018, Basque Country

agonzalez278@ikasle.ehu.es

German Rigau
University of the Basque Country
Donostia, 20018, Basque Country
german.rigau@ehu.es

Mark Stevenson
University of Sheffield
Sheffield, S1 4DP, UK

m.stevenson@dcs.shef.ac.uk

Abstract

We approach the typed-similarity task using
a range of heuristics that rely on information
from the appropriate metadata fields for each
type of similarity. In addition we train a linear
regressor for each type of similarity. The re-
sults indicate that the linear regression is key
for good performance. Our best system was
ranked third in the task.

1 Introduction

The typed-similarity dataset comprises pairs of Cul-
tural Heritage items from Europeana1, a single ac-
cess point to digitised versions of books, paintings,
films, museum objects and archival records from in-
stitutions throughout Europe. Typically, the items
comprise meta-data describing a cultural heritage
item and, sometimes, a thumbnail of the item itself.
Participating systems need to compute the similarity
between items using the textual meta-data. In addi-
tion to general similarity, the dataset includes spe-
cific kinds of similarity, like similar author, similar
time period, etc.

We approach the problem using a range of sim-
ilarity techniques for each similarity types, these
make use of information contained in the relevant
meta-data fields.In addition, we train a linear regres-
sor for each type of similarity, using the training data
provided by the organisers with the previously de-
fined similarity measures as features.

We begin by describing our basic system in Sec-
tion 2, followed by the machine learning system in

1http://www.europeana.eu/

Section 3. The submissions are explained in Section
4. Section 5 presents our results. Finally, we draw
our conclusions in Section 6.

2 Basic system

The items in this task are taken from Europeana.
They cannot be redistributed, so we used the urls
and scripts provided by the organizers to extract the
corresponding metadata. We analysed the text in the
metadata, performing lemmatization, PoS tagging,
named entity recognition and classification (NERC)
and date detection using Stanford CoreNLP (Finkel
et al., 2005; Toutanova et al., 2003). A preliminary
score for each similarity type was then calculated as
follows:
• General: cosine similarity of TF.IDF vectors of

tokens, taken from all fields.
• Author: cosine similarity of TF.IDF vectors of

dc:Creator field.
• People involved, time period and location:

cosine similarity of TF.IDF vectors of loca-
tion/date/people entities recognized by NERC
in all fields.
• Events: cosine similarity of TF.IDF vectors of

event verbs and nouns. A list of verbs and
nouns possibly denoting events was derived us-
ing the WordNet Morphosemantic Database2.
• Subject and description: cosine similarity of

TF.IDF vectors of respective fields.
IDF values were calculated using a subset of Eu-

ropeana items (the Culture Grid collection), avail-
able internally. These preliminary scores were im-

2urlhttp://wordnetcode.princeton.edu/standoff-
files/morphosemantic-links.xls

132

proved using TF.IDF based on Wikipedia, UKB
(Agirre and Soroa, 2009) and a more informed time
similarity measure. We describe each of these pro-
cesses in turn.

2.1 TF.IDF
A common approach to computing document sim-
ilarity is to represent documents as Bag-Of-Words
(BOW). Each BOW is a vector consisting of the
words contained in the document, where each di-
mension corresponds to a word, and the weight is
the frequency in the corresponding document. The
similarity between two documents can be computed
as the cosine of the angle between their vectors. This
is the approached use above.

This approach can be improved giving more
weight to words which occur in only a few docu-
ments, and less weight to words occurring in many
documents (Baeza-Yates and Ribeiro-Neto, 1999).
In our system, we count document frequencies of
words using Wikipedia as a reference corpus since
the training data consists of only 750 items associ-
ated with short textual information and might not be
sufficient for reliable estimations. The TF.IDF sim-
ilarity between items a and b is defined as:

simtf.idf(a, b) = ∑
w∈a,b tfw,a × tfw,b × idf2w√∑

w∈a(tfw,a × idfw)2 ×
√∑

w∈b(tfw,b × idfw)2

where tfw,x is the frequency of the term w in x ∈
{a, b} and idfw is the inverted document frequency
of the word w measured in Wikipedia. We substi-
tuted the preliminary general similarity score by the
obtained using the TF.IDF presented in this section.

2.2 UKB
The semantic disambiguation UKB3 algorithm
(Agirre and Soroa, 2009) applies personalized
PageRank on a graph generated from the English
WordNet (Fellbaum, 1998), or alternatively, from
Wikipedia. This algorithm has proven to be very
competitive in word similarity tasks (Agirre et al.,
2010).

To compute similarity using UKB we represent
WordNet as a graph G = (V,E) as follows: graph
nodes represent WordNet concepts (synsets) and

3http://ixa2.si.ehu.es/ukb/

dictionary words; relations among synsets are rep-
resented by undirected edges; and dictionary words
are linked to the synsets associated to them by di-
rected edges.

Our method is provided with a pair of vectors of
words and a graph-based representation of WordNet.
We first compute the personalized PageRank over
WordNet separately for each of the vector of words,
producing a probability distribution over WordNet
synsets. We then compute the similarity between
these two probability distributions by encoding them
as vectors and computing the cosine between the
vectors. We present each step in turn.

Once personalized PageRank is computed, it
returns a probability distribution over WordNet
synsets. The similarity between two vectors of
words can thus be implemented as the similarity be-
tween the probability distributions, as given by the
cosine between the vectors.

We used random walks to compute improved sim-
ilarity values for author, people involved, location
and event similarity:

• Author: UKB over Wikipedia using person en-
tities recognized by NERC in the dc:Creator
field.

• People involved and location: UKB over
Wikipedia using people/location entities recog-
nized by NERC in all fields.

• Events: UKB over WordNet using event nouns
and verbs recognized in all fields.

Results on the training data showed that perfor-
mance using this approach was quite low (with the
exception of events). This was caused by the large
number of cases where the Stanford parser did not
find entities which were in Wikipedia. With those
cases on mind, we combined the scores returned by
UKB with the similarity scores presented in Section
2 as follows: if UKB similarity returns a score, we
multiply both, otherwise we return the square of the
other similarity score. Using the multiplication of
the two scores, the results on the training data im-
proved.

2.3 Time similarity measure
In order to measure the time similarity between a
pair of items, we need to recognize time expres-
sions in both items. We assume that the year of

133

creation or the year denoting when the event took
place in an artefact are good indicators for time sim-
ilarity. Therefore, information about years is ex-
tracted from each item using the following pattern:
[1|2][0 − 9]{3}. Using this approach, each item is
represented as a set of numbers denoting the years
mentioned in the meta-data.

Time similarity between two items is computed
based on the similarity between their associated
years. Similarity between two years is defined as:

simyear(y1, y2) = max{0, 1− |y1− y2| ∗ k}

k is a parameter to weight the difference between
two years, e.g. for k = 0.1 all items that have differ-
ence of 10 years or more assigned a score of 0. We
obtained best results for k = 0.1.

Finally, time similarity between items a and b is
computed as the maximum of the pairwise similarity
between their associated years:

simtime(a, b) = max∀i∈a
∀j∈b
{0, simyear(ai, bj)}

We substituted the preliminary time similarity
score by the measure obtained using the method pre-
sented in this section.

3 Applying Machine Learning

The above heuristics can be good indicators for the
respective kind of similarity, and can be thus applied
directly to the task. In this section, we take those
indicators as features, and use linear regression (as
made available by Weka (Hall et al., 2009)) to learn
models that fit the features to the training data.

We generated further similarity scores for gen-
eral similarity, including Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), UKB and Wikipedia Link
Vector Model (WLVM)(Milne, 2007) using infor-
mation taken from all fields, as explained below.

3.1 LDA

LDA (Blei et al., 2003) is a statistical method that
learns a set of latent variables called topics from a
training corpus. Given a topic model, documents
can be inferred as probability distributions over top-
ics, θ. The distribution for a document i is denoted
as θi. An LDA model is trained using the train-
ing set consisting of 100 topics using the gensim

package4. The hyperparameters (α, β) were set to
1

num of topics . Therefore, each item in the test set is
represented as a topic distribution.

The similarity between a pair of items is estimated
by comparing their topic distributions following the
method proposed in Aletras et al. (2012; Aletras and
Stevenson (2012). This is achieved by considering
each distribution as a vector (consisting of the topics
corresponding to an item and its probability) then
computing the cosine of the angle between them, i.e.

simLDA(a, b) =
~θa · ~θb

|~θa| × | ~θb|

where ~θa is the vector created from the probability
distribution generated by LDA for item a.

3.2 Pairwise UKB

We run UKB (Section 2.2) to generate a probabil-
ity distribution over WordNet synsets for all of the
words of all items. Similarity between two words
is computed by creating vectors from these distri-
butions and comparing them using the cosine of the
angle between the two vectors. If a words does not
appear in WordNet its similarity value to every other
word is set to 0. We refer to that similarity metric as
UKB here.

Similarity between two items is computed by per-
forming pairwise comparison between their words,
for each, selecting the highest similarity score:

sim(a, b) =
1

2

(∑
w1∈a arg maxw2∈b UKB(w1, w2)

|a|

+

∑
w2∈b arg maxw1∈a UKB(w2, w1)

|b|

)

where a and b are two items, |a| the number of
tokens in a and UKB(w1, w2) is the similarity be-
tween words w1 and w2.

3.3 WLVM

An algorithm described by Milne and Witten (2008)
associates Wikipedia articles which are likely to be
relevant to a given text snippet using machine learn-
ing techniques. We make use of that method to rep-
resent each item as a set of likely relevant Wikipedia

4http://pypi.python.org/pypi/gensim

134

articles. Then, similarity between Wikipedia arti-
cles is measured using the Wikipedia Link Vector
Model (WLVM) (Milne, 2007). WLVM uses both
the link structure and the article titles of Wikipedia
to measure similarity between two Wikipedia arti-
cles. Each link is weighted by the probability of it
occurring. Thus, the value of the weight w for a link
x→ y between articles x and y is:

w(x→ y) = |x→ y| × log

(
t∑

z=1

t

z → y

)
where t is the total number of articles in Wikipedia.
The similarity of articles is compared by forming
vectors of the articles which are linked from them
and computing the cosine of their angle. For exam-
ple the vectors of two articles x and y are:

x = (w(x→ l1), w(x→ l2), ..., w(x→ ln))

y = (w(y → l1), w(y → l2), ..., w(y → ln))

where x and y are two Wikipedia articles and x→ li
is a link from article x to article li.

Since the items have been mapped to Wikipedia
articles, similarity between two items is computed
by performing pairwise comparison between articles
using WLVM, for each, selecting the highest simi-
larity score:

sim(a, b) =
1

2

(∑
w1∈a arg maxw2∈b WLV M(w1, w2)

|a|

+

∑
w2∈b arg maxw1∈a WLV M(w2, w1)

|b|

)

where a and b are two items, |a| the number of
Wikipedia articles in a and WLVM(w1, w2) is the
similarity between concepts w1 and w2.

4 Submissions

We selected three systems for submission. The first
run uses the similarity scores of the basic system
(Section 2) for each similarity types as follows:
• General: cosine similarity of TF.IDF vectors,

IDF based on Wikipedia (as shown in Section
2.1).
• Author: product of the scores obtained ob-

tained using TF.IDF vectors and UKB (as
shown in Section 2.2) using only the data ex-
tracted from dc:Creator field.

• People involved and location: product of co-
sine similarity of TF.IDF vectors and UKB (as
shown in Section 2.2) using the data extracted
from all fields.
• Time period: time similarity measure (as

shown in Section 2.3).
• Events: product of cosine similarity of TF.IDF

vectors and UKB (as shown in Section 2.2) of
event nouns and verbs recognized in all fields.
• Subject and description: cosine similarity of

TF.IDF vectors of respective fields (as shown
in Section 2).

For the second run we trained a ML model for
each of the similarity types, using the following fea-
tures:

• Cosine similarity of TF.IDF vectors as shown
in Section 2 for the eight similarity types.
• Four new values for general similarity: TF.IDF

(Section 2.1), LDA (Section 3.1), UKB and
WLVM (Section 3.3).
• Time similarity as shown in Section 2.3.
• Events similarity computed using UKB initial-

ized with the event nouns and verbs in all fields.

We decided not to use the product of TF.IDF
and UKB presented in Section 2.2 in this system
because our intention was to measure the power of
the linear regression ML algorithm to learn on the
given raw data.

The third run is similar, but includes all available
features (21). In addition to the above, we included:

• Author, people involved and location similar-
ity computed using UKB initialized with peo-
ple/location recognized by NERC in dc:Creator
field for author, and in all fields for people in-
volved and location.
• Author, people involved, location and event

similarity scores computed by the product of
TF.IDF vectors and UKB values as shown in
Section 2.2.

5 Results

Evaluation was carried out using the official scorer
provided by the organizers, which computes the
Pearson Correlation score for each of the eight sim-
ilarity types plus an additional mean correlation.

135

Team and run General Author People involved Time Location Event Subject Description Mean
UBC UOS-RUN1 0.7269 0.4474 0.4648 0.5884 0.4801 0.2522 0.4976 0.5389 0.5033
UBC UOS-RUN2 0.7777 0.6680 0.6767 0.7609 0.7329 0.6412 0.7516 0.8024 0.7264
UBC UOS-RUN3 0.7866 0.6941 0.6965 0.7654 0.7492 0.6551 0.7586 0.8067 0.7390

Table 1: Results of our systems on the training data, using cross-validation when necessary.

Team and run General Author People involved Time Location Event Subject Description Mean Rank
UBC UOS-RUN1 0.7256 0.4568 0.4467 0.5762 0.4858 0.3090 0.5015 0.5810 0.5103 6
UBC UOS-RUN2 0.7457 0.6618 0.6518 0.7466 0.7244 0.6533 0.7404 0.7751 0.7124 4
UBC UOS-RUN3 0.7461 0.6656 0.6544 0.7411 0.7257 0.6545 0.7417 0.7763 0.7132 3

Table 2: Results of our submitted systems.

5.1 Development

The three runs mentioned above were developed us-
ing the training data made available by the organiz-
ers. In order to avoid overfitting we did not change
the default parameters of the linear regressor, and
10-fold cross-validation was used for evaluating the
models on the training data. The results of our sys-
tems on the training data are shown on Table 1. The
table shows that the heuristics (RUN1) obtain low
results, and that linear regression improves results
considerably in all types. Using the full set of fea-
tures, RUN3 improves slightly over RUN2, but the
improvement is consistent across all types.

5.2 Test

The test dataset was composed of 750 pairs of items.
Table 2 illustrates the results of our systems in the
test dataset. The results of the runs are very similar
to those obtained on the training data, but the dif-
ference between RUN2 and RUN3 is even smaller.
Our systems were ranked #3 (RUN 3), #4 (RUN
2) and #6 (RUN 1) among 14 systems submitted
by 6 teams. Our systems achieved good correlation
scores for almost all similarity types, with the excep-
tion of author similarity, which is the worst ranked
in comparison with the rest of the systems.

6 Conclusions and Future Work

In this paper, we presented the systems submitted
to the *SEM 2013 shared task on Semantic Tex-
tual Similarity. We combined some simple heuris-
tics for each type of similarity, based on the appro-
priate metadata fields. The use of lineal regression
improved the results considerably across all types.
Our system fared well in the competition. We sub-

mitted three systems and the highest-ranked of these
achieved the third best results overall.

Acknowledgements

This work is partially funded by the PATHS
project (http://paths-project.eu) funded by the Eu-
ropean Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement
no. 270082. Aitor Gonzalez-Agirre is supported by
a PhD grant from the Spanish Ministry of Education,
Culture and Sport (grant FPU12/06243).

References
Eneko Agirre and Aitor Soroa. 2009. Personalizing

pagerank for word sense disambiguation. In Proceed-
ings of the 12th conference of the European chapter of
the Association for Computational Linguistics (EACL-
2009), Athens, Greece.

Eneko Agirre, Montse Cuadros, German Rigau, and Aitor
Soroa. 2010. Exploring knowledge bases for sim-
ilarity. In Proceedings of the Seventh conference
on International Language Resources and Evaluation
(LREC10). European Language Resources Associa-
tion (ELRA). ISBN: 2-9517408-6-7. Pages 373–377.”.

Nikolaos Aletras and Mark Stevenson. 2012. Computing
similarity between cultural heritage items using multi-
modal features. In Proceedings of the 6th Workshop
on Language Technology for Cultural Heritage, So-
cial Sciences, and Humanities, pages 85–93, Avignon,
France.

Nikolaos Aletras, Mark Stevenson, and Paul Clough.
2012. Computing similarity between items in a digi-
tal library of cultural heritage. J. Comput. Cult. Herit.,
5(4):16:1–16:19, December.

R. Baeza-Yates and B. Ribeiro-Neto. 1999. Modern In-
formation Retrieval. Addison Wesley Longman Lim-
ited, Essex.

136

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research, 3:993–1022, March.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs sam-
pling. In Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, ACL ’05,
pages 363–370, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: an update.
SIGKDD Explor. Newsl., 11(1):10–18, November.

D. Milne and I. Witten. 2008. Learning to Link
with Wikipedia. In Proceedings of the ACM Con-
ference on Information and Knowledge Management
(CIKM’2008), Napa Valley, California.

D. Milne. 2007. Computing semantic relatedness using
Wikipedia’s link structure. In Proceedings of the New
Zealand Computer Science Research Student Confer-
ence.

Kristina Toutanova, Dan Klein, Christopher D. Manning,
and Yoram Singer. 2003. Feature-rich part-of-speech
tagging with a cyclic dependency network. In Pro-
ceedings of the 2003 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics on Human Language Technology - Volume 1,
NAACL ’03, pages 173–180, Stroudsburg, PA, USA.
Association for Computational Linguistics.

137

