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Word Sense Disambiguation (WSD) systems automatically choose the intended meaning of a
word in context. In this article we present a WSD algorithm based on random walks over large
Lexical Knowledge Bases (LKB). We show that our algorithm performs better than other graph-
based methods when run on a graph built from WordNet and eXtended WordNet. Our algorithm
and LKB combination compares favorably to other knowledge-based approaches in the literature
that use similar knowledge on a variety of English datasets and a dataset on Spanish. We include
a detailed analysis of the factors that affect the algorithm. The algorithm and the LKBs used are
publicly available, and the results easily reproducible.

1. Introduction

Word Sense Disambiguation (WSD) is a key enabling technology that automatically

chooses the intended sense of a word in context. It has been the focus of intensive

research since the beginning of Natural Language Processing (NLP), and more recently

it has been shown to be useful in several tasks such as parsing (Agirre, Baldwin,

and Martinez 2008; Agirre et al. 2011), machine translation (Carpuat and Wu 2007;

Chan, Ng, and Chiang 2007), information retrieval (Pérez-Agüera and Zaragoza 2008;
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Zhong and Ng 2012), question answering (Surdeanu, Ciaramita, and Zaragoza 2008)

and summarization (Barzilay and Elhadad 1997). WSD is considered to be a key step in

order to approach language understanding beyond keyword matching.

The best performing WSD systems are currently those based on supervised learn-

ing, as attested in public evaluation exercises (Snyder and Palmer 2004; Pradhan et

al. 2007), but they need large amounts of hand-tagged data, which is typically very

expensive to produce. Contrary to lexical-sample exercises (where plenty of training

and testing examples for a handful of words are provided), all-words exercises (which

comprise all words occurring in a running text, and where training data is more scarce)

show that only a few systems beat the most frequent sense (MFS) heuristic, with small

differences. For instance the best system in SensEval-3 scored 65.2 F1, compared to 62.4

(Snyder and Palmer 2004). The best current state-of-the-art WSD system (Zhong and Ng

2010), outperforms the MFS heuristic by 5% to 8% in absolute F1 scores on the SensEval

and SemEval fine-grained English all words tasks.

The causes of the small improvement over the MFS heuristic can be found in the

relatively small amount of training data available (sparseness) and the problems that

arise when the supervised systems are applied to different corpora from that used to

train the system (corpus mismatch) (Ng 1997; Escudero, Márquez, and Rigau 2000). Note

that most of the supervised systems for English are trained over SemCor (Miller et

al. 1993), a half-a-million word subset of the Brown Corpus made available from the

WordNet team, and DSO (Ng and Lee 1996), comprising 192,800 word occurrences from

the Brown and WSJ corpora corresponding to the 191 most frequent nouns and verbs.

Several researchers have explored solutions to sparseness. For instance, Chan and Ng

(2005) present an unsupervised method to obtain training examples from bilingual data,
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which was used together with SemCor and DSO to train one of the best performing

supervised systems to date (Zhong and Ng 2010).

In view of the problems of supervised systems, knowledge-based WSD is emerging

as a powerful alternative. Knowledge-based WSD systems exploit the information in

a lexical knowledge base (LKB) to perform WSD. They currently perform below su-

pervised systems on general domain data, but are attaining performance close or above

MFS without access to hand-tagged data (Ponzetto and Navigli 2010). In this sense, they

provide a complementary strand of research which could be combined with supervised

methods, as shown for instance in (Navigli 2008). In addition (Agirre, Lopez de Lacalle,

and Soroa 2009) shows that knowledge-based WSD systems can outperform supervised

systems in a domain-specific dataset, where MFS from general domains also fails. In this

article, we will focus our attention in knowledge-based methods.

Early work for knowledge-based WSD was based on measures of similarity be-

tween pairs of concepts. In order to maximize pairwise similarity for a sequence of n

words where each has up to k senses, the algorithms had to consider up to kn sense

sequences. Greedy methods were often used to avoid the combinatorial explosion (Pat-

wardhan, Banerjee, and Pedersen 2003). As an alternative, graph-based methods are

able to exploit the structural properties of the graph underlying a particular Lexical

Knowledge Base (LKB). These methods are able to consider all possible combination of

occurring senses on a particular context, and thus offer a way to analyze efficiently the

inter-relations among them, gaining much attention in the NLP community (Mihalcea

2005; Sinha and Mihalcea 2007; Navigli and Lapata 2007; Agirre and Soroa 2008; Navigli

and Lapata 2010). The nodes in the graph represent the concepts (word senses) in the

LKB, and edges in the graph represent relations between them, such as subclass and

part-of. Network analysis techniques based on random walks like PageRank (Brin and
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Page 1998) can then be used to choose the senses which are most relevant in the graph,

and thus output those senses.

In order to deal with large knowledge bases containing more than one hundred

thousand concepts (Fellbaum 1998), previous algorithms had to extract subsets of the

LKB (Navigli and Lapata 2007, 2010) or construct ad-hoc graphs for each context to

be disambiguated (Mihalcea 2005; Sinha and Mihalcea 2007). An additional reason for

the use of custom-built subsets of ad-hoc graphs for each context is that if we were

using a centrality algorithm like PageRank over the whole graph, it would choose the

most important senses in the LKB regardless of context, limiting the applicability of the

algorithm. For instance, the word coach is ambiguous at least between the “sports coach”

and the “transport service” meanings, as shown in the examples below:

(1) Nadal is sharing a house with his uncle and coach, Toni, and his physical trainer,

Rafael Maymo.

(2) Our fleet comprises coaches from 35 to 58 seats.

If we were to run a centrality algorithm over the whole LKB, with no context, then

we would always assign coach to the same concept, and we would thus fail to correctly

disambiguate either one of the examples above.

The contributions of this article are the following: (1) A WSD method based on

random walks over large LKBs. The algorithm outperforms other graph-based algo-

rithms when using a LKB built from WordNet and eXtended WordNet. The algorithm

and LKB combination compares favorably to the state-of-the-art in knowledge-based

WSD on a wide variety of datasets, including four English and one Spanish dataset. (2)

A detailed analysis of the factors that affect the algorithm. (3) The algorithm together
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with the corresponding graphs are publicly available1 and can be applied easily to sense

inventories and knowledge bases different from WordNet.

The algorithm for WSD was first presented in (Agirre and Soroa 2009). In this arti-

cle, we present further evaluation on two more recent datasets, analyze the parameters

and options of the system, compare it to the state-of-the-art and discuss the relation of

our algorithm with PageRank and the MFS heuristic.

2. Related Work

Traditional knowledge-based WSD systems assign a sense to an ambiguous word by

comparing each of its senses with those of the surrounding context. Typically, some se-

mantic similarity metric is used for calculating the relatedness among senses (Lesk 1986;

Patwardhan, Banerjee, and Pedersen 2003). The metric varies between counting word

overlaps between definitions of the words (Lesk 1986) to finding distances between

concepts following the structure of the LKB (Patwardhan, Banerjee, and Pedersen 2003).

Usually the distances are calculated using only hierarchical relations on the LKB (Sussna

1993; Agirre and Rigau 1996). Combining both intuitions, Jiang and Conrath (1997)

present a metric which combines statistics from corpus and a lexical taxonomy struc-

ture. One of the major drawbacks of these approaches stems from the fact that senses

are compared in a pairwise fashion and thus the number of computations grows ex-

ponentially with the number of words, i.e. for a sequence of n words where each has

up to k senses they need to consider up to kn sense sequences. Although alternatives

like simulated annealing (Cowie, Guthrie, and Guthrie 1992) and conceptual density

(Agirre and Rigau 1996) were tried, most of the knowledge-based WSD at the time

was done in a suboptimal word-by-word greedy process, i.e., disambiguating words

1 http://ixa2.si.ehu.es/ukb
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one at a time (Patwardhan, Banerjee, and Pedersen 2003). Still, some recent work on

finding predominant senses in domains has applied such similarity-based techniques

with success (McCarthy et al. 2007).

Recently, graph-based methods for knowledge-based WSD have gained much at-

tention in the NLP community (Navigli and Velardi 2005; Sinha and Mihalcea 2007;

Navigli and Lapata 2007; Mihalcea 2005; Agirre and Soroa 2008; Navigli and Lapata

2010). These methods use well-known graph-based techniques to find and exploit the

structural properties of the graph underlying a particular LKB. Graph-based techniques

consider all the sense combinations of the words occurring on a particular context at

once, and thus offer a way to analyze the relations among them with respect to the

whole graph. They are particularly suited for disambiguating word in the sequence,

and they manage to exploit the interrelations among the senses in the given context.

In this sense, they provide a principled solution to the exponential explosion problem

mentioned before, with excellent performance.

Graph-based WSD is performed over a graph composed of senses (nodes) and

relations between pairs of senses (edges). The relations may be of several types (lexico-

semantic, cooccurrence relations, etc.) and may have some weight attached to them. All

the methods reviewed in this section use some version of WordNet as a LKB. Apart

from relations in WordNet, some authors have used semi-automatic and fully auto-

matic methods to enrich WordNet with additional relations. Mihalcea and Moldovan

(2001) disambiguated WordNet glosses in a resource called eXtended WordNet. The

disambiguated glosses have been shown to improve results of a graph-based system

(Agirre and Soroa 2008), and we have also used them in our experiments. Navigli

and Velardi (2005) enriched WordNet with cooccurrence relations semi-automatically

and shown that those relations are effective in a number of graph-based WSD systems
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(Navigli and Velardi 2005; Navigli and Lapata 2007, 2010). More recently, Cuadros

and Rigau (2006, 2007, 2008) learned automatically so-called KnowNets, and showed

that the new relations provided improved WSD performance when plugged into a

simple vector-based WSD system. Finally, Ponzetto and Navigli (2010) have acquired

relations automatically from Wikipedia, released as WordNet++, and shown that they

are beneficial in a graph-based WSD algorithm. All of the relations mentioned above

are publicly available with the exception of (Navigli and Velardi 2005), but note that the

system is available online2.

Disambiguation is typically performed by applying a ranking algorithm over the

graph, and then assigning the concepts with highest rank to the corresponding words.

Given the computational cost of using large graphs like WordNet, most researchers use

smaller subgraphs built online for each target context. The main idea of the subgraph

methods is to extract the subgraph whose vertices and relations are particularly relevant

for the set of senses from a given input context. The subgraph is then analyzed and the

most relevant vertices are chosen as the correct senses of the words.

The TextRank algorithm for WSD (Mihalcea 2005) creates a complete weighted

graph (e.g. a graph in which every pair of distinct vertices is connected by a weighted

edge) formed by the synsets of the words in the input context. The weight of the links

joining two synsets is calculated by executing Lesk’s algorithm (Lesk 1986) between

them, i.e., by calculating the overlap between the words in the glosses of the correspond-

ing senses. Once the complete graph is built, a random walk algorithm (PageRank)

is executed over it and words are assigned to the most relevant synset. In this sense,

PageRank is used as an alternative to simulated annealing to find the optimal pairwise

combinations. This work is extended in (Sinha and Mihalcea 2007), using a collection

2 http://lcl.uniroma1.it/ssi
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of semantic similarity measures when assigning a weight to the links across synsets.

They also compare different graph-based centrality algorithms to rank the vertices of

the complete graph. They use different similarity metrics for different POS types and a

voting scheme among the centrality algorithm ranks.

In (Navigli and Velardi 2005) the authors develop a knowledge-based WSD method

based on lexical chains called structural semantic interconnections (SSI). Although the

system was first designed to find the meaning of the words in WordNet glosses, the

authors also apply the method for labeling each word in a text sequence. Given a

text sequence, SSI first identifies monosemous words and assigns the corresponding

synset to them. Then, it iteratively disambiguates the rest of the terms by selecting

the senses that get the strongest interconnection with the synsets selected so far. The

interconnection is calculated by searching for paths on the LKB, constrained by some

hand-made rules of possible semantic patterns.

In (Navigli and Lapata 2007, 2010), the authors perform a two-stage process for

WSD. Given an input context, the method first explores the whole LKB in order to find

a subgraph which is particularly relevant for the words of the context. The subgraph

is calculated by applying a depth-first search algorithm over the LKB graph for every

word sense occurring in a context. Then, they study different graph-based centrality

algorithms for deciding the relevance of the nodes on the subgraph. As a result, every

word of the context is attached to the highest ranking concept among its possible senses.

The best results were obtained by a simple algorithm like choosing the concept for each

word with the largest degree (number of edges) and by PageRank (Brin and Page 1998).

We reimplemented their best methods, in order to compare our algorithm with theirs on

the same setting (cf. Section 6.3). In later work (Ponzetto and Navigli 2010) the authors
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apply a subset of their methods to an enriched WordNet with additional relations from

Wikipedia, improving their results for nouns.

Tsatsaronis, Vazirgiannis, and Androutsopoulos (2007) and Agirre and Soroa (2008)

also use such a two-stage process. They build the graph as above, but using breadth-

first search. The first authors apply a spreading activation algorithm over the subgraph

for node ranking, while the second use PageRank. In later work (Tsatsaronis, Varlamis,

and Nørvåg 2010) spreading activation is compared with PageRank and other centrality

measures like HITS (Kleinberg. 1998), obtaining better results than in their previous

work.

This work departs from earlier work in its use of the full graph, and its ability to

infuse context information when computing the importance of nodes in the graph. For

this, we resort to an extension of the PageRank algorithm (Brin and Page 1998), called

Personalized PageRank (Haveliwala 2002), which tries to bias PageRank using a set of

representative topics and thus capture more accurately the notion of importance with

respect to a particular topic. In our case, we initialize the random walk with the words

in the context of the target word, and thus we obtain a context-dependent PageRank.

We will show that this method is indeed effective for WSD. Note that in order to use

other centrality algorithms (e.g. HITS (Kleinberg. 1998)) previous authors had to build

a subgraph first. In principle, those algorithms could be made context-dependent when

using the full graph, altering their formulae, but we are not aware of such variations.

Random walks over WordNet using Personalized PageRank have been also used to

measure semantic similarity between two words (Hughes and Ramage 2007; Agirre et

al. 2009). In those papers, the random walks are initialized with a single word, while we

use all content words in the context. The results obtained by the authors, especially in

the latter paper, are well above other WordNet-based methods.
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Most previous work on Knowledge-Based WSD has presented results on one or

two general domain corpora for English. We present our results on four general domain

datasets for English and a Spanish dataset (Màrquez et al. 2007). Alternatively, some

researchers have applied Knowledge-Based WSD to specific domains, using different

methods to adapt the method to the particular test domain. In (Agirre, Lopez de Lacalle,

and Soroa 2009; Navigli et al. 2011) the authors apply our Personalized PageRank

method to a domain-specific corpus with good results. Ponzetto and Navigli (2010) also

apply graph-based algorithms to the same domain-specific corpus.

3. WordNet

Most WSD work uses WordNet as the sense inventory of choice. WordNet (Fellbaum

1998) is a freely available3 lexical database of English, which groups nouns, verbs,

adjectives and adverbs into sets of synonyms, each expressing a distinct concept (called

synset in WordNet parlance). For instance, coach has 5 nominal senses and 2 verbal

senses, which correspond to the following synsets:

<coach#n1, manager#n2, handler#n3>

<coach#n2, private instructor#n1, tutor#n1>

<coach#n3, passenger car#n1, carriage#n1>

<coach#n4, four-in-hand#n2, coach-and-four#n1>

<coach#n5, bus#n1, autobus#n1, charabanc#n1,double-decker#n1,jitney#n1 . . . >

<coach#v1, train#v7>

<coach#v2>

In the synsets above coach#n1 corresponds to the first nominal sense of coach, while

coach#v1 corresponds to the first verbal sense, and so on. Each of the senses of coach

3 http://wordnet.princeton.edu
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coach#n1

managership#n3

sport#n1

trainer#n1

handle#v6

coach#n2

teacher#n1

tutorial#n1

coach#n5

public_transport#n1

fleet#n2

seat#n1

holonym

holonym

hyperonym

domain

derivation

hyperonym

derivation

hyperonym

derivation
coach

teach#v2

derivation

train#v7

hyperonym
derivation

Figure 1
Example showing three senses of coach, with links to related concepts.

corresponds to a different synset, and each synset contains several words with different

sense numbers. For instance the first nominal sense of coach has two synonyms: manager

in its second sense and handler in its third sense. As a synset can be identified by any

of its words in a particular sense number, we will use a word and sense number to

represent the full concept. Each synset has a descriptive gloss, e.g. a carriage pulled by four

horses with one driver for coach#n4, or drive a coach for coach#v2. The examples correspond

to the current version of WordNet (3.1), but the sense differences have varied across

different versions. There exist automatic mappings across versions (Daude, Padro, and

Rigau 2000), but they contain small errors. In this article we will focus on WordNet

versions 1.7 and 2.1, which have been used to tag the evaluation datasets used in this

article (cf. Section 6).

The synsets in WordNet are interlinked with conceptual-semantic and lexical rela-

tions. Examples of conceptual-semantic relations are hypernymy, which corresponds to

the superclass or is-a relation, and holonymy, the part-of relation. Figure 1 shows two

small regions of the graph around three synsets of the word coach, including several

conceptual-semantic relations and lexical relations. For example, the figure shows that
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Table 1
Relations and their inverses in WordNet 1.7, how we grouped them and overall counts. XWN
refers to relations from the disambiguated glosses in eXtended WordNet.

relation inverse group counts
hypernymy hyponymy TAX 89,078
derivation derivation REL 28,866
holonymy meronymy MER 21,260
antonymy antonymy ANT 7,558
other other REL 3,134
xwn xwn−1 XWN 551,551

concept trainer#n1 is a coach#n1 (hypernymy relation), and that seat#n1 is a part of

coach#n5 (holonymy relation). The figure only shows a small subset of the relations

for three synsets of coach. If we were to show the relations of the rest of the synsets

in WordNet we would end up with a densely connected graph, where one can go from

one synset to another following the semantic relations. In addition to purely conceptual-

semantic relations which hold between synsets, there are also lexical relations which

hold between specific senses. For instance angry#a2 is the antonym of calm#a2 and a

derivation relation exists between handler#n3 and handle#v6, meaning that handler is a

derived form of handle and that the 3rd nominal sense of handler is related to 6th verbal

sense of handle. Although lexical relations hold only between two senses, we generalize

to the whole synset. This generalization captures the notion that if handler#n3 is related

by derivation to handle#v6, then coach#n1 is also semantically related to handle#v6 (as

shown in Figure 1).

In addition to the above relations, we also use the relation between each synset

and the words in the glosses. Most of the words in the glosses have been manually

associated with their corresponding senses, and we can thus produce a link between

the synset being glossed, and the synsets of each of the words in the gloss. For instance,

following one of the glosses above, a gloss relation would be added between coach#v2

12
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and drive#v2. The gloss relations were not available prior to WordNet 3.0, and we thus

used automatically disambiguated glosses for WordNet 1.7 and WordNet 2.1, as made

freely available in the eXtended WordNet (Mihalcea and Moldovan 2001). Note also

that the eXtended WordNet provided ca. 550.000 relations, while the disambiguated

glosses made available with WordNet 3.0 provide ca. 339.000 relations. We compared

the performance of XWN relations and WordNet 3.0 gloss relations in Section 6.4.4.

Table 1 summarizes the most relevant relations (with less frequent relations

grouped as “other”). The table also lists how we grouped the relations, and the overall

counts. Note that inverse relations are not counted, as their numbers equal those of the

original relation. In Section 6.4.5 we report the impact of the relations in the behavior

of the system. Overall, the graph for WordNet 1.7 has 109, 359 vertices (concepts) and

620, 396 edges (relations between concepts). Note that there is some overlap between

XWN and other types of relations. For instance, the hypernym of coach#n4 is carriage#n2

which is also present in its gloss. Note that most of the relation types relate concepts

from the same part of speech, with the exception of derivation and XWN.

Finally, we have also used the Spanish WordNet (Atserias, Rigau, and Villarejo

2004). In addition to the native relations, we also added relations from the eXtended

WordNet. All in all, it contains 105, 501 vertices and 623, 316 relations.

3.1 Representing WordNet as a graph

An LKB such as WordNet can be seen as a set of concepts and relations among them,

plus a dictionary, which contains the list of words (typically word lemmas) linked to

the corresponding concepts (senses). WordNet can be thus represented as a graph G =

(V,E). V is the set of nodes, where each node represents one concept (vi ∈ V ), and E

is the set of edges. Each relation between concepts vi and vj is represented by an edge

ei,j ∈ E. We ignore the relation type of the edges. If two WordNet relations exist between

13
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two nodes, we only represent one edge, and ignore the type of the relation. We chose to

use undirected relations between concepts, because most of the relations are symmetric

and have their inverse counterpart (cf. Section 3), and in preliminary work we failed to

see any effect using directed relations.

In addition, we also add vertices for the dictionary words, which are linked to

their corresponding concepts by directed edges (cf. Figure 1). Note that monosemous

words will be related to just one concept, whereas polysemous words may be attached

to several. Section 5.2 explains the reason for using directed edges, and also mentions

an alternative to avoid introducing these vertices.

4. PageRank and Personalized PageRank

The PageRank random walk algorithm (Brin and Page 1998) is a method for ranking

the vertices in a graph according to their relative structural importance. The main idea

of PageRank is that whenever a link from vi to vj exists in a graph, a vote from node i

to node j is produced, and hence the rank of node j increases. In addition, the strength

of the vote from i to j also depends on the rank of node i: the more important node

i is, the more strength its votes will have. Alternatively, PageRank can also be viewed

as the result of a random walk process, where the final rank of node i represents the

probability of a random walk over the graph ending on node i, at a sufficiently large

time.

Let G be a graph with N vertices v1, . . . , vN and di be the outdegree of node i; let

M be a N ×N transition probability matrix, where Mji =
1
di

if a link from i to j exists,

and zero otherwise. Then, the calculation of the PageRank Vector P over G is equivalent

to resolving Equation (1).

P = cMP+ (1− c)v (1)

14
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In the equation, v is a N × 1 stochastic vector and c is the so called damping factor,

a scalar value between 0 and 1. The first term of the sum on the equation models the

voting scheme described in the beginning of the section. The second term represents,

loosely speaking, the probability of a surfer randomly jumping to any node, e.g. without

following any paths on the graph. The damping factor, usually set in the [0.85..0.95]

range, models the way in which these two terms are combined at each step.

The second term on Eq. (1) can also be seen as a smoothing factor that makes any

graph fulfill the property of being aperiodic and irreducible, and thus guarantees that

the PageRank calculation converges to a unique stationary distribution.

In the traditional PageRank formulation the vector v is a stochastic normalized

vector whose element values are all 1
N , thus assigning equal probabilities to all nodes

in the graph in the case of random jumps. However, as pointed out by (Haveliwala

2002), the vector v can be non-uniform and assign stronger probabilities to certain kinds

of nodes, effectively biasing the resulting PageRank vector to prefer these nodes. For

example, if we concentrate all the probability mass on a unique node i, all random jumps

on the walk will return to i and thus its rank will be high; moreover, the high rank of

i will make all the nodes in its vicinity also receive a high rank. Thus, the importance

of node i given by the initial distribution of v spreads along the graph on successive

iterations of the algorithm. As a consequence, the P vector can be seen as representing

the relevance of every node in the graph from the perspective of node i.

In this article, we will use Static PageRank to refer to the case when a uniform v

vector is used in Eq. (1); and whenever a modified v is used, we will call it Personalized

PageRank. The next section shows how we define a modified v.

PageRank is actually calculated by applying an iterative algorithm which computes

Eq. (1) successively until convergence below a given threshold is achieved, or until a
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coach#n1

managership#n3

sport#n1

trainer#n1

handle#n8

coach#n2

teacher#n1

tutorial#n1

coach#n5

public_transport#n1

fleet#n2

seat#n1

coach fleet comprise ... seat

comprise#v1 ...

coach#n1

managership#n3

sport#n1

trainer#n1

handle#n8

coach#n2

teacher#n1

tutorial#n1

coach#n5

public_transport#n1

fleet#n2

seat#n1

coach fleet comprise ... seat

comprise#v1 ...

Figure 2
Portion of WordNet to illustrate the disambiguation of coach in the sentence “Our fleet comprises
coaches from 35 to 58 seats”. Each word in the sentence (shown partially) is linked to all its synsets.
The path between trainer#n1 and teacher#1 is ommited for brevity (see Figure 1). The left part
shows the PPR method, and the right part shows the PPRw2w method.

fixed number of iterations are executed. Following usual practice, we used a damping

value of 0.85 and finish the calculations after 30 iterations (Haveliwala 2002; Mihalcea

2005; Langville and Meyer 2003). Some preliminary experiments with higher iteration

counts showed that although sometimes the node ranks varied, the relative order

among particular word synsets remained stable after the initial iterations (cf. Section 6.4

for further details). Note that, in order to discard the effect of dangling nodes (i.e. nodes

without outlinks) one would need to slightly modify Eq. (1) following (Langville and

Meyer 2003)4. This modification is not necessary for WordNet, as it does not have

dangling nodes.

5. Random walks for WSD

We tested two different methods to apply random walks to WSD.
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5.1 Static PageRank, no context

If we apply traditional PageRank over the whole WordNet, we get a context-

independent ranking of word senses. All concepts in WordNet get ranked according

to their PageRank value. Given a target word, it suffices to check which is the relative

ranking of its senses, and the WSD system would output the one ranking highest. We

call this application of PageRank to WSD Static PageRank, STATIC for short, as it does

not change with the context, and we use it as a baseline.

As the PageRank measure over undirected graphs for a node is closely related

to the degree of the node, the Static PageRank returns the most predominant sense

according to the number of relations the senses have. We think that this is closely related

to the Most Frequent Sense attested in general corpora, as the lexicon builders would

tend to assign more relations to the most predominant sense. In fact, our results (cf.

Section 6.4.6) show that this is indeed the case for the English WordNet.

5.2 Personalized PageRank, using context

Static PageRank is independent of context, but this is not what we want in a WSD

system. Given an input piece of text we want to disambiguate all content words in

the input according to the relationships among them. For this we can use Personalized

PageRank (PPR for short) over the whole WordNet graph.

Given an input text, e.g. a sentence, we extract the list Wi i = 1 . . .m of content

words (i.e. nouns, verbs, adjectives and adverbs) which have an entry in the dictionary,

and thus can be related to LKB concepts. As a result of the disambiguation process,

4 The equation becomes P = cMP+ (ca+ (1− c)e)v, where ai = 1 if node i is a dangling node, and 0
otherwise, and e is a vector of all ones.
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every LKB concept receives a score. Then, for each target word to be disambiguated, we

just choose its associated concept in G with maximum score.

In order to apply Personalized PageRank over the LKB graph, the context words

are first inserted into the graph G as nodes, and linked with directed edges to their

respective concepts. Then, the Personalized PageRank of the graph G is computed by

concentrating the initial probability mass uniformly over the newly introduced word

nodes. As the words are linked to the concepts by directed edges, they act as source

nodes injecting mass into the concepts they are associated with, which thus become

relevant nodes, and spread their mass over the LKB graph. Therefore, the resulting

Personalized PageRank vector can be seen as a measure of the structural relevance of

LKB concepts in the presence of the input context.

Making the edges from words to concepts directed is important, as the use of

undirected edges will move part of the probability mass in the concepts to the word

nodes. Note the contrast with the edges representing relations between concepts, which

are undirected (cf. Section 3.1).

Alternatively, we could do without the word nodes, concentrating the initial prob-

ability mass on the senses of the words under consideration. Such an initialization over

the graph with undirected edges between synset nodes is equivalent to initializing

the walk on the words in a graph with undirected edges between synset nodes and

directed nodes from words to synsets. We experimentally checked that the results

of both alternatives are indistinguishable. Although the alternative without nodes is

marginally more efficient, we keep the word nodes as they provide a more intuitive and

appealing formalization.

One problem with Personalized PageRank is that if one of the target words has

two senses which are related by semantic relations, those senses reinforce each other,
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and could thus dampen the effect of the other senses in the context. Although one

could remove direct edges between competing senses from the graph, it is quite rare

that those senses are directly linked, and usually a path with several edges is involved.

With this observation in mind we devised a variant called word-to-word heuristic (PPRw2w

for short), where we run Personalized PageRank separately for each target word in the

context, that is, for each target word Wi, we concentrate the initial probability mass in

the senses of rest of the words in the context of Wi, but not in the senses of the target

word itself, so that context words increase its relative importance in the graph. The main

idea of this approach is to avoid biasing the initial score of concepts associated to target

word Wi, and let the surrounding words decide which concept associated to Wi has

more relevance. Contrary to the previous approach, PPRw2w does not disambiguate all

target words of the context in a single run, which makes it less efficient (cf. Section 6.4).

Figure 2 illustrates the disambiguation of a sample sentence. The STATIC method

(not shown in the figure) would choose the synset coach#n1 for the word coach because

it is related to more concepts than other senses, and because those senses are related

to concepts which have a high degree (for instance, sport#1). The PPR method (left side

of Figure 2) concentrates the initial mass on the content words in the example. After

running the iterative algorithm, the system would return coach#n1 as the result for the

target word coach. Although the words in the sentence clearly indicate that the correct

synset in this sentence corresponds to coach#n5, the fact that teacher#n1 is related to

trainer#n1 in WordNet causes both coach#n2 and coach#n1 to reinforce each other, and

make their pagerank higher. The right side of Figure 2 depicts the PPRw2w method,

where the word coach is not activated. Thus, there is no reinforcement between coach

senses and the method would correctly choose coach#n5 as the proper synset.
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6. Evaluation

WSD literature have used several measures for evaluation. Precision is the percentage of

correctly disambiguated instances divided by the number of instances disambiguated.

Some systems don’t disambiguate all instances, and thus the precision can be high

even if the system disambiguates a handful of instances. In our case, when a word has

two senses with the same PageRank value, our algorithm does not return anything,

because it abstains from returning a sense in the case of ties. In contrast, recall measures

the percentage of correctly disambiguated instances divided by the total number of

instances to be disambiguated. This measure penalizes systems that are unable to return

a solution for all instances. Finally, the harmonic mean between precision and recall

(F1) combines both measures. F1 is our main measure of evaluation, as it provides a

balanced measure between the two extremes. Note that a system that returns a solution

for all instances would have equal precision, recall and F1 measures.

In our experiments we build a context of at least 20 content words for each sentence

to be disambiguated, taking the sentences immediately before and after it in the case that

the original sentence was too short. The parameters for the PageRank algorithm were set

to 0.85 and 30 iterations following standard practice (Haveliwala 2002; Mihalcea 2005;

Langville and Meyer 2003). The post-hoc impact of those and other parameters has been

studied in Section 6.4.

The general domain datasets used in this work are the SensEval-2 (S2AW) (Snyder

and Palmer 2004), SensEval-3 (S3AW) (Palmer et al. 2001), and SemEval-2007 fine-

grained (S07AW) (Snyder and Palmer 2004; Palmer et al. 2001; Pradhan et al. 2007)

and coarse grained all-words datasets (S07CG) (Navigli, Litkowski, and Hargraves

2007). All datasets have been produced similarly: a few documents were selected for

tagging, at least two annotators tagged nouns, verbs, adjectives and adverbs, inter-
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Table 2
Results on English datasets (F1). Best results in each column in bold. (∗) statistically significant
with respect to the best result in each column.

S2AW - SensEval-2 All-Words
Method All N V Adj. Adv.
PPR 58.7∗ 71.8 35.0 58.9 69.8
PPRw2w 59.7 70.3 40.3 59.8 72.9
STATIC 58.0∗ 66.5 40.2 59.8 72.5

S3AW - SensEval-3 All-Words
Method All N V Adj. Adv.
PPR 57.3∗ 63.7 47.5 61.3 96.3
PPRw2w 57.9 65.3 47.2 63.6 96.3
STATIC 56.5∗ 62.5 47.1 62.8 96.3

S07AW - SemEval 2007 All-Words
Method All N V Adj. Adv.
PPR 39.7∗ 51.6 34.6 – –
PPRw2w 41.7∗ 56.0 35.3 – –
STATIC 43.0 56.0 37.3 – –

S07CG - SemEval 2007 Coarse-grained All-Words
Method All N V Adj. Adv.
PPR 78.1∗ 78.3 73.8 84.0 78.4
PPRw2w 80.1 83.6 71.1 83.1 82.3
STATIC 79.2∗ 81.0 72.4 82.9 82.8

tagger agreement was measured, and the discrepancies between taggers were solved.

The first two datasets are labeled with WordNet 1.7 tags, the third uses WordNet 2.1

tags, and the last one uses coarse-grained senses which group WordNet 2.1 senses.

We run our system using WordNet 1.7 relations and senses, for the first two datasets,

and WordNet 2.1 for the other two. Section 6.4.3 explores the use of WordNet 3.0 and

compares the performance to using other versions.

Regarding the coarse senses in S07CG, we used the mapping from WordNet 2.1

senses made available by the authors of the dataset. In order to return coarse grained-

senses, we run our algorithm on fine-grained senses, and aggregate the scores for all

senses that map to the same coarse-grained sense. We finally choose the coarse-grained

sense with the highest score.
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The datasets used in this article contain polysemous and monosemous words,

as customary; the percentage of monosemous word occurrences in the S2AW, S3AW,

S07AW and S07CG datasets are 20.7%, 16.9%, 14.4% and 29.9%, respectively.

6.1 Results

Table 2 shows the results as F1 of our random walk WSD systems over these datasets.

We detail overall results, as well as results per part of speech, and whether there is

any statistical difference with respect to the best result on each column. Statistical

significance is obtained using the paired bootstrap resampling method (Noreen 1989),

p < 0.01.

The table shows that PPRw2w is consistently the best method in three datasets. All

in all the differences are small, and in one dataset STATIC obtains the best results. The

differences with respect to the best system overall are always statistically significant.

In fact it is remarkable that a simple non-contextual measure like STATIC performs so

well, without the need of building subgraphs or any other manipulation. Section 6.4.6

will show that in some circumstances the performance of STATIC is much lower and

analyze the reasons for this drop. Regarding the use of the word-to-word heuristic, it

consistently provides slightly better results than PPR in all four datasets. An analysis of

the performance according to the PoS shows that PPRw2w performs better particularly

on nouns, but there does not seem to be a clear pattern for the rest. In the rest of the

article, we will only show the overall results, omitting those for all PoS, in order not to

clutter the result tables.

Our algorithms do not always return an answer, and thus the precision is higher

than the F1 measure. For instance, in S2AW the percentage of instances which get an

answer ranges between 95.4% and 95.6% for PPR, PPRw2w and STATIC. The precision for

PPRw2w in S2AW is 61.1%, the recall 58.4% and F1 59.7%. This pattern of slightly higher
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Table 3
Comparison with state-of-the-art results (F1). The top rows report knowledge-based and
unsupervised systems, followed by our system (PPRw2w). Below we report systems which use
annotated data to some degree: (1) MFS or counts from hand-annotated corpora, (2) fully
supervised systems, including the best supervised participants in each exercise. Best result
among unsupervised systems in each column is shown in bold. Please see text for references of
each system.

System S2AW S3AW S07AW S07CG (N)
Mih05 54.2 52.2
Sinha07 57.6 53.6
Tsatsa10 58.8 57.4
Agirre08 56.8
Nav10 52.9 43.1
JU-SKNSB / TKB-UO 40.2 70.2 (70.8)
Ponz10 (79.4)
PPRw2w 59.7 57.9 41.7 80.1 (83.6)
MFS(1) 60.1 62.3 51.4 78.9 (77.4)
IRST-DDD-00(1) 58.3
Nav05(1) / UOR-SSI(1) 60.4 83.2 (84.1)
BESTsup

(2) 68.6 65.2 59.1 82.5 (82.3)
Zhong10(2) 68.2 67.6 58.3 82.6

values for precisions, lower for recall and F1 in between is repeated for all datasets, PoS

and datasets. The percentage of instances which get an answer for the other datasets is

higher, ranging between 98.1% in S3AW and 99.9% in S07CG.

6.2 Comparison to state-of-the-art systems

In this section we compare our results with the WSD systems described in Section 2, as

well as the top performing supervised systems at competition time and other unsuper-

vised systems that improved on them. Note that we do not mention all unsupervised

systems participating in the competitions, but we do select the top performing ones. All

results in Table 3 are given as overall F1 for all Parts of Speech, but we also report F1 for

nouns in the case of S07CG, where Ponz10 (Ponzetto and Navigli 2010) reported very

high results, but only for nouns. Note that the systems reported here and our system

might use different context sizes.
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For easier reference, Table 3 uses a shorthand for each system, while the text in

this Section includes the shorthand and the full reference the first time the shorthand is

used. The shorthand uses the first letters of the first author followed by the year of the

paper, except for systems which participated in SensEval and SemEval, where we use

their acronym. Most systems in the table have been presented in Section 2, with a few

exceptions which will be presented this section.

The results in Table 3 confirm that our system (PPRw2w) performs on the state-of-

the-art of knowledge-based and unsupervised systems, with two exceptions: (1) Nav10

(Navigli and Lapata 2010) obtained better results on S07AW. We will compare both

systems in more detail below, and also include a reimplementation in the next sub-

section which shows that, when using the same LKB, our method obtains better results.

(2) Although not reported in the table, an unsupervised system using automatically

acquired training examples from bilingual data (Chan and Ng 2005) obtained very good

results on S2AW nouns (77.2 F1, compared to our 70.3 F1 in Table 2). The automatically

acquired training examples are used in addition to hand-annotated data in Zhong10

(Zhong and Ng 2010), also reported in the table (see below).

We report the best unsupervised systems in S07AW and S07CG on the same row. JU-

SKNSB (Naskar and Bandyopadhyay 2007) is a system based on an extended version of

the Lesk algorithm (Lesk 1986), evaluated on S07AW. TKB-UO (Anaya-Sánchez, Pons-

Porrata, and Berlanga-Llavori 2007), which was evaluated in S07CG, clusters WordNet

senses and uses so-called topic signatures based on WordNet information for disam-

biguation. IRST-DDD-00 (Strapparava, Gliozzo, and Giuliano 2004) is a system based

on WordNet Domains which leverages on large unannotated corpora. They obtained

excellent results, but their calculation of scores takes into account synset probabilities

from SemCor, and the system can thus be considered to use some degree of supervision.
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We consider that systems which make use of information derived from hand-annotated

corpora need to be singled out as having some degree of supervision. This includes

systems using the MFS heuristic, as it is derived from hand-annotated corpora. In the

case of the English WordNet, the use of the 1st sense also falls in this category, as the

order of senses in WordNet is based on sense counts in hand-annotated corpora. Note

that for wordnets in other languages, hand-annotated corpus is scarce, and thus our

main results are not using this information. Section 6.4.7 analysis the results of our

system when combined with this information.

Among supervised systems, the best supervised systems at competition time are

reported in a single row (Mihalcea 2002; Decadt et al. 2004; Tratz et al. 2007; Chan,

Ng, and Zhong 2007). We also report Zhong10 (Zhong and Ng 2010) which is a freely

available supervised system giving some of the strongest results in WSD.

We will now discuss in detail the systems which are most similar to our own. We

first review the WordNet versions and relations used by each system. Mih05 (Mihalcea

2005) and Sinha07 (Sinha and Mihalcea 2007) apply several similarity methods, which

use WordNet information from versions 1.7.1 and 2.0, respectively, including all rela-

tions and the text in the glosses5. Tsatsa10 (Tsatsaronis, Varlamis, and Nørvåg 2010)

uses WordNet 2.0. Agirre08 (Agirre and Soroa 2008) experimented with several LKBs

formed by combining relations from different sources and versions, including WordNet

1.7 and eXtended WordNet. Nav05 and Nav10 (Navigli and Velardi 2005; Navigli and

Lapata 2010) use WordNet 2.0, enriched with manually added cooccurrence relations

which are not publicly available.

We can see in Table 3 that the combination of Personalized PageRank and LKB

presented in this article outperforms both Mih05 and Sinha07. In order to factor out

5 Personal communication.
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the difference in the WordNet version, we performed experiments using WN2.1 and

eXtended WordNet yielding 58.7 and 56.5 F1 for S2AW and S3AW, respectively. Al-

though a head to head comparison is not possible, the systems use similar information:

while they use glosses, our algorithm cannot use directly the glosses, and thus we use

disambiguated glosses as delivered in eXtended WordNet. All in all the results suggest

that analyzing the LKB structure as a graph is preferable than computing pairwise

similarity measures over synsets to build a custom graph and then applying graph

measures. The results of various in-house experiments replicating Mih05 also confirmed

this observation. Note also that our methods are simpler than the combination strategy

used in Sinha07.

Nav05 (Navigli and Velardi 2005) uses a knowledge-based WSD method based on

lexical chains called structural semantic interconnections (SSI). The SSI method was

evaluated on the SensEval-3 dataset, as shown in row Nav05 on Table 3. Note that

the method labels an instance with the most frequent sense (MFS) of the word if the

algorithm produces no output for that instance, which makes comparison to our system

unfair, especially given the fact that the MFS performs better than SSI. In fact it is not

possible to separate the effect of SSI from that of the MFS, and we thus report it as

using some degree of supervision in the table. A variant of the algorithm called UOR-SSI

(Navigli, Litkowski, and Hargraves 2007) (reported in the same row) used a manually

added set of 70,000 relations and obtained the best results in S07CG out-of-competition6,

even better than the best supervised method. Reimplementing SSI is not trivial, so we

did not check the performance of a variant of SSI which does not use MFS and which

uses the same LKB as our method. Section 6.4.7 analyzes the results of our system when

combined with MFS information.

6 The task was co-organized by the authors.
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Agirre08 (Agirre and Soroa 2008) uses breadth-first search to extract subgraphs of

the WordNet graph for each context to be disambiguated, and then apply PageRank.

Our better results seem to indicate that using the full graph instead of those subgraphs

would perform better. In order to check whether the better results are due to differences

in the information used, the next subsection presents the results of our reimplementa-

tion of the systems using the same information as our full-graph algorithm.

Tsatsa10 (Tsatsaronis, Vazirgiannis, and Androutsopoulos 2007; Tsatsaronis, Var-

lamis, and Nørvåg 2010) also builds the graph using breadth-first search, but weighting

each type of edge differently, and using graph-based measures which take into account

those weights. This is in contrast to the experiments performed in this article where

edges have no weight, and is an interesting avenue for future work.

Nav10 (Navigli and Lapata 2010) first builds a subgraph of WordNet composed of

paths between synsets using depth-first search and then applies a set of graph centrality

algorithms. The best results are obtained using the degree of the nodes, and they present

two variants, depending on how they treat ties: either they return a sense at random, or

they return the most frequent sense. For fair comparison to our system (which does not

use MFS as a back-off), Table 3 reports the former variant as Nav10. This system is better

than ours in one dataset and worse in another. They use 60,000 relations which are not

publicly available, but they do not use eXtended WordNet relations. In order to check

whether the difference in performance is due to the relations used or the algorithm, the

next subsection presents a reimplementation of their best graph-based algorithms using

the same LKB as we do. In earlier work (Navigli and Lapata 2007) they test a similar

system on S3AW, but report results only for nouns, verbs and adjectives (F1 of 61.9, 36.1

and respectively 62.8), all of which are below the results of our system (cf. Table 2).
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Table 4
Results for subgraph methods compared to our method (F1). In reference row we mention the
reference system that we reimplemented. Best results in each column in bold. (∗) statistically
significant with respect to the best result in each column. (0) No significant difference.

Reference S2AW S3AW S07AW S07CG
DFSdegree Nav10, Ponz10 58.4∗ 56.4∗ 40.3∗ 79.4∗

BFSdegree 57.9∗ 56.5∗ 39.9∗ 79.2∗

DFSPageRank Nav10 58.2∗ 56.4∗ 39.9∗ 79.6∗

BFSPageRank Agirre08 57.7∗ 56.7∗ 39.7∗ 79.4∗

DFSPPR 59.3∗ 58.2 41.40 78.1∗

BFSPPR 58.80 57.50 41.20 78.8∗

DFSPPRw2w
58.70 58.00 41.2∗ 79.7∗

BFSPPRw2w
58.1∗ 57.90 41.9 79.5∗

PPRw2w 59.7 57.90 41.70 80.1

In Ponz10 (Ponzetto and Navigli 2010) the authors apply the same techniques as in

Nav10 to a new resource called WordNet++. They report results for nouns using degree

on subgraphs for the S07CG dataset, as shown in Table 3. Their F1 on nouns is 79.4,

lower than our results using our LKB.

6.3 Comparison to related algorithms

The previous section shows that our algorithm when applied to a LKB built from

WordNet and eXtended WordNet outperforms other knowledge-based systems in all

cases but one system in one dataset. In this Section we factor out algorithm and LKB,

and present the results of other graph-based methods for WSD using the same WordNet

versions and relations as in the previous Section. As we mentioned in Section 2, ours is

the only method using the full WordNet graph. Navigli and Lapata (2010) and Ponzetto

and Navigli (2010) build a custom graph based on the relations in WordNet as follows:

for each sense si of each word in the context, a depth-first search (DFS for short) is

conducted through the WordNet graph starting in si until another sense sj of a word

in the context is found or maximum distance is reached. The maximum distance was

set by the authors to 6. All nodes and edges between si and sj , inclusive, are added
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to the subgraph. Graph-based measures are then used to select the output senses for

each target word, with degree and PageRank yielding the best results. In closely related

work,Agirre and Soroa (2008), Tsatsaronis, Varlamis, and Nørvåg (2010) use breadth-

first search (BFS) over the whole graph, and keep all paths connecting senses. Note that

unlike the dfs approach, bfs does not require any threshold. The subgraphs obtained

by each of these methods are slightly different.

We reimplemented both strategies, i.e. DFS with threshold 6 and BFS with no

threshold. Table 4 shows the overall results of degree and PageRank for both kinds

of subgraphs. DFS yields slightly better results than BFS but PPRw2w is best in all four

datasets, with statistical significance.

In addition, we run PPR and PPRw2w on DFS and BFS subgraphs, and obtained better

results than degree and PageRank in all datasets. DFS with PPR and DFS with PPRw2w

are best in S3AW and S07AW, respectively, although the differences with PPRw2w are not

statistically significant. PPRw2w on the full graph is best in two datasets, with statistical

significance.

From these results we can conclude that PPR and PPRw2w yield the best results

also for subgraphs. Regarding the use of the full graph with respect to DFS or BFS,

the performances for PPRw2w are very similar, but using the full graph gives a small

advantage. Section 6.4.8 provides an analysis of efficiency.

6.4 Analysis of performance factors

The behavior of the WSD system is influenced by a set of parameters which can yield

different results. In our main experiments we did not perform any parameter tuning;

we just used some default values which were found to be useful according to previous

work. In this section we perform a post-hoc analysis of several parameters on the

general performance of the system, reporting F1 on a single dataset, S2AW.

29



Computational Linguistics Volume 1, Number 1

6.4.1 PageRank parameters. The PageRank algorithm has two main parameters, the

so called damping factor and the number of iterations (or, conversely, the convergence

threshold), which we set as 0.85 and 30 respectively (cf. Section 4). Figure 3 depicts

the effect of varying the number of iterations. It shows that the algorithm converges

very quickly: one sole iteration yields relatively high performance, and 20 iterations

are enough to achieve convergence. Note also that the performance is in the [58.0, 58.5]

range for iterations over 5. Note that we use the same range of F1 for the y axis of figures

3, 4 and 5 for easier comparison.

Figure 4 shows the effect of varying the damping factor. Note that a damping

factor of zero means that the PageRank value coincides with the initial probability

distribution. Given the way we initialize the distribution (c.f. Section 5.2), it would mean

that the algorithm is not able to disambiguate the target words. Thus, the initial value

on Figure 4 corresponds to a damping factor of 0.001. On the other hand, a damping

factor of 1 yields to the same results as the STATIC method (c.f. Section 5.1). The best

value is attained with 0.90, with similar values around it (less than 0.5 absolute points in

variation), in agreement with previous results which preferred values in the 0.85...0.95

interval (Haveliwala 2002; Mihalcea 2005; Langville and Meyer 2003).

6.4.2 Size of context window. Figure 5 shows the performance of the system when

trying different context windows for the target words. The best context size is for

windows of 20 content words, with less than 0.5 absolute point losses for windows

in the [5, 25] range.

6.4.3 Using different WordNet versions. There has been little research on the best

strategy to use when dealing with datasets and resources attached to different WordNet

versions. Table 5 shows the results for the four datasets used in this study when using
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Convergence according to number of PageRank iterations (F1 on S2AW)
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Varying the damping factor (F1 on S2AW).

different WordNet versions. Two of the datasets (S2AW and S3AW) were tagged with

senses from version 1.7, S07AW with senses from version 2.1 and S07CG with coarse

senses built on 2.1 senses.

Given the fact that WordNet 3.0 is a more recent version which includes more

relations, one would hope that using it would provide the best results (Cuadros and

Rigau 2008; Navigli and Lapata 2010). We built a graph analogous to the ones for

versions 1.7 and 2.1, but using the hand-disambiguated glosses instead of eXtended
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Figure 5
Varying the context size (F1 on S2AW).

WordNet glosses. We used freely available mappings (Daude, Padro, and Rigau 2000)7

to convert our eXtended WordNet relations to 3.0, and then the WordNet 3.0 sense

results to the corresponding version. In addition we also tested WN1.7 on S07AW and

S07CG, and WN2.1 on S2AW and S3AW, using also the mappings from Daude, Padro,

and Rigau (2000).

Table 5 shows that the best results are obtained using our algorithm on the same

WordNet version as used in the respective dataset. When testing on datasets tagged

with WordNet 1.7, similar results are obtained using 2.1 or 3.0. When testing on datasets

based on 2.1, 3.0 has a small lead over 1.7. In any case the differences are small ranging

from 1.4 absolute points to 0.5 points. All in all, it seems that the changes introduced

by different versions slightly deteriorate the results, and the best strategy is to use the

same WordNet version as was used for tagging.

6.4.4 Using XWN vs. WN3.0 gloss relations. WordNet 3.0 was released with an ac-

companying dataset comprising glosses where some of the words had been manually

7 http://nlp.lsi.upc.edu/tools/download-map.php
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Table 5
Comparing WordNet versions. Best result in each row in bold.

Dataset version 1.7 + xwn 2.1 + xwn 3.0 + xwn
S2AW 1.7 59.7 58.7 58.4
S3AW 1.7 57.9 56.5 56.8
S07AW 2.1 40.7 41.7 40.9
S07CG 2.1 coarse 79.6 80.1 79.6

Table 6
Comparing XWN and WN3.0 gloss relations, separately and combined. Best result in each row in
bold.

Dataset 3.0 + XWN 3.0 + gloss 3.0 + XWN + gloss
S2AW 58.4 58.1 58.8
S3AW 56.8 51.7 56.1
S07AW 40.9 38.8 42.2
S07CG 79.6 78.9 80.2

Table 7
Analysis of relation types. The first column shows the performance using just that relation type.
The second shows the combination of TAX and each type. The last column shows all relations
except the corresponding type.

relation single + TAX ablation
TAX 37.4 – 59.9
ANT 19.1 42.1 59.9
MER 23.4 36.4 59.6
REL 35.4 46.1 59.6
XWN 59.9 59.8 47.1
Reference system (all relations) 59.7

disambiguated. In Table 6 we present the results of using these glosses with the WN3.0

graph, showing that the results are lower than using XWN relations. We also checked

the use of WN3.0 gloss relation with other WordNet versions, and the results using

XWN where always slightly better. We hypothesize that the better results for XWN are

due to the amount of relations, with XWN holding 61% more relations than WN3.0

glosses. Still, the best relations are obtained with the combination of both kinds of gloss

relations
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6.4.5 Analysis of relations. Previous results were obtained using all the relations of

WordNet and taking eXtended WordNet relations into account. In this section we ana-

lyze the effect of the relation types on the whole process, following the relation groups

presented in Table 1. Table 7 shows the results when using different combinations over

relation types. The eXtended WordNet XWN relations appear the most valuable when

performing random walk WSD, as their performance is as good as when using the

whole graph, and they produce a large drop when ablated from the graph. Ignoring

antonymy relations produces a small improvement, but the differences between using

all the relations, eliminating antonyms and using XWN relations only are too small to

draw any further conclusions. It seems that given the XWN relations (the most numer-

ous, cf. Section 3.1), our algorithm is fairly robust to the addition or deletion of other

kinds of relations (less numerous).

6.4.6 Behaviour with respect to STATIC and MFS. The high results of the very simple

STATIC method (PageRank with no context) seems to imply that there is no need to use

context for disambiguation. Our intuition was that the synsets which correspond to the

most frequent senses would get more relations. We thus computed the correlation be-

tween systems, gold tags and MFS. In order to make the correlation results comparable

to the figures used on evaluation, we use the number of times both sets of results agree,

divided by the number of results returned by the first system. Table 8 shows such a

matrix of pairwise correlations. If we take the row of gold tags, the results reflect the

performance of each system (the precision). In the case of MFS, the column shows that

STATIC has a slightly larger correlation with the MFS than the other two methods. The

matrix also shows that all our three methods agree more than 80% of the time, with PPR

and STATIC having a relatively smaller agreement.
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Table 8
Correlation between systems, gold tags and MFS.

Gold MFS PPR PPRw2w STATIC

Gold 100.0 61.3 58.6 59.7 57.8
MFS 60.1 100.0 79.8 79.0 81.3
PPR 57.4 79.8 100.0 86.8 82.8
PPRw2w 58.4 79.0 86.8 100.0 86.4
STATIC 56.7 81.4 82.8 86.4 100.0

In contrast, related work using the same techniques over domain-specific words

(Agirre, Lopez de Lacalle, and Soroa 2009) shows that the results of our Personalized

PageRank models departs significantly from MFS and STATIC. Table 9 shows the results

of the three techniques on the three subcorpora that comprise the evaluation dataset

published in (Koeling, McCarthy, and Carroll 2005). This dataset consists of examples

retrieved from the Sports and Finance sections of the Reuters corpus, and also from the

balanced British National Corpus (BNC), which is used as a general domain contrast

corpus.

Applying PageRank over the entire WordNet graph yields low results, very similar

to those of MFS, and below those of Personalized PageRank. This confirms that STATIC

PageRank is closely related to MFS, as we hypothesized in Section 5.1 and showed in

Table 8 for the other general domain datasets. While the results of PPRw2w are very

similar in the general-domain BNC, PPRw2w departs from STATIC and MFS with 30 and

20 points of difference in the domain-specific Sports and Finance corpora. These results

are highly relevant, because they show that PPR is able to effectively use contextual

information, and depart from the MFS and STATIC baselines.

6.4.7 Combination with MFS. As mentioned in Section 6.2, we have avoided to use any

information regarding sense frequencies from annotated corpora, as this information

is not always available for all wordnets. In this section we report the results of our
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Table 9
Results on three subcorpora as reported in (Agirre, Lopez de Lacalle, and Soroa 2009), where
Sports and Finance are domain-specific. Best results on each column in bold.

System BNC Sports Finance
MFS 34.9 19.6 37.1
STATIC 36.6 20.1 39.6
PPRw2w 37.7 51.5 59.3

algorithm when taking into account prior probabilities of senses taken from sense

counts. We used the sense counts provided with WordNet in the index.sense file8. In

this setting, the edges linking words and their respective senses are weighted according

to the prior probabilities of those senses, instead of uniform weights as in Section 5.2.

Table 10 shows that results when using priors from MFS improve over the results

of the original PPRw2w in all datasets. The improvement varies across parts of speech,

and for instance, the results for nouns in S07CG are worse (shown in rightmost column

of Table 10). In addition, the results for PPRw2w when using MFS information improve

over MFS in all cases except for S07AW.

The table also reports the best systems which do use MFS (see Section 6.3 for

detailed explanations). For S2AW and S07AW we do not have references to related

systems. For S3AW we can see that our system performs best. In the case of S07CG,

UOR-SSI reports better results that our system. Finally, the final row reports their system

when combined with MFS information as back-off (Ponzetto and Navigli 2010), which

also attains better results than our system. We tried to use a combination method similar

to theirs, but did not manage to improve results.

6.4.8 Efficiency of full graphs vs. subgraphs. Given the very close results of our algo-

rithm when using full graphs and subgraphs (cf. Section 6.3), we studied the efficiency

8 http://wordnet.princeton.edu/wordnet/man/senseidx.5WN.html
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Table 10
Combination with MFS (F1). The first two rows correspond to our system with and without
information from MFS. Below we report systems which also use MFS. Best results in each
column in bold.

System S2AW S3AW S07AW S07CG (N)
PPRw2w 59.7 57.9 41.7 80.1 (83.6)
PPRw2w MFS 62.6 63.0 48.6 81.4 (82.1)
MFS 60.1 62.3 51.4 78.9 (77.4)
IRST-DDD-00 58.3
Nav05 / UOR-SSI 60.4 83.2 (84.1)
Ponz10 81.7 (85.5)

of each. We benchmarked several graph based methods on the S2AW dataset, which

comprises 2473 instances to be disambiguated. All tests were done on a multicore

computer with 16 GB of memory using a single 2.66 Ghz processor. When using the

full graph PPR disambiguates full sentences in one go at 684 instances per minute,

while PPRw2w disambiguates one word at a time, 70 instances per minute. The DFS

subgraphs provide better performance than PPRw2w, 228 instances per minute when

using degree, with marginally slower performance when using PPRw2w (210 instances

per minute). The BFS subgraph is slowest, with around 20 instances per minute. The

memory footprint of using the full graph algorithm is small, just 270 MB, so several

processes can be run on a multiprocessor machine easily.

All in all, there is a tradeoff in performance and speed, with PPRw2w on the full

graph providing better results at the cost of some speed, and PPR on the full graph

providing the best speed at the cost of worse performance. Using DFS with PPRw2w

lays in between, and is also a good alternative, and its speed can be improved using

pre-indexed paths.
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Table 11
Results as F1 on the Spanish SemEval07 dataset, including first sense, MFS and the best
supervised system in the competition. (∗) means statistically significant difference with respect to
the best of our results (in bold).

Method Acc.
PPR 78.4∗

PPRw2w 79.3
STATIC 76.5∗

First sense 66.4∗

MFS 84.6∗

BEST 85.1∗

6.5 Experiments on Spanish

Our WSD algorithm can be applied over non-English texts, provided that a LKB for this

particular language exists. We have applied our random walk algorithms to the Spanish

WordNet (Atserias, Rigau, and Villarejo 2004), using the SemEval-2007 Task 09 dataset

as evaluation gold standard (Màrquez et al. 2007). The dataset contains examples of the

150 most frequent nouns in the CESS-ECE corpus, manually annotated with Spanish

WordNet synsets. It is split into a train and test part, and has an “all words” shape

i.e. input consists of sentences, each one having at least one occurrence of a target

noun. We ran the experiment over the test part (792 instances), and used the train part

for calculating the MFS heuristic. The results in Table 11 are consistent with those for

English, with our algorithms approaching MFS performance, and PPRw2w yielding the

best results. Note that for this dataset the supervised algorithm could barely improve

over the MFS, which performs very well, suggesting that in this particular dataset the

sense distributions are highly skewed.

Finally, we also show results for the first sense in the Spanish WordNet. In the

Spanish WordNet the order of the senses of a word has been assigned directly by the

lexicographer (Atserias, Rigau, and Villarejo 2004), as there is no information of sense
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frequency from hand-annotated corpora. This is in contrast to the English WordNet,

where the senses are ordered according to their frequency in annotated corpora (Fell-

baum 1998), and reflects the status on most other wordnets. In this case, our algorithm

clearly improves over the first sense in the dictionary.

7. Conclusions

In this article we present a method for knowledge-based Word Sense Disambiguation

based on random walks over relations in a LKB. Our algorithm uses the full graph

of WordNet efficiently, and performs better than PageRank or degree on subgraphs

(Agirre and Soroa 2008; Navigli and Lapata 2007, 2010; Ponzetto and Navigli 2010). We

also show that our combination of method and LKB built from WordNet and eXtended

WordNet compares favorably to other knowledge-based systems using similar infor-

mation sources (Mihalcea 2005; Sinha and Mihalcea 2007; Tsatsaronis, Vazirgiannis, and

Androutsopoulos 2007; Tsatsaronis, Varlamis, and Nørvåg 2010). Our analysis shows

that Personalized PageRank yields similar results when using subgraphs and the full

graph, with a trade-off between speed and performance, where Personalized PageR-

ank over the full graph is fastest, its word-to-word variant slowest, and Personalized

PageRank over the subgraph lies in between.

We also show that the algorithm can be easily ported to other languages with good

results, with the only requirement of having a wordnet. Our results improve over the

first sense of the Spanish dictionary. This is particularly relevant for wordnets other

than English. For the English WordNet the senses of a word are ordered according to the

frequency of the senses in hand-annotated corpora, and thus the first sense is equivalent

to the Most Frequent Sense, but this information is not always available for languages

which lack large-scale hand-annotated corpora.
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We have performed an extensive analysis, showing the behavior according to the

parameters of PageRank, and studying the impact of different relations and WordNet

versions. We have also analyzed the relation between our PPR algorithm, MFS and

STATIC PageRank. In general domain corpora they get similar results, close to the

performance of the MFS learned from SemCor, but the results reported on domain-

specific datasets (Agirre, Lopez de Lacalle, and Soroa 2009) show that PPR is able to

move away from the MFS and STATIC and improve over them, indicating that PPR is able

to effectively use contextual information, and depart from MFS and STATIC PageRank.

The experiments in this study are readily reproducible, as the algorithm and the

LKBs are publicly available9. The system can be applied easily to sense inventories and

knowledge bases different from WordNet.

For the future we would like to explore methods to incorporate global weights of

the edges in the random walk calculations (Tsatsaronis, Varlamis, and Nørvåg 2010).

Given the complementarity of the WordNet++ resource (Ponzetto and Navigli 2010)

and our algorithm, it would be very interesting to explore the combination of both, as

well as the contribution of other WordNet related resources (Cuadros and Rigau 2008).
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