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In this paper a new machine learning approach is presented to deal with the coreference resolution task.
This approach consists of a multi-classifier system that classifies mention-pairs in a reduced dimensional
vector space. The vector representation for mention-pairs is generated using a rich set of linguistic
features. The (Singular Value Decomposition) SVD technique is used to generate the reduced dimensional
vector space. The approach is applied to the OntoNotes v4.0 Release Corpus for the column-format files
used in CONLL-2011 coreference resolution shared task. The results obtained show that the reduced
dimensional representation obtained by SVD is very adequate to appropriately classify mention-pair
vectors. Moreover, it can be stated that the multi-classifier plays an important role in improving the
results.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Coreference resolution deals with the problem of finding all
expressions that refer to the same entity in a text (Mitkov, 2002). It
is an important subtask in Natural Language Processing (NLP)
tasks that require natural language understanding, and hence, it is
considered to be difficult.

A coreference resolution system has to automatically identify
the mentions of entities in text and link the corefering mentions
(the ones that refer to the same entity) to form coreference chains.
Systems are expected to perform both, mention detection and
coreference resolution.

Preliminary researches proposed heuristic approaches to the
task, but thanks to the annotated coreference corpora made
available in the last years and the progress achieved in statistical
NLP methods, machine learning approaches to the coreference
resolution task are being proposed. In Ng (2010) the authors
present an interesting survey of the progress in coreference
resolution.

In this paper a new machine learning approach is presented to
deal with the coreference resolution task. Given a corpus with
annotated mentions, the multi-classifier system presented classi-
fies mention-pairs in a reduced dimensional vector space. The
typical mention-pair model is used, where each pair of mentions is
Sierra).
represented by a rich set of linguistic features; positive instances
correspond to mention-pairs that corefer. In this paper, cor-
eference resolution is tackled as a binary classification problem
(Soon et al., 2001); the subsequent linking of mentions into cor-
eference chains is not considered. In fact, the aim of the experi-
ment performed is to measure to what extent working with fea-
ture vectors in a reduced dimensional vector space and applying a
multi-classifier system helps to determine the coreference of
mention-pairs. To the best of our knowledge, there are no
approaches to the coreference resolution task which make use of
multi-classifier systems to classify mention-pairs in a reduced
dimensional vector space.

This paper gives a description of a new approach to deal with
the problem of identifying whether two mentions corefer and
shows the results obtained. Section 2 presents related work. In
Section 3 the new approach is presented. Section 4 presents the
case study, where details about the dataset used in the experi-
ments and the preprocessing applied are given. In Section 5 the
experimental setup is presented. The experimental results are
shown and discussed in Section 6, and finally, Section 7 contains
some conclusions and comments on future work.
2. Related work

Much attention has been paid to the problem of coreference
resolution in the past two decades. Conferences specifically focusing
coreference resolution have been organized since 1995. The sixth
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Fig. 1. Fundamental steps of the proposed approach. Original representation for mention-pairs: Rm . SVD-dimensional vector representation computed by LSI: Rp . Multi-
classifier constructed based on training datasets TD1 ;…; TDi and several k-NN classifiers. Testing mention-pair q is projected to the SVD-dimensional vector space. Label
predictions are combined to compute the final c: (þ) mentions corefer, (�) they do not corefer.
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and seventh Message Understanding Conferences included a specific
task on coreference resolution (MUC6, 1995; Hirschman and
Chinchor, 1998). The Automatic Context Extraction (ACE) Program
focused on identifying certain types of relations between a pre-
defined set of entities (Doddington et al., 2004) while the Anaphora
Resolution Exercise (ARE) involved anaphora resolution and Noun
Phrase coreference resolution (Orasan et al., 2008).

More recently, SemEval-2010 Task 1 was dedicated to cor-
eference resolution in multiple languages. One year later, in the
CoNLL-2011 shared task (Pradhan et al., 2011), participants had to
model unrestricted coreference in the English-language OntoNotes
corpora and CoNLL-2012 Shared Task (Pradhan et al., 2012)
involved predicting coreference in three languages: English, Chi-
nese and Arabic.

Recent work on coreference resolution has been largely domi-
nated by machine learning approaches. In the SemEval-2010 task
on Coreference Resolution in Multiple Languages (Recasens et al.,
2010), most of the systems were based on these techniques (Bro-
scheit et al., 2010; Uryupina, 2010; Kobdani and Schütze, 2010). The
same occurred at CoNLL-2011, where Chang et al. (2011), Björkelund
and Nugues (2011), and Nogueira dos Santos and Lopes Carvalho
(2011) were based on machine learning techniques. There are many
open-source platforms and machine learning based coreference
systems such as BART (Versley et al., 2008) and the Illinois Cor-
eference Package (Bengtson and Roth, 2008), among others.

Nevertheless, rule-based systems have also been applied suc-
cessfully (Lappin and Leass, 1994; Mitkov, 1998; Lee et al., 2013).
The authors of Lee et al. (2013) propose a coreference resolution
system that is an incremental extension of the multi-pass sieve
system proposed in Raghunathan et al. (2010). This system is
shifting from the supervised learning setting to an unsupervised
setting, and obtained the best result in the CoNLL-2011 Shared
Task. It is integrated in the Stanford CoreNLP toolkit (Manning et
al., 2014).

Some very interesting uses of vector space models for the
coreference resolution task can be found in the literature. In
Nilsson and Hjelm (2009) the authors investigate the effect of
using vector space models as an approximation of the kind of
lexico-semantic and common-sense knowledge needed for cor-
eference resolution for Swedish texts. They also work with
reduced dimensional vector spaces and obtain encouraging
results. In an attempt to increase the performance of a coreference
resolution engine, structured semantic knowledge available in the
web is used in Bryl et al. (2010). One of the strategies they adopt is
to apply the SVD to Wikipedia articles and classify mentions in a
reduced dimensional vector space.
3. Proposed approach

The approach presented in this paper consists of a multi-
classifier system which classifies mention-pairs in a reduced
dimensional vector space. This multi-classifier is composed of
several k-Nearest Neighbors (k-NN) classifiers. A set of linguistic
features is used to generate the vector representations for the
mention-pairs. The training dataset is used to create a reduced
dimensional vector space using the SVD technique. Mention-pairs
in the training, development and testing sets are represented
using the same linguistic features and projected onto the reduced
dimensional space.

The classification process is performed in the reduced dimen-
sional space. To create the multi-classifier, random subsampling is
applied and TD1;…; TDi training datasets are obtained for the
reduced dimensional space. Given a testing case q, the k-NN
classifiers make label predictions c1;…; ci based on the training
datasets TD1;…; TDi. These predictions are combined to obtain the
final prediction c using a Bayesian voting scheme and based on the
confidence values computed. It is a binary classification system
where the final prediction c may be positive (mentions tested
corefer) or negative (mentions do not corefer). Fig. 1 shows the
fundamental steps of the experiment.

In the rest of this section, details about the SVD dimensionality
reduction technique, the k-NN classification algorithm, the com-
bination of classifiers and the evaluation measures used are briefly
reviewed.
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3.1. The SVD dimensionality reduction technique

The classical Vector Space Model (VSM) has been successfully
employed to represent documents in text categorization and
Information Retrieval tasks. Latent Semantic Indexing (LSI)1 is a
variant of the VSM in which documents are represented in a lower
dimensional vector space created from a training dataset (Deer-
wester et al., 1990). To create such a lower dimensional vector
space, LSI generates a term-document matrix M and computes its
Singular Value Decomposition (SVD) matrix decomposition,
M¼ UΣVT . As a result, r singular values are obtained, and terms
and documents are mapped to the r-dimensional vector space. By
reducing the r to p, a reduced dimensional space is created, the p-
dimensional space onto which vectors are projected. This reduced
dimensional space is used for classification purposes, and the
cosine similarity is usually used to measure the similarity between
vectors (Berry et al., 1995).

It has been proved that computing the similarity of vectors in
the reduced dimensional space gives better results than working
in the original space. In fact, LSI is said to be able to capture the
latent relationships among words in documents thanks to the
word co-occurrence analysis performed by the SVD technique, and
therefore, cluster semantically terms and documents. This pow-
erful technique is being used to better capture the semantics of
texts in applications such as Information Retrieval (Berry and
Browne, 2005). LSI is referred to as Latent Semantic Analysis (LSA)
when it is used as a model of the acquisition, induction and
representation of language and the focus is on the analysis of texts
(Dumais, 2004).

For the sake of the coreference resolution task, each document
corresponds to a mention-pair, and words in each document are
the linguistic feature values for the associated mention-pair.
Matrix M is constructed for the selected feature values (terms) and
all mention-pairs considered (documents) in the training dataset.
The SVD decomposition is computed and the p-dimensional
reduced space is created. In the approach presented U is used as
the reduced dimensional representation, and the coordinates are
computed to project mention-pair vectors onto the reduced space
and compare them.

3.2. The k-NN classification algorithm

The k-Nearest Neighbors algorithm (k-NN) is a distance based
classification approach. According to this approach, given an
arbitrary testing case, the k-NN classifier ranks its nearest neigh-
bors among the training cases, and uses the class of the k top-
ranking neighbors to do the prediction for the testing case being
analyzed (Dasarathy, 1991; Aha et al., 1991).

Parameter k is set to 3 in the approach presented, based on our
previous experiments (Zelaia et al., 2005). Given a testing
mention-pair vector q, the 3-NN classifier is used to find the three
nearest neighbor mention-pair vectors in the reduced dimensional
vector space. The cosine is used to measure vector similarity and
find the nearest.

In this paper, the k-NN classifier provided with the Weka
package (Hall et al., 2009) is also used. Results obtained with it are
considered a baseline and make it possible to provide a honest
comparison to the ones obtained with the proposed approach.

3.3. Multi-classifier systems

The combination of multiple classifiers has been intensively
studied with the aim of improving the accuracy of individual
1 http://lsi.research.telcordia.com,http://www.cs.utk.edu/� lsi.
components (Ho et al., 1994). A widely used technique to imple-
ment this approach is bagging (Breiman, 1996), where a set of
training datasets TDi is generated by selecting n training cases
drawn randomly with replacement from the original training
dataset TD of n cases. When a set of n1on training cases is chosen
from the original training collection, the bagging is said to be
applied by random subsampling. In the approach presented in this
paper, parameter n1 is set to be 60% of the total number of training
cases n, based on some previous experiments carried out for this
task. The proportion of positive and negative cases in the training
dataset TD is preserved in the different TDi datasets generated.

Given a testing case q, the multi-classifier makes label predic-
tions c1;…; ci based on each one of the training datasets
TD1;…; TDi. These label predictions may be either positive (þ) or
negative (�). One way to combine the predictions is by Bayesian
voting (Dietterich, 1998), where a confidence value is calculated
for each training dataset TDj, j¼ 1;…; i and label to be predicted
(c¼ þ ; c¼ �): cvjðþ Þ, cv

j
ð� Þ. These confidence values are calculated

based on the training collection. Confidence values are summed by
label; the label c that gets the highest value is finally proposed as a
prediction for the testing case q.

3.4. Evaluation measures

The approach presented in this paper is a binary classification
system where the final prediction c may be positive (mentions
tested corefer) or negative (mentions do not corefer). There are
many metrics that can be used to measure the performance of a
classifier. In binary classification problems precision and recall are
very widely used. Precision (Prec) is the number of correct positive
results divided by the number of all positive results, and recall
(Rec) is the number of correct positive results divided by the
number of positive results that should have been returned.

In general, there is a trade-off between precision and recall.
Thus, a classifier is usually evaluated by means of a measure which
combines them. The F1-score can be interpreted as a weighted
average of precision and recall:

F1 ¼
2 � Prec � Rec
PrecþRec

Accuracy is also used as a statistical measure of performance in
binary classification tasks. Accuracy is the proportion of true
results (both true positives and true negatives) among the total
number of cases tested.
4. Case study

This section briefly reviews the dataset used in the experiments
and the preprocessing applied.

4.1. Dataset

The OntoNotes v4.0 Release Corpus is used in the experiments.2

It provides a large-scale multi-genre corpus with multiple layers of
annotation (syntactic, semantic and discourse information) which
also include coreference tags. A nice description of the coreference
annotation in OntoNotes can be found in Pradhan et al. (2007a)
and Pradhan et al. (2007b).

Although OntoNotes is a multi-lingual resource for English,
Chinese and Arabic, for the scope of this paper, just the English
texts for five different genres or types of sources are used:
2 Downloaded from Linguistic Data Consortium (LDC) Catalog No.:
LDC2011T03, https://catalog.ldc.upenn.edu/LDC2011T03. For more information, see
OntoNotesRelease4.0.pdf and coreference/englishcoref.pdf files in LDC directory.

http://lsi.research.telcordia.com,http://www.cs.utk.edu/~lsi
http://lsi.research.telcordia.com,http://www.cs.utk.edu/~lsi
https://catalog.ldc.upenn.edu/LDC2011T03


Fig. 2. An example of n_conll file. There are four coreference mentions: m1¼President Clinton, m2¼his, m3¼tomorrow's, m4¼tomorrow and two coreference chains:
{President Clinton, his} and {tomorrow's, tomorrow}.
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broadcast conversations (BC), broadcast news (BN), magazine
articles (MZ), newswires (NW) and web data (WB).

The English language portion of the OntoNotes v4.0 Release
Corpus was used in the CONLL-2011 coreference resolution Shared
task.3 The task is to automatically identify mentions of entities and
events in text and to link the corefering mentions together to form
mention chains (Pradhan et al., 2011, 2012). Since OntoNotes cor-
eference data spans multiple genre, the task organizers created a
testing set spanning all the genres. The training, development and
testing files are downloaded from the CONLL-2011 website. In this
work, hand-annotated gold files are used for the experiments. The
n_conll files contain information in a tabular structure where the
last column contains coreference chain information. The example of
3 http://conll.cemantix.org/2011/introduction.html.
Fig. 2 shows a n_conll file with four coreference mentions anno-
tated: Mentions m1¼President Clinton and m2¼his are coreferent
and therefore have the same label (0) in the last column, and
mentions m3¼tomorrow's and m4¼tomorrow, which are also cor-
eferent, have label (1). These four mentions form two coreference
chains: {President Clinton, his} and {tomorrow's, tomorrow}.
4.2. Preprocessing

In order to obtain the vector representation for each pair of
mentions, the features defined in Sapena et al. (2011) and Sapena
et al. (2013) are used. The authors of the cited papers developed a
coreference resolution system called RelaxCor4 and participated in
4 http://nlp.lsi.upc.edu/relaxcor/.

http://conll.cemantix.org/2011/introduction.html
http://nlp.lsi.upc.edu/relaxcor/


Table 1
Size of corpora used in the experiments.

BC BN MZ NW WB

Training (þ) 20,206 44,515 25,103 31,034 24,501
Training (�) 26,623 55,921 23,568 50,687 26,948

Development (þ) 4,056 5,920 3,873 4,776 3,531
Development (�) 5,831 8,609 4,864 7,615 5,732

Testing (þ) 29,363 10,771 3,918 15,857 17,146
Testing (�) 16,591 12,480 3,209 15,759 5,505

Table 2
Terms, documents and singular values (SVD-dimensions) for the five training
corpora.

BC BN MZ NW WB

Terms (selected feature values) 227 230 227 229 230
Documents (mention-pairs) 46,829 100,436 48,671 81,721 51,449
Singular Values (SVD-dimensions) 83 86 85 86 87
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the CoNLL-2011 shared task obtaining very good results. It is an
open source software available for anyone who wishes to use it.
Results computed for these original feature vectors are used as a
baseline for the proposed approach.

The 127 binary features used contain morphosyntactic and lex-
icosemantic information. These features are related to the distance
between the two mentions (in the same sentence, in consecutive
sentences, is the first mention, etc.), lexical information (string
matching of mentions, both are pronouns and their strings match,
etc.), morphological information (the number of both mentions
matches, the gender of both mentions matches, etc.), syntactic
dependencies (one mention is included in the other, etc.) and
semantic information (the same semantic role, one mention is an
alias of the other, etc.). Using the coreference information given in
the n_conll files, mention-pairs are generated, their corresponding
feature vector is created and a label is assigned to each of them: a
positive label (þ) indicates that the two mentions corefer, whereas
a negative label (�) indicates that they do not corefer. According to
the example of Fig. 2, there are two positive mention-pairs: m1–m2

and m3–m4. There are four more possible mention-pairs, all of
which are negative: m1–m3, m1–m4, m2–m3 and m2–m4.

Note that each mention in a file is combined with all the rest of
mentions in the same file to form mention-pairs. Pairing the four
mentions in Fig. 2, for example, six mention-pairs can be gener-
ated, only two of which are positive. Consequently, a very large
amount of negative instances is generated, specially for large files.
In order to reduce the amount of negative instances in a similar
manner as in Sapena et al. (2011), negative instances with more
than five feature values different from any positive instance in
each file are eliminated. Bringing together the instances generated
from files of the same split and genre, the training, development
and testing corpora for the 5 genres are created. Contradictions
(negative instances with identical feature values as a positive
instance) and instances that appear more than once in the same
corpus are removed. Since the size of the corpora generated was
too large for some of the genres, a stratified random sampling
strategy is applied to reduce the size of all corpora; the broadcast
conversations (BC) genre training corpus, for example, had more
than 4 million instances before the size reduction strategy was
applied. Table 1. gives detailed information about the number of
positive and negative mention-pairs in the training, development
and testing corpora used in the experiments.

Applying Latent Semantic Indexing (LSI) a term-document
matrix is constructed for each of the five training corpora. Docu-
ments represent mention-pairs and each of them consists of 127
words (linguistic feature values) out of the 254 possible ones. The
ones selected by LSI are assigned a row in the term-document
matrix. Feature values found in each corpus are indexed and
counted in order to compute a table of documents and words. Only
feature values that appear above an established frequency
threshold in the training corpora are selected as terms. A matrix
that reflects whether each term appears in each document is
created. Note that this matrix is binary.

Table 2 shows the number of terms (selected feature values)
and documents (positive and negative mention-pairs) found in the
training corpora for each genre. The third row in the table shows
the number of singular values (dimensions) computed by SVD for
each of the genres. These values are quite similar for the five
genres, ranging from 83 to 87. By means of these SVD-dimensions
the SVD-dimensional vector representation for the documents
(mention-pairs) is obtained.

5. Experimental setup

To optimize the behavior of the proposed approach, the five
development corpora are used to adjust two parameters in a
parameter tuning phase. The two parameters optimized are the
dimension of the vector space and the number of classifiers for the
multi-classifier system.

� The dimension of the vector space: the reduction of the SVD-
dimension is analyzed to see if results improve by means of a
reduced dimensional representation for mention-pairs. The
following values are experimented: 5, 10, 15, 20, 25, 30, 40.

� The number of classifiers: To optimize the behavior of the multi-
classifier system, the number of training datasets is adjusted.
The following values are experimented: 5, 10, 20, 30, 40, 50, 60,
70, 80.

The five genres correspond to texts coming from different
sources and may have very different characteristics (Uryupina and
Poesio, 2012). That is why they are treated as five different clas-
sification problems and therefore, the parameter optimization
process is performed in an independent way for each of the
genres.

Tables 3–7 show the results for the different values of the two
parameters using the development corpora. Rows in the tables
correspond to values for the reduced dimension, and columns
correspond to the number of classifiers. Two evaluation measures
are computed for each parameter-pair; results in the first row are
accuracy rates; the ones in the second, F1-scores. The highest value
in each row is shown in bold, and the highest F1-score in each
table is shown in a box.

The optimal values for parameters are determined by the
highest F1-score in each table (the values in a box) and are sum-
marized in Table 8. According to these optimal values, testing
mention-pair vectors for the BC genre, for example, are projected
onto the 30-dimensional vector space and classified by a multi-
classifier formed by 60 k-NN classifiers. This implies that 60
training datasets (TDi) have to be sampled in the reduced 30
dimensional space and each one is used to obtain a classification
for a given testing mention-pair using the k-NN classifier.
6. Experimental results

In order to evaluate the impact of LSI in this task, some
experiments are carried out in the testing phase.

� Baseline: To compute a baseline for the proposed approach, the
classification of testing mention-pairs represented by the



Table 3
Parameter tuning for the BC genre. Accuracy and F1-score.

BC genre Number of TDi training datasets

Dimension 5 10 20 30 40 50 60 70

10 Acc. 67.40 67.99 67.68 67.86 67.69 67.80 67.96 67.87
F1 57.99 57.75 57.88 58.42 58.18 58.39 58.37 58.41

15 Acc. 65.26 66.61 66.19 66.43 66.22 66.30 66.38 66.39
F1 58.91 58.79 59.39 59.43 59.44 59.66 59.64 59.73

20 Acc. 65.51 66.67 66.77 66.50 66.75 66.07 66.02 66.20
F1 59.97 60.23 60.67 60.33 60.75 60.30 60.18 60.22

25 Acc. 64.86 65.85 66.06 66.15 66.17 66.16 66.22 66.15
F1 60.15 60.12 60.40 60.63 60.85 60.78 60.84 60.89

30 Acc. 64.68 66.25 65.93 66.13 65.85 65.98 66.44 66.18
F1 60.60 61.10 61.49 61.49 61.50 61.66 61:85 61.71

40 Acc. 65.75 64.50 65.52 66.11 65.69 65.82 65.65 65.70
F1 61.31 61.06 61.16 61.40 61.17 61.47 61.17 61.24

Table 4
Parameter tuning for the BN genre. Accuracy and F1-score.

BN genre Number of TDi training datasets

Dimension 5 10 20 30 40 50

10 Acc. 70.13 70.90 71.42 71.30 70.96 71.12
F1 65.42 65.25 66.08 66.32 66.07 66.05

15 Acc. 68.08 69.75 69.59 69.65 69.50 69.44
F1 64.01 64.32 64.61 64.88 64.66 64.82

20 Acc. 70.55 72.15 71.85 71.84 71.69 71.82
F1 66.14 66.63 66.85 67.01 66.96 67.17

25 Acc. 70.70 71.91 71.84 72.16 71.98 71.98
F1 65.97 66.33 66.68 67:36 67.09 67.21

30 Acc. 69.99 71.98 71.93 71.91 71.80 71.96
F1 65.40 66.25 66.69 66.92 66.75 66.97

40 Acc. 70.58 72.13 72.09 71.81 72.20 71.99
F1 65.56 66.21 66.51 66.33 66.95 66.68

Table 5
Parameter tuning for the MZ genre. Accuracy and F1-score.

MZ genre Number of TDi training datasets

Dimension 5 10 20 30 40 50 60

10 Acc. 63.84 63.29 63.33 64.40 64.11 64.36 64.53
F1 65.59 65.96 65.66 66.34 66.11 66.36 66.30

15 Acc. 65.29 65.45 65.92 66.25 66.26 66.17 66.20
F1 66.52 67.13 67.31 67.43 67.41 67.30 67.24

20 Acc. 64.71 65.27 66.05 65.93 65.93 66.41 66.00
F1 66.57 67.34 67.87 67.73 67.63 68:10 67.66

25 Acc. 64.94 65.10 65.03 65.99 65.68 65.86 66.06
F1 66.86 67.53 67.21 67.78 67.56 67.57 67.81

30 Acc. 65.19 64.47 64.96 65.07 65.35 65.51 65.51
F1 67.02 67.11 67.31 67.31 67.30 67.53 67.48

40 Acc. 65.22 64.89 64.65 65.25 65.46 65.37 65.21
F1 67.34 67.42 66.98 67.52 67.52 67.36 67.36

Table 6
Parameter tuning for the NW genre. Accuracy and F1-score.

NW genre Number of TDi training datasets

Dimension 5 10 20 30 40

10 Acc. 77.64 77.94 78.39 78.05 78.33
F1 69.58 69.17 69.85 69.62 69.99

15 Acc. 77.12 78.15 78.44 78.34 78.21
F1 69.21 69.62 70.19 70.19 70.18

20 Acc. 76.95 78.37 78.15 78.29 78.38
F1 69.27 70.01 69.87 70.20 70.41

25 Acc. 77.15 78.41 78.73 78.54 78.52
F1 69.48 70.02 70:85 70.73 70.69

30 Acc. 76.41 77.99 77.75 78.16 78.07
F1 68.44 69.09 69.24 69.91 69.82

40 Acc. 77.33 78.58 78.35 78.42 78.52
F1 69.80 70.26 70.29 70.56 70.60

Table 7
Parameter tuning for the WB genre. Accuracy and F1-score.

WB genre Number of TDi training datasets

Dimension 5 10 20 30 40 50

5 Acc. 66.53 67.73 67.77 67.90 67.64 67.46
F1 62.02 62.48 62.41 62.64 62.47 62.32

10 Acc. 67.51 67.91 67.62 67.75 67.79 67.47
F1 65.22 65.05 65.03 65.45 65:49 65.06

15 Acc. 65.31 67.61 67.13 66.96 67.11 67.30
F1 62.87 64.14 64.11 64.05 64.36 64.50

20 Acc. 66.03 67.39 67.24 66.91 66.92 67.12
F1 63.18 63.73 64.27 64.00 64.03 64.27

25 Acc. 65.21 66.65 66.69 66.51 66.63 66.37
F1 62.70 63.21 63.71 63.57 63.89 63.66

30 Acc. 64.92 66.55 65.88 66.04 66.14 65.86
F1 62.33 62.80 62.88 63.04 63.25 63.09

40 Acc. 65.25 66.54 66.30 66.06 66.13 66.32
F1 62.94 63.45 63.43 63.45 63.78 63.92

Table 8
Optimal dimension and number of classifiers.

Optimal parameters BC BN MZ NW WB

Optimal dimension 30 25 20 25 10
Optimal number of classifiers 60 30 50 20 40
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original 127 binary features is considered. They are also used by
RelaxCor, the existing most similar method to the proposed
approach. Mention-pairs are classified using a single 3-NN
classifier.

� Single classification: In a second experiment, some very widely
used standard classification algorithms such as Naive Bayes
(NB), classification trees (C4.5), Support Vector Machines (SVM)
and k-nearest neighbors are used to classify mention-pairs
represented in the SVD-dimensional vector space created by
LSI (see the SVD-dimensions used for the five genres in Table 2).

� Proposed approach: In a third experiment the proposed
approach is used. First, a multi-classifier system composed of
several 3-NN classifiers classifies testing mention-pairs in the
same SVD-dimensional vector space as in the previous experi-
ment (MultiCl:optþ SVD). This multi-classifier is generated
according to the optimal number of classifiers for each genre
(see Table 8). Finally, the same multi-classifier is applied for the
optimal SVD-dimensions per genre (MultiCl:optþSVDopt) (see
optimal number of classifiers and optimal SVD-dimensions in
Table 8).

Table 9 shows the results obtained in each of the experiments.
The results shown in bold in the columns that correspond to the
five genres are the best accuracy and F1-score for each genre. Note



Table 9
Testing results for the five genres. Last column: mean accuracy and F1-scores.

Experiment BC BN MZ NW WB Mean

Baseline Acc. 71.90 70.40 70.60 70.70 66.90 70.10
(RelaxCor) F1 76.20 68.60 73.10 67.90 74.40 72.00

Single classification Acc. 42.21 61.90 61.95 66.76 41.85 54.93
(NB þ SVD) F1 34.90 35.90 58.30 57.00 43.00 45.82

Single classification Acc. 64.86 69.76 65.32 70.82 69.67 68.09
(C4.5 þ SVD) F1 72.70 64.70 71.10 69.70 78.10 71.26

Single classification Acc. 63.62 51.98 68.75 68.62 70.92 64.78
(SVM þ SVD) F1 68.60 3.80 71.10 59.90 79.70 56.62

Single classification Acc. 67.20 72.50 66.20 72.50 78.30 71.30
(3-NN þ SVD) F1 74.20 71.00 71.70 71.50 85.00 74.70

Proposed approach Acc. 66.90 75.50 66.10 74.20 77.60 72.10
MultiCl:optþ SVD F1 73.90 72.80 70.70 71.60 84.10 74.60

Proposed approach Acc. 66.30 74.30 68.50 71.20 76.20 71.30
MultiCl:optþSVDopt F1 72.40 71.40 71.50 67.80 83.10 73.20
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that the two performance measures computed are very correlated
in the five cases. Taking into account that the proportion of posi-
tive and negative instances varies from genre to genre, this cor-
relation gives consistency to the interpretation of the results
obtained.

The best results for BC and MZ genres are obtained by the Base-
line, applying a single 3-NN classifier to original RelaxCor vectors (F1-
scores: 76.2 and 73.1, respectively). For the rest of the genres, the best
results are obtained when the SVD-dimensional representation is
used for mention-pairs. An F1-score of 85 is obtained for the WB
genre with a single 3-NN classifier (3-NN þ SVD). The proposed
approach achieves the best results for two out of the five genres, with
an F1-score of 72.8 for BN and 71.6 for NW, when the SVD-
dimensional vectors are classified by the optimized multi-classifier
(MultiCl:optþ SVD). Surprisingly, when the optimized dimensions are
used, results do not improve (MultiCl:optþSVDopt).

The last column in Table 9 shows the mean accuracy and F1-
scores obtained in each experiment, taking into account the five
genres as a whole (the best are shown in bold). The best mean F1-
score is obtained when mention-pairs are classified in the SVD-
dimensional vector space by a single 3-NN classifier. In fact, this
result is very closely followed by the one obtained in the proposed
approach with the multi-classifier, (74.7 and 74.6, respectively).
The best mean accuracy is obtained by the proposed approach
(72.1). This good results seem to suggest that the dimensions
computed by the SVD technique are very appropriate to represent
mention-pairs and classify them. Moreover, the use of the multi-
classifier system gets to achieve even better results for some of the
genres, outperforming the ones obtained by the other classifica-
tion systems.
7. Conclusions and future work

In this paper a different machine learning approach to deal
with the coreference resolution task is presented: a multi-classifier
system that classifies mention-pairs in a reduced dimensional
vector space created by applying the SVD technique. The approach
is tested for OntoNotes, the corpus used in the most recent
international challenges such as CONLL-2011 and CONLL-2012,
devoted to evaluate coreference resolution systems.

A parameter tuning phase is performed to adjust the dimension
of the vector space and the number of classifiers. This optimization
process is carried out in an independent way for each genre.
Results show different behaviors for the five genres and, therefore,
make it difficult to find a general solution and treat the five genres
as a unique classification problem.

Three experiments are carried out. In a first experiment, the
most similar method to the proposed approach is considered, and
results are computed using the original feature vectors and a
single 3-NN classifier to set a baseline. A second experiment is
performed to measure to what extent working with feature vec-
tors in a reduced dimensional vector space helps to determine
coreference resolution of mention pairs. Four single classifiers are
applied, being 3-NN the one that obtains the best results. In fact, it
outperforms baseline results for three out of the five genres (BN,
NW, WB) and is the best for WB genre. In a final experiment, the
proposed approach is applied and very promising results are
obtained. As a matter of fact, the best results are obtained using it
for BN and NW genres.

When mean results per experiment are considered, the SVD-
dimensional representation always achieves the best results. This
is a very significant fact, because it seems to suggest that the SVD-
dimensional representation computed by LSI is a very robust and
suitable representation for coreference mention-pairs. The use of
such a representation, compared to existing approaches that do
not make use of it, may benefit the performance of systems that
solve the complete task of mention detection and coreference
resolution and, consequently, have an important impact in more
general Natural Language Processing tasks that require natural
language understanding.

As future work, we plan to experiment with OntoNotes v5.0
Release, the new version available. We also intend to experiment
with some other kind of multi-classifer systems. It is important to
note that the approach may be applied to corpora in other lan-
guages as well.
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