
 1

AN ASSISTANT TOOL FOR VERSE-MAKING IN
BASQUE BASED ON TWO-LEVEL MORPHOLOGY

AUTHOR: Bertol Arrieta

AFFILIATION: University of the Basque Country

E-MAIL: jiparkob@si.ehu.es

AUTHOR : Iñaki Alegria

AFFILIATION : University of the Basque Country

E-MAIL: i.alegria@si.ehu.es

AUTHOR : Xabier Arregi

AFFILIATION: University of the Basque Country

E-MAIL: jiparipx@si.ehu.es

CONTACT ADDRESS: 649 Postakutxa / 20080 Donostia / Basque Country

FAX NUMBER: 34-943219306

PHONE NUMBER: 34-943015064

mailto:jiparkob@si.ehu.es
mailto:i.alegria@si.ehu.es
mailto:jiparipx@si.ehu.e

 2

Abstract

In this paper we present a specialised word generator, which has been aimed as an assistant

tool for Basque troubadours. Such a tool allows verse-writers to generate all the words that

match with a given word termination. We coped with some interesting aspects, i.e. the

dimension of the generated list and the need of establishing an order of relevance among the

listed items.

 This work can be seen as a way of reusing computational linguistic tools in the

context of the Basque cultural means of expression. The technical foundations of this tool lie

on a two-level morphological processor. The way in which words must be generated (starting

from the end of the word) leads us to inverse the generation process.

‘Bertsolaritza’: What Is It?

‘Bertsolaritza’ (Basque term for verse-making) is an oral or written literature form with old

tradition and great popularity in the Basque Country. Similar forms are manifested in other

countries like Cuba.

 While the written mode is similar to poetry, the oral mode has a peculiarity:

troubadours sing verses without knowing previously the theme. In other words, a theme is

given to the troubadour and in a few seconds they have to think a set of verses adjusted to the

theme and sing them. These verses must hold the formal conditions (measurement and rhyme)

of the discipline.

 Here it is an example of a verse in Basque. In this occasion, the troubadour was asked

for singing a verse, which would describe the word 'burua' (head). Egaña (the troubadour)

spent only 20 seconds thinking this verse, before beginning to sing it (see the translation in Fig.

3). Note that even sentences rhyme (see Fig. 1) and that it has a fixed measurement (see Fig. 2).

‘Batzutan da argia

bestetan iluna

batzutan pilakoa

bestetan astuna

kanpotik ilea du

barruan garuna

lepo gainean denok

daukagun laguna

gehiegik gutxiegi

erabiltzen duna’

Figure 1 (Egaña, 97)

 It has to be tak

not know previously the

and make a verse adjuste

‘Ba-tzu-tan da ar-gi-a (7 syll.)

bes-te-tan i-lu-na (6 syll.)

ba-tzu-tan pi-la-ko-a (7 syll.)

bes-te-tan as-tu-na (6 syll.)

kan-po-tik i-le-a du (7 syll.)

ba-rru-an ga-ru-na (6 syll.)

le-po gain-e-an de-nok (7 syll.)

dau-ka-gun la-gu-na (6 syll.)

gehi-e-gik gu-txi-e-gi (7 syll.)

e-ra-bil-tzen du-na’ (6 syll.)
3

 Figure 2 (Egaña, 97)

en into account that this is an improvise

 word he had to describe. He had to thin

d to a measurement and where even sente

' Sometimes is clever

sometimes is dark

sometimes is ordinary

sometimes is lazy

it is covered with hair

brain is in

the friend we all have

on the neck

which is used too few times

by too many people.'
Figure 3 (Egaña, 97)

d verse. The verse-maker did

k all the verse at the moment

nces rhymed.

 4

 Let us see another example. In this case, Lazkao Txiki (1926-1993) had to think 3

verses after an object was given to him. Lazkao Txiki was a single man, small in height and he

was in his 60's when he was asked for singing this verses. The object given was a mirror.

‘Ispilu txiki eder polit bat

didate aurrera ekarri

ekarri dunak jakingo zuen

mutilzar zar honen berri

gazte dan arte hau izaten da

gazte guztien pozgarri

zartutakoan ez da beiratzen

hau gaztetan bezain sarri

Hola jarrita bota behar dit

bertso koxkor bat edo bi

behingoan jarri geranez gero

biok aurpegiz aurpegi

neri begira hortik daduzkak

alperrikako bi begi

hik ez nauk noski ni ikusiko

baina nik ikusten haut hi

Neri begira jarrita motel

zergatik hago horrela?

ta pentsatzen det aspalditxotik

ezagututzen hautela

mutilzarraren moko horrekin

ez dek ematen motela

azal zimurtzen ari haiz motel

Lazkao Txiki bezela.’

‘Is-pi-lu txi-ki e-der po-lit bat (10)

di-da-te_au-rre-ra e-ka-rri (8)

e-ka-rri du-nak ja-kin-go zu-en (10)

mu-til-zar zar ho-nen be-rri (8)

gaz-te dan arte hau i-za-ten da (10)

gaz-te guz-ti-en poz-ga-rri (8)

zar-tu-ta-ko-an ez da bei-ra-tzen (8)

hau gaz-te-tan be-zain sa-rri (10)

Ho-la ja-rri-ta bo-ta be-har dit (10)

ber-tso kox-kor bat e-do bi (8)

behin-go-an ja-rri ge-ran-ez ge-ro (10)

bi-ok aur-pe-giz aur-pe-gi (8)

ne-ri be-gi-ra hor-tik da-duz-kak (10)

al-pe-rri-ka-ko bi be-gi (8)

hik ez nauk nos-ki ni i-ku-si-ko (10)

bai-na nik i-kus-ten haut hi (8)

Ne-ri be-gi-ra ja-rri-ta mo-tel (10)

zer-ga-tik ha-go ho-rre-la? (8)

ta pen-tsa-tzen det as-pal-di-txo-tik (10)

e-za-gu-tu-tzen hau-te-la (8)

mu-til-zarr-a-ren mo-ko ho-rre-kin (10)

ez dek e-ma-ten mo-te-la (8)

a-zal zi-mur-tzen a-ri haiz mo-tel (10)

Laz-ka-o Txi-ki be-ze-la.’ (8)

‘A little pretty mirror

has been brought to me.

The one who brought it

must know about this old confirmed bachelor.

While you are young , it (the mirror) is

usually a reason for joy,

but when you get older you do not look at it

as often as when you were young.

As I am here, I will sing you

one or two little verses

since we are finally

face to face.

There you have, looking at me,

those two useless eyes.

You might not see me, of course,

but I can see you very well.

Why are you

looking at me like that?

I feel as if I knew you

since a long time ago.

With this bachelor-beak

you do not look bad at all

but you are getting wrinkled, man,

just like Lazkao Txiki. ’

Figure 4 (Lazkao Txiki, 92) Figure 5 (Lazkao Txiki, 92) Figure 6 (Lazkao Txiki, 92)

 5

In the first verse, Lazkao Txiki is singing to the mirror, but in the second one and in

the third one, he has the brilliant idea to sing to the figure of the mirror (himself) (see Fig. 6).

Note that the verses have a fixed measurement (see Fig. 5) and that even sentences rhyme (see

Fig 4).

As it can be seen, this verse-making task is quite difficult, and more if the verses are

improvised. So great expertise is required. Because of that, some schools devote to teach how

to improvise this type of verses. As far as we concern, the tool here presented could be quite

useful in the verse-schools.

 Since some decades, an oral verse-making competition is organized in the Basque

Country every four years. The high diffusion of this event (thousands of Basque people follow

this competition with great interest live or from TV) is a clear demonstration of the importance

of this discipline.

 From this background was formed the idea of designing the tool here presented.

Noting that one of the most difficult things troubadours must learn is to find words that rhyme,

we did an application tool for that purpose. We hope that such an application will be a useful

assistance-tool in the task of finding rhymes, namely for those inexperienced troubadours.

Obtaining the Inverse Generator

To get an inverse generator tool, a morphological analyzer/generator for Basque, integrated in

several tools as spelling correctors and ICALL systems (Maritxalar et al., 97) and developed a

few years ago (Alegria et al., 96), was reused. The morphological description is based on the

Koskenniemi's Two Level Morphology Model (Koskenniemi, 83).

Koskenniemi’s Two-Level Morphology Model

The two-level system is based on two main components:

1. A lexicon where the morphemes (lemmas and affixes) and the possible links among

them (morphotactics) are defined. The lexicon is divided into different sublexicons and each

lexicon-entry specifies its morphotactical information bymeans of a continuation class which is

 6

a set of sublexicons (see Fig. 7). Combining sublexicons (nodes) and continuation classes

(arcs) the graph of morphotactics is defined.

 SUBLEXICONS

*Regular_verbs
 stay RV_CC
 try RV_CC
 believe RV_CC
 ask RV_CC
 …

*Irregular_verbs
 take IV_CC
 get IV_CC
 see IV_CC
 fly IV_CC
 buy IV_CC
 …

*Third_person
 s NULL

*Regular_past
 ed NULL

 CONTINUATION CLASSES

*RV_CC
 Third_person;
 Regular_past;
 …
*IV_CC
 Third_person;
 …

 Figure 7: Example of some sublexicons and some continuation classes

2. A set of rules which controls the mapping between the lexical level and the surface

level (changes at surface level when morphemes are linked) due to the morphonological

transformations (morphophonemics).

 To control these morphonological transformations with the sublexicons and

continuation classes above, we would need some rules. Here it is one of them, which will

control the third person of the verbs ending by ‘y’ and having a consonant before this ‘y’

character. In this case this ‘y’ character will be converted to ‘ie’.

 Y:i � Cons _ +: 0:e s;

 7

 So with these sublexicons, these continuation classes (see Fig. 8) and the necessary

rules we would obtain the results shown in Fig. 9.

 Figure 8: Sublexicons and continuation classes

stays
tries (The rule before is applied here)
believes
asks
…

stayed
tried
believed
asked
…

takes
gets
sees
flies (The rule before is applied here)
buys
…

 Figure 9: Words generated

stay

 try

 believe

 ask

 …

take
get
see
fly
buy
…

 s

 ed

R_V

I_V

3P

IV_CC

…

RF

RV_CC

 8

Reversing of the Morphological Description

In order to get our inverted morphological analyzer/generator for Basque language we needed

to reverse this morphological description. The goal is to build an inverted morphological

generator for Basque language, which will control the order of the proposals according to their

suitability for being a rhyme. The inverted morphological generator will obtain all the possible

forms corresponding to a known ending, instead of generating the possible forms

corresponding to the beginning. We took into account two choices to reverse the morphological

description.

1. Manipulating the Automata

This first option consists on manipulating the automata that are created from the morphological

description of the Basque language. The algorithm of this manipulation would be as follows:

-converting the final states to initial states

-converting the initial states to final states

-changing the direction of the transitions

Let us see what automaton would be if the rule described before (Y:i�Cons_ +: 0:e s)

is considered (see Fig. 10 and Fig. 11) and what kind of inverted automaton would be obtained

if the algorithm mentioned is applied (see Fig. 12).

y

i

y

=

Cons

Cons

+

=

0

e

s

s

=

=

1: 0 1 2 1 1 1 1

2: 3 6 2 1 1 1 1

3. 0 0 0 4 0 0 0

4. 0 0 0 0 5 0 0

5. 0 0 0 0 0 1 0

6: 0 1 2 7 1 1 1

7: 0 1 2 1 8 1 1

8: 0 1 2 1 1 0 0

 Figure 10: The table of the automaton

: � final states
. � non final states

 9

1

2

3

4

5

6
7

8

cons:cons +:=
0:e
s:s
=:= cons:cons

cons:cons
cons:cons

y:=

s:s

y:=
+:=
0:e
s:s
=:=

cons:cons

y:i +:=

0:e

+:=0:e

y:=
+:=
0:e
=:=

y:= +:=
s:s =:=

y:= 0:e
s:s =:=

 Figure 11: The resulting automaton

1

2

3

4

5

6
7

8

cons:cons +:=
0:e
s:s
=:= cons:cons

cons:cons
cons:cons

y:=

s:s

y:=
+:=
0:e
s:s
=:=

cons:cons

y:i +:=

0:e

+:=0:e

y:=
+:=
0:e
=:=

y:= +:=
s:s =:=

y:= 0:e
s:s =:=

 Figure 12: The inverted automaton

 10

This option looked initially good, because we did not need to manipulate the lexicon

and the rules; we only had to manipulate the automata. But analyzing this process, we realized

that after applying our inversion algorithm the Deterministic Finite Automata (DFA) would

become Non-Deterministic Finite Automata (NDFA) and trying to re-convert the NDFA in

DFA would cause a combining explosion, since this transformation has an exponential order

(Hopcroft and Ullman, 1979).

2. Manipulating the Morphological Representation

The second option consists on manipulating and reversing the lexicon and the rules directly

before using the compilers (Karttunen and Beesley, 1992) (Karttunen, 1993). So, this approach

involves the implementation of the programs that invert the lexicon, the morphotactics and the

phonological rules in an automatic way.

 Considering the problems of the first choice, to develop the second method was

decided. This process was divided into three steps:

 2.1 Reversing the lexicon

This task deals with the inversion of all the morphemes. The order of the characters

inside the morphemes is inverted in all the sublexicons (see Fig. 13).

 SUBLEXICONS

*Regular verbs
 yats RV_CC
 yrt RV_CC
 eveileb RV_CC
 ksa RV_CC
 …
*Irregular verbs
 ekat IV_CC
 teg IV_CC
 ees IV_CC
 ylf IV_CC
 yub IV_CC
 …
*Third_person
 s NULL
*Regular_past
 de NULL

 Figure 13: Sublexicons with the inverted lexicon-entries

 11

 2.2 Converting the continuation classes in ‘backward classes’

 The base of the morphotactics in the two-level model are the continuation classes

(Koskenniemi, 1983). A script to convert the continuation classes in ‘backward classes’ was

programmed so as to get a group of morphemes that goes before an inverted morpheme. It may

look easy, but it has some problems. Lexicons containing final classes have to be defined as

root lexicons, and consequently the backward class of the original root lexicons must be null.

 The algorithm is quite simple. If the lexicon-entries (morphemes) of sublexicon_i

have a continuation class (which contains also one or more sublexicons in), each sublexicon of

the continuation class would have the sublexicon_i into its backward class. The problem begins

when some entries of one sublexicon have one continuation class and others have another

continuation class, in other words, when one sublexicon has two or more continuation classes.

This would mean each sublexicon would have to be separated in so many pieces as

continuation classes it had. Thus, it is going to be possible to get the correct group of entries in

each backward class.

 For instance, the sublexicon SUBLEXICONi would have to be divided into two

sublexicons, SUBLEXICON__1 and SUBLEXICON__2, because different continuation

classes are in (see Fig. 14), and after, we would have to invert the entries and give to each entry

a backward class (see Fig. 15).

 ...SUBLEXICONi
 entry1 CC1

 entry2 CC2
 entry3 CC2
 entry4 CC1

 ...SUBLEXICONi__1 ...SUBLEXICONi__2
 entry1 CC1 entry2 CC2
 entry4 CC1 entry3 CC2

 Figure 14: Sublexicons separated depending on the continuation classes of each lexicon-entry

… SUBLEXICONi__1 … SUBLEXICONi__2
 1yrtne BC__1 2yrtne BC__2

 4yrtne BC__1 3yrtne BC__2

 Figure 15: Separated sublexicons, with inverted lexicon-entries and backward classes

 12

Sublexicons in the example mentioned before (see Fig. 7) would be like in the Fig. 16.

SUBLEXICONS

*Regular_verbs
 yats NULL
 yrt NULL
 eveileb NULL
 ksa NULL
 …

*Irregular_verbs
 ekat NULL
 teg NULL
 ees NULL
 ylf NULL
 yub NULL
 …

*Third_person
 s TP_BC

*Regular_past
 de RP_BC

BACKWARD CLASSES

*TP_BC (third_person backward class)
 Irregular verbs;
 Regular verbs;

*RP_BC (regular_past backward class)
 Regular verbs;

 Figure 16: Sublexicons with the lexicon-entries inverted and their backward classes

 2.3 Reversing the rules

Each part has to be analyzed to decide what has to be inverted (see Fig. 17).

 .Alphabet

.Diacritics

.Sets

.Definitions

.Rules

 Figure 17: Rules file in the Xerox tools

 Nothing to change

 Nothing to change

Nothing to change

 This part has to be ‘inverted’

 ‘name of the rule’ ! comment
 ! comment
 s1:a1 => <s2:a2 s3:a3> _ <s4:a4 s5:a5>;
 <s6:a6 s7:a7> _ <s8:a8 s9:a9>;
 where

 ;

 This part has to be ‘inverted’

 13

 ‘name of the rule’ ! comment
 ! comment
 s1:a1 => <s5:a5 s4:a4> _ <s3:a3 s2:a2>;
 <s9:a9 s8:a8> _ <s7:a7 s6:a6>;
 where

 In the case of Rules the name and the comments have not to be changed. Let us see

how the own rule has to be changed.

 The rules are expressed as follows:

<correspondence> <operator> <left context> _ <right context>

 To reverse the rules only contexts have to be changed, interchanging between them

and reversing each one (see Fig. 18). The contexts are regular expressions and it is necessary to

distinguish between data (to be reversed) and regular operators and reserved characters.

 Figure 18: Inversion of each rule

 The clause ‘Where’ can not have changes, because this clause makes reference to the

correspondence of the rule (s1:a1) and this part does not change.

 Besides, in the rules, different operations may appear. So, what has to be done in each

operation has to be decided (see Fig. 19).

 -complement (∼): ∼a:b ===> ∼a:b NOTHING TO CHANGE

 -term complement (\): \a:b ===> \a:b NOTHING TO CHANGE

 -containment ($): $a:b ===> $a:b NOTHING TO CHANGE

 -kleene star (*): (a:b)* = (a:b a:b a:b) ===> (a:b a:b a:b) = (a:b)*

 NOTHING TO CHANGE

 -kleene plus (+): (a:b)+ ===> (a:b)+ NOTHING TO CHANGE

 -ignore (/): (a:b c:d) / e:f = (e:f)* a:b (e:f)* c:d (e:f)*

 ===> (e:f)* c:d (e:f)* a:b (e:f)* = (c:d a:b) / e:f

 The Ignore operation HAS NOT TO BE CHANGED,

 only the concatenation, as we are seeing now.

 -concatenation(): a:b c:d ===> c:d a:b THERE HAVE TO BE CHANGED

 -union (�): a:b � c:d ===> a:b � c:d NOTHING TO CHANGE

 -intersection (&): a:b & c:d ===> a:b & c:d NOTHING TO CHANGE

 -minus (-): a:b - c:d ===> a:b - c:d NOTHING TO CHANGE

 Figure 19: Operations that could appear in the rules

 ;

 ‘Inverted’ rules

 14

 As the concatenation operation is the only one to change, set and definitions have not

to be changed. A gap is a concatenation operation so when one is found, both sides of the gap

would have to be exchanged. If no gap is found, nothing changes.

 Let us see a real example. The rule mentioned before, ‘Y:i � Cons _ +: 0:e s; ’

will be converted to ‘ y:i <=> s 0:e +: _ Cons;’. So, with these sublexicons, these backward

classes (see Fig. 20) and the inverted rules these words would be created (see Fig. 21).

 Figure 20: Sublexicons with inverted lexicon-entries and backward classes

syats
seirt
seveileb
sksa
…
deyats
deirt
deveileb
deksa
…

sekat
steg
sees
seilf
syub

 Figure 21: Words generated

yats

 yrt

 eveileb

ksa

 …

ekat
teg
ees
ylf
yub
…

 s

 de

R_V

I_V

TP

RF

RF_BC

TP_BC

 15

Application to ‘Bertsolaritza’: Finding Words that Rhyme with

an Ending
Once the inverted analyzer/generator for Basque language was developed, we tried to reuse it

in an application that got the rhymes departing of a final part of a word. We needed to invert

the character sequence given by the user and then launch the generation with our inverted

morphological generator tool.

But to start the generation process the lexicon form of the ending given by the user is

needed. So we had to convert this word-ending (which was of course at the surface form) to the

lexicon form. The morpheme analyzer was introduced for this aim.

This morpheme analyzer is a little lexicon joined with the normal (‘non-inverted’)

rules. This little lexicon recognizes all kind of morphemes added to any characters, so that it is

going to be possible to analyze any word-ending given by the user.

Another question to front was the infinite generation. The Basque language has two

peculiar declensions ‘–en’ and ‘–ko’ which have the possibility to join with another declension

‘-a’ and get an endless generation. For instance, the Basque word ‘ama’ means in English

‘mother’. If the morpheme ‘-en’ is added, ‘amaren’ is got (it means “mother’s” in English and

it is the genitive form). Joining the morpheme ‘a’ then, results in ‘amarena’, that means

“mother’s”, but in a direct object sense. And these two additions can be done as much as is

wanted. Thus, all these forms can be obtained:

 ama+en � amaren

 ama+en+a � amarena

 ama+en+a+en � amarenaren

 ama+en+a+en+a �amarenarena

 ama+en+a+en+a+en � amarenarenaren

 ama+en+a+en+a+en+a �amarenarenarena

 … and so on.

So, let us think that the user writes ‘en’ as an ending character sequence. It would be

an endless list unless it is cut somewhere. In such a manner, two rules were created to cut this

endless generation and to show only one of these forms (the first one, which is the less

complex form).

 16

 k:k /<= (E: � E: t: a: � t: a:) k: o: (=:=)* (E: � E: t: a: � t: a:) _ o;

M:n /<= (E: M: � a: r: e: M: � r: e: M:) (=:=)* (E: � a: r: e: � r: e:) _ ;

 Besides, another rule was implemented not to allow more than two suffixes one

behind the other.

 %+:= /<= %+: %+: (=:=)+ %+: (=:=)+ _ ;

After these problems were solved we realized that the list generated was still too long

with almost all the word-endings. So, in order to improve the usefulness of the application, we

considered necessary to face this problem. Two solutions were implemented:

 1. Establishing of a kind of categorization or class-partition among the morphemes, so

that only one example (representative of the class) is returned when all the elements of the

class are suitable to be shown. For instance, if the input is 'ed', instead of returning all the

regular verbs with the past form ‘ed’ added (too long!)

 stay + ed � stayed

 try + ed � tried

 believe + ed � believed

 ask + ed � asked

 ...

the application will return only one example and a short explanation:

 TRY+ ed --> tried (REGULAR VERB + ed)

 2. Returning of words sorted in the order that verse-makers appreciate more. The

quality of the rhyme is generally better considered if the word is not composed or declined. At

any rate, using compose or declined words is mainly bad considered when more than one word

with the same structure are used to get the rhyme in the same verse (Amuriza, 1981). So,

words that are not composed or declined are shown first in our application, but immediately

after, the categorization of words with the same structure is shown. In the example above, our

application would show first words like ‘red’, ‘bed’,… and after the categorization

(regular_verb + ‘ed’) of words like ‘tried’, ‘believed’, … that have the same structure, would

be shown.

Finally, we had to make a Tcl-Tk screen to show all the output generated. And as we

got inverted words with our ‘inverted’ generator tool, we had to reverse these words before

 17

showing them. In this way, the tool here presented returns all the Basque words that have the

same final as the sequence of characters given by the user. The result is that the application

finds all the words that rhyme with the word-ending given by the user.

Conclusions and Future Improvements

Basque is a pre-Indo-European language with an unknown origin and it is quite different from

the surrounding European languages. The declension of the Basque language has fourteen

different forms for each singular, plural and undefined form. All of these forms are added at the

final of the words. Besides, it is an agglutinative language, which accepts morphemes to be

added to other morphemes. These characteristics show us the relevance of the final parts of the

Basque words. That reason leads us to think that the inverted morphological analyzer/generator

will be useful for different applications. We have found an interesting utility for such a

generator in the world of the ‘bertsolaritza’. Given that final parts of words (rhymes) are very

important in verses, the inverted morphological analyzer/generator can be an important

assistant tool for writing verses. Furthermore, an automatic method for inverting the

morphological description has been defined. Such a method can be reused in any other

language, always starting from a two-level description. The only thing to be taken into account

is that words with the same ending in Basque always rhyme, but not in other language like

English or French. In these languages the pronunciation of the characters is different depending

on the characters around. ‘Asked’ and ‘red’, for instance, have the same ending (‘ed’) but they

do not rhyme.

Here there are the future works we have considered i) to improve the categorization;

ii) to return words with the assonance rhyme; iii) to deal with semantics in the selection

module, in order to improve the order of presentation, and iv) to publish the application on a

web site.

Acknowledgements

We would like to thank Xerox for letting us use their tools, and specially to Lauri Karttunen.

 18

References

Alegria I., Artola X., Sarasola K., Urkia M. (1996) Automatic Morphological Analysis of

Basque. Literary and Linguistic Computing 11 (4): 193-203. Oxford University Press. 1996.

Amuriza X. (1981) Hiztegi Errimatua, Hitzaren Kirol Nazionala. Bizkaiko Bertsozale

Elkartea, 1981, 1993 (2nd ed.).

Egaña A. (1997) Bertsolari Txapelketa Nagusia 97. Euskal Herriko Bertsozale elkartea.

Elkarlanean Fundazioa, 1998.

Hopcroft John E., Ullman Jeffrey D. (1979) Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley Publishing Company.

Karttunen L. and Beesley K. R. (1992). Two-Level Rule Compiler. Xerox ISTL-NLTT-

1992-2.

Karttunen L. (1993). Finite-State Lexicon Compiler. Xerox ISTL-NLTT-1993-04-02.

Karttunen L. (1994). Constructing Lexical Transducers, Proc. of COLING´94, 406-411.

Koskenniemi K. (1983). Two-level Morphology: A general Computational Model for Word-

Form Recognition and Production, University of Helsinki, Department of General Linguistics.

Publications nº 11.

Lazkao Txiki (1992). Lazkao Txiki. Sendoa produkzioak. CD format.

Lekuona et al. (1980) Bertsolaritza. Jakin 14. eta 15. Donostia.

Maritxalar M., Diaz de Ilarraza A., Oronoz M. (1997) From Psycholinguistic Modelling of

Interlingua to a Computational Model. Proc. Of CONLL97 Workshop

(ACL Conference). Madrid 1997.

	Abstract
	‘Bertsolaritza’: What Is It?
	‘
	‘Ispilu txiki eder polit bat
	‘Is-pi-lu txi-ki e-der po-lit bat (10)
	Obtaining the Inverse Generator
	Koskenniemi’s Two-Level Morphology Model
	Reversing of the Morphological Description
	1. Manipulating the Automata
	2. Manipulating the Morphological Representation
	
	BACKWARD CLASSES

	Conclusions and Future Improvements
	Acknowledgements
	References
	Egaña A. (1997) Bertsolari Txapelketa Nagusia 97. Euskal Herriko Bertsozale elkartea. Elkarlanean Fundazioa, 1998.

