
A framework for representing and managing linguistic annotations
based on typed feature structures

X. Artola, A. Dı́az de Ilarraza, N. Ezeiza, K. Gojenola* G. Labaka A. Sologaistoa A. Soroa
Faculty of Computer Science, Donostia / *School of Engineering, Bilbo

University of the Basque Country (UPV/EHU)
The Basque Country
jipdisaa@si.ehu.es

Abstract

In this paper we present a framework for deal-
ing with linguistic annotations. Our aim is to
establish a flexible and extensible infrastructure
which follows a coherent and general represen-
tation scheme. This proposal provides us with
a well-formalized basis for the exchange of lin-
guistic information. We use TEI-P4 conformant
feature structures as a representation schema for
linguistic analyses. We have identified the consis-
tent underlying data model which captures the
structure and relations contained in the infor-
mation to be manipulated. This data model has
been represented by classes following the object-
oriented paradigm. The huge amount of informa-
tion generated is stored in an XML database that
provides fast answers to common queries. With
the aim of helping users to manipulate linguis-
tic annotations generated by the different tools,
we have designed and implemented a component-
based software, EULIA, that facilitates opera-
tions on the linguistic annotations.

Keywords: linguistic annotations, NLP software en-
gineering, stand-off annotation

1 Introduction

In this paper we present a framework for creating,
browsing and editing linguistic annotations generated
by a set of different linguistic processing tools1(Artola
et al. 00).

The objective is to establish a flexible and extensible
infrastructure for consulting, visualizing, and modify-
ing annotations generated by existing linguistic tools,
following a coherent and general representation scheme
(Artola et al. 02).

The main goal of this proposal is to set up a
well-formalized basis for the exchange of linguistic
information among tools. We use TEI-P4 confor-
mant (http://www.tei-c.org/P4X/DTD/) typed fea-
ture structures as a representation schema for linguis-
tic analyses.

We have identified the consistent underlying data
model which captures the structure and relations con-
tained in the information to be manipulated. This
data model is represented by classes that are encapsu-
lated in several library modules, following the object-
oriented paradigm.

1URL: http://ixa.si.ehu.es

Besides, we have also implemented EULIA, an ex-
tensible, component-based software architecture to in-
tegrate language engineering applications. EULIA
is a user-oriented linguistic data manager, with an
intuitive and easy-to-use GUI that offers help in
data browsing, manual disambiguation and annotation
tasks.

The rest of the paper is organized as follows. In
section 2 we present some related work. Section 3
will be dedicated to explain the annotation framework
proposed; that is, the representation scheme used for
the linguistic information obtained from the different
tools. In section 4 we explain the information flow
among the different linguistic processors integrated so
far. Section 5 presents LibiXaML, the program li-
brary which deals with the different types of linguistic
information, i.e., with what we call the ”annotation
web”. In section 6, the library-oriented approach we
use to store information is presented. Section 7 de-
scribes EULIA, an application implemented for facil-
itating the work with the annotation web. Finally,
section 8 presents conclusions and future work.

2 Related work

There is a general trend for establishing standards
for effective language resource management (ISO/TC
37/TC 4 (Ide & Romary 04)), the main objective of
which is to provide a framework for language resource
development and use. A key issue in software devel-
opment in NLP processes is the definition of a frame-
work for linguistic knowledge representation. Such a
framework has to satisfy needs entailed by the differ-
ent tools and has to be general enough (Basili et al.
98). It is not trivial to adopt a formalism to repre-
sent this information and different approaches have
been considered for this task. For example, ALEP
(Advanced Language Engineering Platform) (Simkins
94) can be considered the first integrating environment
for NLP design, where all the components (linguis-
tic information, processing modules and resources) are
homogeneously described using the ALEP User Lan-
guage (AUL) based on a DAG formalism. Perhaps the
most influential system in the area is GATE (Cun-
ningham et al. 96; Bontcheva et al. 04; Neff et al.
04) which provides a software infrastructure on which
NLP applications may be combined into larger appli-
cation systems. Following this tendency, ATLAS and



Figure 1: The multi-document annotation web (1)

MAIA (Bird et al. 00; Laprun et al. 02) provide an ar-
chitecture targeted at facilitating the development of
lingistic annotation applications. In Talent (Neff et al.
04), the authors present a pipeline architecture allow-
ing for rapid prototyping and application development.
The UIMA model (Ferrucci & Lally 04) permits the
implementation of middleware frameworks that allow
component-based infrastructure for enabling the rapid
combination of linguistic technologies.

The annotation framework presented in this paper
follows the stand-off markup approach and it has been
inspired on TEI-P4 guidelines (Sperberg-McQueen &
Burnard 02) to represent linguistic information ob-
tained by a wide range of linguistic tools. The rea-
son for taking this approach is that our representation
requirements are not completely fulfilled by the an-
notation schemes proposed in the systems mentioned
before. For instance, the TIPSTER architecture [Gr-
ishman 97] used in GATE version 1 exhibits problems
when encoding some linguistic structures, as those re-
ferred to non-continuous multiword lexical units. The
ATLAS system, based on the so-called Directed An-
notation Graphs (DAG) for annotation purposes, ex-
hibits the same restrictions. GATE version 2 (Cun-
ningham et al. 02) tried to solve this problem combin-
ing TIPSTER and DAG, but the solution they propose
makes the annotation of some simple, non-continuous
features complex and non-intuitive.

Basque is an agglutinative language and the mor-
phological information we want to attach to every
word-form obliges us to use a rich model to represent

it. The models used by these well-known systems don’t
fullfil this requirement. Our stand-off markup anno-
tation system can represent any kind of linguistic in-
formation or structure. Following the TEI guidelines,
we can deal with any kind of linguistic annotation by
means of few elements such us anchors, joins, links and
feature structures.

3 The annotation framework

Two main features characterize our annotation frame-
work:

1. The variety of anchors to which the linguistic in-
formation can be attached ranges from single to-
kens, continous and discontinous multi-token lex-
ical units, and different kinds of spans up to even
particular word interpretations.

2. The richness and complexity of the linguistic in-
formation we need to represent. For example, in
morphological analysis, we want to describe phe-
nomena such as intra-word ellipsis or the inner
structure of derivatives and compounds

In our case, within this framework of stand-off lin-
guistic annotation, the output of each analysis tool
may be seen as composed of several XML documents:
the annotation web. Figure 1 and Figure 2 show the
currently implemented document model including the
representation schemes used in tokenization, segmen-
tation, morphosyntactic analysis, multiword recogni-
tion, lemmatization/disambiguation, shallow syntax



Figure 2: The multi-document annotation web (2)

and dependency-based analysis. This model fulfils the
general requirements proposed in the standards (Ide
& Romary 04), as in (Bird et al. 00; Schäfer 03):

• It provides a way to represent different types of
linguistic information, ranging from the general
to the fine-grained one where partial results and
ambiguities can be easily represented.

• It uses feature structures as a general data model,
thus providing a formal semantics and a well
known logical operation set over the linguistic in-
formation represented by them.

• A general abstract model has been identified over
the particular linguistic processors. Therefore,
NLP applications are able to import/export the
information they need in a unified way.

• The representation model doesn’t dependend on
any linguistic theory nor any particular processing
software.

3.1 The annotation web

As said above, linguistic information is attached to the
analyzed text and represented as a set of XML docu-
ments that constitute the annotation web. Looking at
the characteristics of the documents to be generated,
we have identified different groups and types of doc-
uments. Next, we will present all of them indicating
the elements defined and the corresponding class used
for their representation in our model.

• Text anchors: text elements found in the input
text.

– Single-word tokens recognized by the tok-
enizer. They are tagged with the XML <w>
element, and represented in our model by the
W class.

– Multiword lexical units: the collection of
“multiword tokens” identified in the input.
The MWSTRUCT class represents the con-
stituents of a multiword unit, which is en-
coded by means of a <join> element that
gathers the individual constituents of the
unit.

– The structure of syntactic chunks recognized
in the text: the collection of “spans” iden-
tified in the input. The SPANSTRUCT
class represents the constituents of a chunk
that are also tagged by means of <join> el-
ements.

• Analysis collections: collections of linguistic anal-
yses obtained by the different tools. Due to the
complexity of the information to be represented
we decided to use feature structures (FS) as a gen-
eral data structure. The use of feature structures
quickly spread to other domains within linguistics
since Jacobson (Jacobson 49) first used them for
the representation of phonemes. Feature struc-
tures serve as a general-purpose linguistic meta-
language; this reason led us to use them as the
basis of our encoding. The feature structures we
use fulfill the TEI’s guidelines for typed FSs, and
the schema of all the inputs/outputs in the tool
pipeline has been thoroughly described by means



of Relax NG Schemas.

• Links between anchors and their corresponding
analyses, tagged by means of <link> elements.
They are represented by the LINK class

The multi-document annotation web gives, as
pointed out in (Ide & Véronis 95; Ide & Romary 04),
more independence and flexibility to the different pro-
cesses, and greater facilities for their integration. In
figure 3 we will show an example which illustrates how
the multi-document annotation web looks like once the
lemmatization process is carried out.

4 The I/O stream between programs

There are many linguistic tools integrated so far. Fig-
ure 1 and 2 illustrate the integration of the lexical
database (Aldezabal et al. 01) and the rest of the tools,
emphasizing that the communication among the differ-
ent processes is made by means of XML documents.
Let us describe these processes in sequence:

1. Having an XML-tagged input text file, the to-
kenizer takes this file and creates, as output, a
.w.xml file, which contains the list of the tokens
and sentences recognized in the input text. The
tokenized text is of great importance in the pro-
cess, in the sense that it intervenes as input for
different processes.

2. After the tokenization process, the segmentizer
takes as input the tokenized text and the gen-
eral lexicon issued from the lexical database,
and updates the library of segmentation analyses
(FSs describing the different morphemic segments
found in each word token; one FS per different dis-
tinct word-form) producing as well a document
(.seglnk.xml) containing the links between the to-
kens in the .w.xml file and their corresponding
analyses (one or more) in the library. The stand-
off framework we follow in annotating the docu-
ments allows us to attach easily different analyses
to one token.

3. After that, the morphosyntactic treatment mod-
ule takes as input the output of the segmentation
process and updates the library of morphosyntac-
tic analyses morflib. It produces a .morflnk.xml
document containing the links between the tokens
in the .w.xml file and their corresponding analyses
(one or more) in morflib.

The library morflib will be later enriched by the
MWLUs’ treatment module (Alegria et al. 04).
This module performs the processing of multi-
word lexical units producing a document that de-
scribes, by means of a collection of <join> ele-
ments .mwjoin.xml, the structure of the MWLUs
identified in the text. This module has obviously
access to the morphosyntactic analyses and to the

.morflnk.xml document, into which it will add the
links between the .mwjoin.xml document and the
library.

4. The morphosyntactic analyses and the output of
the tokenizer constitute the input of the Euslem
lemmatizer (Ezeiza et al. 98). The lemmatizer
updates the library of lemmatizations and pro-
duces the .lemlnk.xml document that contains the
links between the tokens and MWLUs, and their
corresponding lemmatization analyses. Besides,
it updates the .mwjoin.xml document removing
the incorrect joins previously included in it.

5. In figure 2, the syntactic process is depicted.
The Zatiak surface syntax parser (Aduriz et al.
04) identifies the chunks in the text (phrases,
verb chains and so on) based on the syntactic
functions that, following the Constraint Gram-
mar formalism (Karlsson et al. 95), the lemma-
tizer has associated to each word of the text. In
this process a named-entity recognizer is also in-
cluded. This process produces three documents:
a .spanlnk.xml document that describes which to-
kens and MWLUs belong to each chunk in the
text; a .synt.xml document that contains syn-
tactic features associated to each chunk; and a
.spanjoin.xml document containing the links be-
tween the chunks and the .synt.xml document.
Note that the syntactic analyses contained in the
synt.xml document correspond to a single input
text, since, obviously, there is no general library
containing syntactic analysis.

6. Finally, a dependency grammar parser establishes
the dependencies between the components of the
sentence in order to obtain a syntactic tree. It
takes as input the library of the different syntac-
tic dependencies deplib and obtains an .sdep.xml
document describing the syntactic dependencies
found in the sentences (Aranzabe et al. 04) and
a .sdeplnk.xml document containing the links be-
tween the dependencies and the library.

Figure 3 shows a sample of the annotation web, re-
sult of the lemmatization. The input-text is at the
upper-left part of the drawing. A multiword expres-
sion Hala ere (Basque for however) and a single-word
token ere (Basque for also) have been emphasized to
illustrate the relationships established between these
items in the text and their corresponding lemmatiza-
tions represented by feature structures contained in
the document at the upper-right part of the drawing.
The document called tokenized text contains the re-
sults of the tokenization process: the sequence of to-
kens identified in the text with the indication of the
character offsets corresponding to each token in the
source. Similarly, a document called MWLU’s struc-
ture contains the results of the MW expressions pro-
cessing: the sequence of multi-word elements identified



Figure 3: Output of the lemmatizer: a sample of the multi-document annotation web

in the text with the indication of the single tokens be-
longing to each one of them. Finally, the actual anno-
tations (and the ambiguities, if any) are represented by
the link document, that attaches the different items in
the source text (single- or multi-word tokens) to their
corresponding lemmatizations. TEI external pointers
are used to refer to elements not present in the same
document.

5 LibiXaML: A program library for
dealing with the annotation web

We identified the consistent underlying data model
which captures the structure and relations contained
in the information to be manipulated. This data model
is represented by classes which are encapsulated in
several library modules, following the object oriented
paradigm. These modules offer the necessary types
and operations the different tools need to perform
their task when recognizing the input and produc-
ing their output. LibiXaML manipulates: features,
feature structures, values, XML documents contain-
ing linguistic information of different types, document
headers, and so on.

The class methods in LibiXaML allow:

• Getting the necessary information from an XML
document containing tokens, links, multiword
structure joins, FSs, etc.

• Producing with ease the corresponding output ac-
cording to a well-defined XML description.

The class library has been implemented in C++
and it contains about 100 classes. For the imple-

mentation of the different classes and methods we
make use of the LT XML system (Thompson et
al. 97), a tool architecture for XML-based pro-
cessing of text corpora. The current release of Li-
biXaML works on Unix and can be soon found at
http://ixa.si.ehu.es/ixa/resources/libixaml.

6 Storing linguistic information in
general FS-Libraries

Considering the huge amount of information obtained
in these linguistic processes, it is crucial to get an op-
timal storage of data in order to provide a fast answer
when retrieving and searching this information. We
are experimenting two ways of doing things:

• Document-oriented approach: the segmentations,
morphosyntactic analyses and lemmatizations
(FSs) obtained by the different analysis tools ap-
plied on a given document constitute FS collec-
tions which are stored in files specifically attached
to that document.

• Library-oriented approach: the segmentations,
morphosyntactic analyses and lemmatizations
(FSs) obtained by the different analysis tools ap-
plied on a given document are added to general
FS collections stored in big FS libraries.

The second approach saves lots of disk space and
speeds up the analysis procedures because the analysis
of most word forms must not be repeated since their
results will be already stored in the library. So, per-
forming the analysis is just a matter of retrieving the



corresponding analysis identifiers in the library and
establishing a link to them.

Using the library-oriented technique to store in-
formation requires a more powerful indexing scheme,
which will avoid, most of the time, the access to the
actual XML FS library.

In order to test our annotation framework on a
running environment, we have tokenized, segmentized
and morphologically analyzed a text corpus contain-
ing 426,205 tokens (71,893 of them are the punctua-
tion marks). The annotation web issued from mor-
phological analysis has been stored, according to the
library-based approach, in the following manner:

• feature structures that represent the morpholog-
ical analyses corresponding to the word forms in
the corpus (one for each different word form) have
been loaded on an XML-native database (Berke-
ley DBXML);

• links between text elements and their correspond-
ing analyses have been stored in a relational
database (Berkeley DB) for faster retrieval;

• tokenization results and the original text are left
in the file system.

A query prototype has been developed on this archi-
tecture and some experiments have been carried out on
it. For now, this prototype provides us with a quite ba-
sic functionality, allowing to pose complex XPath ex-
pressions as queries. The XPath expressions are eval-
uated against the morphological analyses in the XML
database that has been adequately indexed, return-
ing as result the identifiers of the feature structures
that meet the constraints expressed by the query; next,
these identifiers are searched in the relational database
containing the links in order to get the identifiers of the
corresponding tokens, which are then retrieved on the
original text to get their contexts. The final result is
that, for example, to get a concordance (KWIC) that
contains the words whose morphological analyses meet
the constraints in the query along with their contexts
takes around one second in a SUN workstation.

7 EULIA: An application to create,
browse and disambiguate linguistic
annotation based on the annotation
web

In order to work on the annotation framework here
explained, we have developed EULIA an environment
that implements an extensible, component-based soft-
ware architecture to integrate natural language engi-
neering applications and to exploit the data created
by these applications. The main functions of EULIA
are the following ones:

• search, queries and analysis of results.

• submit a text to be analyzed.

• consultation and browsing of the linguistic anno-
tation attached to texts.

• manual disambiguation of analysis results.

• manual annotation facilities and suitable encod-
ing for new linguistic information.

• personalization of users.

Regarding the interface, the main window is divided
into two parts: a Multi-Document Interface (MDI)
panel where linguistic information is shown in an un-
derstandable way. The interface provides hypertextual
facilities, showing the linguistic information associated
to items selected on the left part. The environment is
designed as a tool for general users and linguists.

8 Conclusion and future work

In this paper we present a framework for dealing with
language annotations.

Our proposal provides a flexible and extensible in-
frastructure for consulting, visualizing, and modify-
ing annotations generated by existing linguistic tools.
In this framework, the fact that different analysis
sets (segmentations, complete morphosyntactic analy-
ses, lemmatization results, and so on) linked to text
anchors are stored in analysis libraries in a stand-
off fashion implies a reduction in time and space re-
sources. Regarding the physical storage of the anno-
tation information, we have already implemented the
document-based storage approach and are now refin-
ing the library-based approach previously explained
because we think that the use of XML native databases
should be a good solution for fast retrieval and search-
ing on these huge analysis libraries. So, we are plan-
ning to move progressively to this library-based ap-
proach. The work done so far confirms the scalability
of our approach.

Very few studies have used the stand-off markup
based on TEI-P4 guidelines. From our point of view,
the TEI-P4 approach gives us the expresiveness re-
quired by the complexity of the linguistic information
we want to represent both when establishing diverse
kinds of anchors to which attach information, and
when defining specialized FS types for this informa-
tion.

We have designed and implemented LibXaML, a
component-based library that represents the different
types of information to be manipulated.

Morever, EULIA, an extensible, component-based
software architecture to integrate natural language en-
gineering applications facilitates the work on these an-
notations offering help in data browsing, manual dis-
ambiguation and annotation tasks.

9 Acknowledgements

This research was partially funded by the Basque
Government and University (HIZKING21 project and
9/UPV00141.226-14601/2002)



References

(Aduriz et al. 04) Itziar Aduriz, Maxux Aranzabe,
Jose Mari Arriola, Arantza Dı́az de Ilarraza, Koldo
Gojenola, Maite Oronoz, and Larraitz Uria. Com-
putational Linguistics and Intelligent Text Process-
ing, chapter A Cascaded Syntactic Analyser for
Basque, pages 124–135. 2945 LNCS Series. Springer
Verlag, 2004.

(Aldezabal et al. 01) Izaskun Aldezabal, Olatz Ansa,
Bertol Arrieta, Xabier Artola, Aitzol Ezeiza, Gre-
gorio Hernández, and Mikel Lersundi. EDBL: a
general lexical basis for the automatic processing of
Basque. In IRCS Workshop on linguistic databases.,
Philadelphia. USA, 2001.

(Alegria et al. 04) Iñaki Alegria, Olatz Ansa, Xabier
Artola, Nerea Ezeiza, Koldo Gojenola, and Ruben
Urizar. Representation and Treatment of Multiword
Expressions in Basque. In ACL workshop on Multi-
word Expressions, Barcelona, 2004.

(Aranzabe et al. 04) Maxux Aranzabe, Jose Mari Ar-
riola, and Arantza Dı́az de Ilarraza. Towards a
dependency parser for Basque. In Proc. of Inter-
national Conference on Computational Linguistics.
COLING’2004, Geneva, 2004.

(Artola et al. 00) Xabier Artola, Arantza Dı́az de Ilar-
raza, Nerea Ezeiza, Koldo Gojenola, Aitor Maritx-
alar, and Aitor Soroa. A proposal for the integra-
tion of NLP tools using SGML-Tagged documents.
In Proc. of the Second Int. Conf. on Language Re-
sources and Evaluation, Athens (Greece), 2000.

(Artola et al. 02) Xabier Artola, Arantza Dı́az de
Ilarraza, Nerea Ezeiza, Koldo Gojenola, Gregorio
Hernández, and Aitor Soroa. A class library for the
integration of NLP tools: Definition and implemen-
tation of an abstract data type collection for the
manipulation of SGML documents in a context of
stand-off linguistic annotation. In Proc. of the Third
Int. Conf. on Language Resources and Evaluation,
Las Palmas (Spain), 2002.

(Basili et al. 98) Roberto Basili, Massimo Di Nanni,
and Maria Teresa Pazienza. Engineering of
IE Systems: An Object-oriented approach. In
Maria Terese Pazienza, editor, Information Extrac-
tion: Towards scalable, Adaptable Systems, vol-
ume 1714 of Lecture Notes in Artificial Intelligence,
pages 134–164. Springer-Verlag, 1998.

(Bird et al. 00) Steven Bird, David Day, John Garo-
folo, Henderson Henderson, Christophe Laprun, and
Mark Liberman. ATLAS: A flexible and extensible
architecture for linguistic annotation. In Proc. of
the Second International Conference on Language
Resources and Evaluation, pages 1699–1706, Paris
(France), 2000.

(Bontcheva et al. 04) Kalina Bontcheva, Valentin
Tablan, Diana Maynard, and Hamish Cunningham.
Evolving GATE to meet new challenges in language
engineering. Natural Language Engineering, 10(3-
4):349–373, 2004.

(Cunningham et al. 96) Hamish Cunningham, Yorick
Wilks, and Robert J. Gaizauskas. GATE: a Gen-
eral Architecture for Text Engineering. In Proceed-
ings of the 16th conference on Computational lin-
guistics, pages 1057–1060. Association for Compu-
tational Linguistics, 1996.

(Cunningham et al. 02) H. Cunningham, D. Maynard,
K. Bontcheva, V. Tablan, and C. Ursu. The GATE
User Guide. 2002. http://gate.ac.uk/.

(Ezeiza et al. 98) Nerea Ezeiza, Itziar Aduriz, Iñaki
Alegria, Jose Mari Arriola, and Ruben Urizar.
Combining Stochastic and Rule-based Methods for
Disambiguation in Agglutinative Languages. In
Proc. of COLING-ACL’98, pages 10–14, Montreal
(Canada), 1998.

(Ferrucci & Lally 04) David Ferrucci and Adam
Lally. UIMA: an architectural approach to unstruc-
tured information processing in the corporate re-
search environment. Natural Language Engineering,
10(3/4):327–348, 2004.

(Ide & Romary 04) Nancy Ide and Laurent Romary.
International standard for a linguistic annotation
framework. Natural Language Engineering, 10(3-
4):211–225, 2004.

(Ide & Véronis 95) Nancy Ide and Jean Véronis, ed-
itors. Text Encoding Initiative. Background and
Context. Kluwer Academic Pub, 1995.

(Jacobson 49) Roman Jacobson. The identification of
phonemic entities. Travaux du Cercle Linguistique
de Copenhague, 5:205–213, 1949.

(Karlsson et al. 95) Fred Karlsson, Atro Voutilainen,
Juha Heikkilä, and Arto Anttila, editors. Con-
straint Grammar: A Language-independent System
for Parsing Unrestricted Text, volume 4 of Natural
Language Processing. Natural Language Processing,
Mouton de Gruyter, Berlin and New York, 1995.

(Laprun et al. 02) Cristophe Laprun, Jonathan. Fis-
cus, John. Garofolo, and Silvai. Pajot. A practi-
cal introduction to ATLAS. In Proceedings of the
Third International Conference on Language Re-
sources and Evaluation, 2002.

(Neff et al. 04) Mary S. Neff, Roy J. Byrd, and
Branmir K. Bougaraev. The Talent system: TEX-
TRACT architecture and data model. Natural Lan-
guage Engineering, 10(3-4):307–326, 2004.

(Schäfer 03) Ulrich Schäfer. WHAT: An XSLT-based
infrastructure for the integration of natural lan-
guage processing components. In Proceedings of the
Workshop on the Software Engineering and Archi-
tecture of Language Technology Systems (SEALTS),
HLT-NAACL03, Edmonton (Canada), 2003.

(Simkins 94) N. K. Simkins. An Open Architecture
for Language Engineering. In First CEC Language
Engineering Convention, Paris (France), 1994.

(Sperberg-McQueen & Burnard 02) C. M. Sperberg-
McQueen and L. Burnard, editors. TEI P4: Guide-
lines for Electronic Text Encoding and Interchange.
Oxford, 4 edition, 2002.

(Thompson et al. 97) H.S. Thompson, R.Tobin,
D. Mckelvie, and C. Brew. LT XML Soft-
ware API and toolkit for XML processing. 1997.
http://www.ltg.ed.ac.uk/software/xml/index.html.


