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Abstract

In this paper we present a simple re-ranking
method for Automatic Sentence Simplification
based on the noisy channel scheme. Instead
of directly computing the best simplification
given a complex text, the re-ranking method
also considers the probability of the simple
sentence to produce the complex counterpart,
as well as the probability of the simple text it-
self, according to a language model. Our ex-
periments show that combining these scores
outperform the original system in three differ-
ent English datasets, yielding the best known
result in one of them. Adopting the noisy chan-
nel scheme opens new ways to infuse addi-
tional information into ATS systems, and thus
to control important aspects of them, a known
limitation of end-to-end neural seq2seq gener-
ative models.

1 Introduction

Automatic Text Simplification (ATS) aims to
rewrite text into a form that is easier to understand,
while retaining the original meaning. Its is an active
area of research with many interests in improving
web accessibility (Alarcon et al., 2021), for cogni-
tive disabled users (Kamran et al., 2022; Moreno
et al., 2021), for scientific information access (Er-
makova et al., 2021), and in general it is intended
for social good (Štajner, 2021).

In the last years there has been a remarkable ad-
vance in ATS due to the advent of deep learning
techniques and neural language models. This has
lead to a variety of methods that follow the seq2seq
architecture to build models that estimate p(y|x),
the probability of producing a simple sentence y
given the complex sentence x (Nisioi et al., 2017;
Zhang and Lapata, 2017; Martin et al., 2020b; Lin
and Wan, 2021; Omelianchuk et al., 2021). One of
the main problems of this approach is the lack of
control mechanisms to prevent the system to hal-
lucinate or produce repetition when generating y,

as well to infuse new information into the system.
Previous works have tried to control the generation
of simple sentences by using control codes that
condition the system output with variables such
as length, number paraphrases, lexical complexity,
and syntactic complexity, etc (Martin et al., 2020a;
Sheang and Saggion, 2021). Other works such
as Clive et al. (2021) use control prefixes, includ-
ing input-dependent conditional information pre-
trained models, incorporating learnable attribute-
level representations at different layers of a trans-
former.

In this paper we propose an alternative method to
control the generated simplifications of a seq2seq
ATS model. Instead of controlling the simplifica-
tions at decoding time, we propose to re-rank the
top candidates of an neural seq2seq model accord-
ing to the noisy channel scheme (Brown et al.,
1993; Yee et al., 2019; Yu et al., 2016). The noisy
channel scheme decomposes p(y|x) into p(x|y),
the probability of generating the complex sentence
x given the simple sentence y, and p(y), the prob-
ability of the simple sentence y. We present a
re-ranking method that considers all three proba-
bilities using different models. Because each of
the models is independently trained on different
data, our method is able to infuse additional knowl-
edge into a traditional seq2seq ATS system. The
noisy channel method has been mainly applied in
machine translation, but it was also applied for Doc-
ument Compression (Daumé III and Marcu, 2002),
exactly in the dropping word task (related to sum-
marization). Dropping or deleting words is also one
of the operations an ATS systems should carry our,
but it is not limited to that: ATS systems should
also split sentences, reorder words or sentences and
add necessary words or phrases. Moreover, ATS
systems’s output should be coherent, and by only
dropping words coherence can become deficient.

The contributions of this paper are the following:

• We propose a re-ranking method for seq2seq
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ATS systems based on noisy channel.

• We show that our method outperforms the
original system in three different English
datasets, yielding the best known result in one
of them.

• We show that the method is able to infuse
new information in neural ATS systems, as the
additional models in the noisy channel scheme
can be trained on complementary data.

2 Noisy Channel based re-ranking for
ATS

Given a complex text x = {x1, . . . , xM} and its
simplified version y = {y1, . . . , yN}, a seq2seq
ATS system builds a model that estimates p(y|x).
At inference time, and given the input x, the model
is used to select the simplification that maximizes
this probability, e.g., argmaxy p(y|x). The noisy
channel scheme is an alternative that has been
widely used in machine translation, and which uses
Baye’s rule to parametrize p(y|x) as p(x|y)p(y)

p(x) . Be-
cause we are interested in finding y that maximizes
the probability, the denominator p(x) is discarded.

In this paper we explore using the noisy chan-
nel scheme to re-rank the candidates generated by
the seq2seq ATS model. Specifically, we propose
to build three separate models to estimate p(y|x),
p(x|y) and p(y). Following usual practice, will
be henceforth refer to these models as the direct
model, channel model and language model, respec-
tively. Given x, our system first retrieve the list of
top-k candidates given by the direct model, as well
as the corresponding p(y|x) probabilities. Then,
the channel and language models are used to com-
pute p(x|y) and p(y) for each (x, y) pair. Finally,
the top-k candidates are re-ranked according to a
combination of the three probabilities, using the
same score function as in (Yu et al., 2016)1:

λ1 log p(y|x) + λ2 log p(x|y)
+ λ3 log p(y) + λ4 ·N

(1)

where N is the length of sentence y and
λ1, λ2, λ3, λ4 are hyper-parameters. As in (Yu
et al., 2016), we use λ4 to penalize the model for
generating simple sentences that are too short.

1We tried alternative score functions such as the proposed
in (Yee et al., 2019) with similar results.

3 Experimental setup

This section describes the experiments we con-
ducted to evaluate the effectiveness of the proposed
noisy channel re-ranking method for English ATS.
We describe the experimental setup, including the
built models, datasets and evaluation metrics, as
well as a description of the different systems and
baselines.

3.1 Building the models

The direct model p(y|x) is based on BART large,
a encoder-decoder language model with 400M pa-
rameters that is pre-trained on English text (Lewis
et al., 2020). The model is fine-tuned using the
training splits of the respective datasets. We used
default values for the learning rate (5× 10−5 with
a linear schedule and a warmup of 500 steps). We
trained the model for 10 epochs, and select the
checkpoint with smallest loss on the respective val-
idation sets. To generate the top-k candidates, we
used beam search with a beam size of k, and set
the maximum sentence length of 100.

The channel model p(x|y) is trained using the
exact same settings as the direct model, but when
fine-tuning the simple and complex sentences are
swapped, so that the model learns to produce com-
plex sentences given the simpler ones.

The language model p(y) is based on Bert-
large-uncased (Devlin et al., 2018). We continue
to train the pre-trained model using the Simple
Wikipedia, and the default language modeling ob-
jective. Again, we used default values: a weight
decay of 1 × 10−2, learning rate of 2 × 10−5

with warmup of 500 steps, and vocabulary size of
30, 522. Not being a generative model, BERT does
not directly compute p(y) for any given y. Thus,
we estimate this probability at inference time by
consecutively masking each word in y and calculat-
ing the probability that BERT produced the correct
word in the corresponding position. Specifically,
we estimate log p(y) using the following equation:

log p(y) ∼
N∑
i

log pbert(yi|y(i)) (2)

where yi is the ith token, y(i) is the original
sentence with the ith token replaced by the MASK
token, and N is the length of the sentence.



3.2 Datasets

We perform our experiments using three English
ATS datasets: WikiSmall, WikiLarge/TurkCorpus,
and Newsela. WikiLarge and WikiSmall were built
by automatically aligning sentences belonging to
the same article in English Wikipedia and Simple
English Wikipedia. In both cases, we used the splits
provided by Zhang and Lapata (2017). The Wik-
iSmall dataset contains 88, 837 training instances,
205 validation instances, and 100 test instances.
Regarding WikiLarge, the training set contains
296, 402 instances and the validation set 2, 000.
For evaluation, we used the TurkCorpus dataset
(Xu et al., 2016), which comprises eight manually
generated simplifications for each instance in the
WikiLarge test set. Finally, the Newsela dataset
consists more than 1k news articles that were
rewritten four times at different complexity lev-
els. We used the train/development/test splits from
(Xu et al., 2015), containing 94, 208/1, 129/1, 076
sentences respectively.

3.3 Hyperparameter search

We perform a hyperparameter grid search on the re-
spective development set to find the optimal values
for λ1, λ2, λ3, λ4 in Eq. (1). We tried all combina-
tions ranging the value of each λ between 0 and 1,
with 0.1 increments. The combination that obtains
the best SARI score (see next section) in the devel-
opment set is selected, and used in the respective
test sets. We used k = 10 in our experiments.

3.4 Evaluation Metrics and Systems

Following usual practice, we report the results us-
ing SARI (Xu et al., 2016) and Flesch–Kincaid
Grade Level (FKLG) readability metric (Kincaid
et al., 1975). We make the experiments with the
original BART system, as well as our NC-TS sys-
tem, the result of selecting the candidates after
re-ranking based on the noisy channel scheme. We
also test an Oracle system in the development test,
which is the result of selecting the candidate that
maximizes the SARI score wrt. the reference sen-
tence in the gold standard, and represents an up-
perbound of the re-ranking process. Finally, we in-
clude a baseline (dubbed Cosine) that re-ranks the
candidates according to their cosine similarity wrt.
the complex sentence. Sentence embeddings are
calculated using Sentence Transformers (Reimers

Dataset System SARI ↑ FKLG ↓
Development Set

Wikilarge/ Cosine 43.49 7.69
TurkCorpus BART 48.81 6.91

NC-TS 49.06 (+0.3) 6.23 (-0.7)
Oracle 58.09 (+9.3) 6.57 (-0.3)

Wikismall Cosine 40.99 8.58
BART 44.25 7.79
NC-TS 46.86 (+2.6) 7.20 (-0.6)
Oracle 54.30 (+10.0) 7.72 (-0.1)

Newsela Cosine 38.03 5.90
BART 41.24 4.92
NC-TS 43.63 (+2.4) 3.71 (-1.2)
Oracle 52.32 (+11.1) 4.43 (-0.5)

Test Set
Wikilarge/ Cosine 38.38 8.79
TurkCorpus BART 39.73 8.10

NC-TS 40.24 (+0.5) 7.25 (-0.9)
Wikismall Cosine 39.00 11.04

BART 40.52 10.9
NC-TS 44.46 (+3.9) 9.63 (-1.3)

Newsela Cosine 38.12 5.64
BART 40.19 4.82
NC-TS 41.67 (+1.5) 3.65 (-1.2)

Table 1: Results on the development dataset (top) and
test set (bottom). Best results in test in bold. Numbers
in parenthesis represent the gain wrt. BART.

and Gurevych, 2019)2.

4 Results

We start by showing the results for the development
set in the upper part in Table 1. The oracle sys-
tem reveals that selecting the first candidate from
BART is not always the best strategy, and that there
is ample room for improvement if we manage to
correctly choose the best candidate among the top
10 alternatives. However, a straightforward base-
line like Cosine does not improve BART results.
The NC-TS system does improve BART results,
but this is expected, as the hyperparameter search
is performed in this development set. The λ val-
ues that yielded best results3 show that p(y|x) is
a reliable indicator, but that the contribution of
p(x|y) is almost negligible. The language model
p(y) barely helps in Turkcorpus and Wikismall, but
this is expected as these datasets are based on sim-
ple Wikipedia, the same corpus p(y) is trained on.
However, the system assigns a high score to p(y)
in the Newsela dataset, showing that the additional
information provided by simple Wikipedia helps
improving the results.

2We used the pre-trained paraphrase-albert-small-v2
model.

3(λ1, λ2, λ3, λ4): TurkCorpus (0.5, 0.0, 0.1, 0.6), Wik-
iSmall (0.5, 0.0, 0.1, 0.6), Newsela (0.9, 0.2, 0.7, 0.1).



Systems SARI↑ FKLG↓
Wikilarge / Turkcorpus

DRESS-LS (Zhang and Lapata, 2017) 37.27 6.62
NSELSTM-S (Vu et al., 2018) 36.88 —
DMASS (Zhao et al., 2018) 40.45 8.04
EditNTS (Dong et al., 2019) 38.22 7.30
ACCESS (Martin et al., 2020a) 41.87 7.22
MUSS (Martin et al., 2020b) 42.53 7.60
SDISS (Lin and Wan, 2021) 38.66 7.07
Edit+synt (Cumbicus-Pineda et al., 2021b) 36.97 7.46
TST (Omelianchuk et al., 2021) 41.46 7.87
Control Prefixes (Clive et al., 2021) 42.32 7.74
TS_T5 (Sheang and Saggion, 2021) 43.31 6.17
T5+control (Štajner et al., 2022) 43.30 —
NC-TS 40.24 7.25

WikiSmall
DRESS-LS (Zhang and Lapata, 2017) 27.24 7.55
NSELSTM-S (Vu et al., 2018) 29.75 —
EditNTS (Dong et al., 2019) 32.35 5.47
SDISS (Lin and Wan, 2021) 34.06 4.58
TST (Omelianchuk et al., 2021) 44.67 9.29
NC-TS 44.46 9.63

Newsela
DRESS-LS (Zhang and Lapata, 2017) 26.63 4.21
NSELSTM-S (Vu et al., 2018) 29.58 —
DMASS (Zhao et al., 2018) 27.28 5.17
EditNTS (Dong et al., 2019) 31.41 3.40
MUSS (Martin et al., 2020b) 41.17 2.70
SDISS (Lin and Wan, 2021) 32.30 2.38
EditSynt (Cumbicus-Pineda et al., 2021b) 38.08 4.60
NC-TS 41.67 3.65

Table 2: Comparison of our system with state-of-the-
art neural systems, values have been obtained from the
respective papers.

The main results on the test set are shown in
the bottom part in Table 1. The NC-TS system ob-
tains the best results on both metrics on all datasets,
which confirms the previous results on develop-
ment, and shows that the method is robust across
datasets. In Table 2 we compare NC-TS with state-
of-the-art systems. Our results are competitive with
the state-of-the-art systems and in Newsela we ob-
tain the best results in the SARI metric and a good
score in FKLG.

5 Analysis

In this section we present the manual evaluation
we have carried out to compare BART against the
NC-TS system.

We first conducted a manual A/B test comparing
the systems in the WikiSmall dataset, the one where
the gain of NC-TS is the highest. We sampled 25
sentences from the output of each system, strati-
fied according to the length of the original complex

Quartile Q1 Q2 Q3 Q4 Total
BART 5 4 3 3 15
NC-TS 6 8 9 7 30
Equal 1 1 1 2 5

Table 3: Results of the manual evaluation. The Q
columns correspond to the quartiles according to the
sentence lengths.

sentences4. Two linguists with expertise in ATS
have evaluated the sample. They were not English
native speakers, but had advanced studies (one B.A.
degree, the other a Phd.). They were presented the
complex sentence and the outputs of both systems,
and they had to choose one of them. They were
allowed to evaluate both sentences as equal, but
were instructed to do so only in very clear cases.
When evaluating the sentences, they did not know
which systems they belonged to, neither did they
know the reference simplification in the gold stan-
dard. They followed the following criteria in the
evaluation:

• Try always to always choose one system, and
use equality only on extreme cases.

• Penalize hallucinations and misinforma-
tion, since they are known to cause harm
(Cumbicus-Pineda et al., 2021a).

• All other criteria being equal, select the short-
est sentence.

• Prioritise the meaning preservation and those
sentences that keep the nuances.

In Table 3 we present the results of the manual
evaluation, distributed in different sentence lengths.
In total, the NC-TS system has obtained the best
results (30 sentences) and the difference is higher
on longest sentences (from quartile 2 on), which
implies that the re-ranking is more beneficial on
those cases.

We performed an additional analysis on the Wik-
iLarge and Newsela datasets. We selected the 20
simplifications on each dataset where the SARI
difference between Bart and NC-TS was highest
(10 examples in BART favor, 10 examples on NC-
TS favor)5. In the cases that NC-TS is better, we
found out that the output of BART is mainly a

4We grouped the sentences into four groups according to
their length, and randomly sampled about 11-13 sentences on
each group.

5Examples of both systems can be found in appendix A



copy of the original sentence, that is, no simplifica-
tion has been performed. This happens particularly
in the WikiLarge dataset, but also in Newsela, al-
though to a lesser extent. In Newsela, the NC-TS
outputs clearly show a wider variety of operations
(coreference changes, lexical simplification, person
changes) compared to BART. On the other hand,
when BART scores better, we found out that BART
carries out slight changes with respect to the origi-
nal and NC-TS tends to copy the original complex
sentence. Again, this happens mostly in WikiLarge;
in Newsela, the casuistry in the analysed dataset is
bigger and no general conclusion can be obtained
from the evaluated sample.

6 Conclusion and Future Work

In this paper we have presented simple re-ranking
method to used the noisy channel in Automatic
Text Simplification. We have compared our NC-TS
system to a state-of-the-art seq2seq model (BART)
and shown that the method obtains better results
in terms of SARI and the readability metric FKLG
in three well known ATS dataset (WikiSmall, Wik-
iLarge/TurkCorpus and Newsela). Moreover, the
NC-TS system obtains competitive results com-
pared to state-of-the-art systems, and yields best
results in the Newsela dataset. In this dataset, the
system is able to leverage new information coming
from the simple Wikipedia, which is not part of the
dataset itself. We have conducted manual analysis
in WikiSmall, where our NC-TS system has the
most profit, and show that its outputs are better
qualitatively, particularly on longer sentences.

In the future we plan to test the NC-TS system
in ATS datasets in cross-lingual settings, where
the models that compose the noisy channel schema
can be trained using different datasets on several
languages.

7 Limitations

Automatic text simplification is a subjective task: it
highly depends on the target audience and experts
do not agree on a perfect definition for simplifica-
tion. Based on that, our manual evaluation can be
biased towards the criteria explained in this paper
of our experts and their experience. Moreover, all
manual evaluations are subjective and difficult to
reproduce.

This research has only been conducted for En-
glish due to the fact of the large data scarcity
in other languages. Besides, Newsela, one of

the datasets we have used is a proprietary dataset
(data can be obtained in https://newsela.com/
data/). No examples can be shown unless explic-
itly allowed, therefore hindering the reproducibility
of the results.
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come from WikiLarge and the NC-TS scored a
higher SARI while in the fifth and sixth examples
BART scored better. We cannot legally show ex-
amples from Newsela.



Dataset Original BART NC-TS
WikiSmall Being much more resistant to

cold and moist weather condi-
tions, brick enabled the con-
struction of permanent build-
ings in regions where the
harsher climate precluded the
use of mud bricks.

being much more resistant to
cold and moist weather condi-
tions, brick enabled the con-
struction of permanent build-
ings in regions where the
harsher climate precluded the
use of mud bricks.

brick is much more resistant to
cold and moist weather condi-
tions. this made it possible to
build permanent buildings in re-
gions where the harsher climate
meant that mud bricks were not
suitable.

It is therefore pointless to email
our contact addresses asking for
permission to reproduce articles
or images, even if rules at your
company or school or organiza-
tion mandate that you ask web
site operators before copying
their content.

It is therefore pointless to email
our contact addresses asking for
permission to reproduce articles
or images, even if rules at your
company or school say that you
ask web site operators before
copying their content.

do not email our contact ad-
dresses asking for permission
to reproduce articles or images,
even if rules at your company or
school say that you ask web site
operators before copying their
content.

WikiLarge
(NC-TS
better
SARI)

He served as the prime minis-
ter of Egypt between 1945 and
1946 and again from 1946 and
1948.

He served as the prime minis-
ter of Egypt between 1945 and
1946 and again from 1946 and
1948.

He was the prime minister of
Egypt from 1945 to 1946 and
again from 1946 to 1948.

a town may be correctly de-
scribed as a market town or as
having market rights even if it
no longer holds a market , pro-
vided the right to do so still ex-
ists.

a town may be described as a
market town or as having mar-
ket rights even if it no longer
holds a market, provided the
right to do so still exists.

a town may be described as a
market town even if it does not
have a market anymore, as long
as the right to hold a market still
exists.

WikiLarge
(BART
better
SARI)

Disney received a full-size Os-
car statuette and seven minia-
ture ones , presented to him by
10-year-old child actress Shirley
Temple.

Disney received a full-size Os-
car statuette and seven minia-
ture ones, presented to him by
Shirley Temple, who was then
10 years old.

Disney received a full-size Os-
car statuette and seven smaller
ones, presented to him by 10-
year-old child actress Shirley
Temple.

Eugowra is said to be named
after the indigenous Australian
word meaning ” the place where
the sand washes down the hill ”
.

Eugowra is said to be named af-
ter the Australian word mean-
ing ”the place where the sand
washes down the hill”.

Eugowra is said to be named
after the indigenous Australian
word meaning ”the place where
the sand washes down the hill”.

Table 4: Outputs of BART and the NC-TS systems


