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A B S T R A C T

Human similarity and relatedness judgements between concepts underlie most of cognitive capabilities, such
as categorisation, memory, decision-making and reasoning. For this reason, the proposal of methods for the
estimation of the degree of similarity and relatedness between words and concepts has been a very active
line of research in the fields of artificial intelligence, information retrieval and natural language processing
among others. Main approaches proposed in the literature can be categorised in two large families as follows:
(1) Ontology-based semantic similarity Measures (OM) and (2) distributional measures whose most recent
and successful methods are based on Word Embedding (WE) models. However, the lack of a deep analysis
of both families of methods slows down the advance of this line of research and its applications. This work
introduces the largest, reproducible and detailed experimental survey of OM measures and WE models reported
in the literature which is based on the evaluation of both families of methods on a same software platform,
with the aim of elucidating what is the state of the problem. We show that WE models which combine
distributional and ontology-based information get the best results, and in addition, we show for the first time
that a simple average of two best performing WE models with other ontology-based measures or WE models is
able to improve the state of the art by a large margin. In addition, we provide a very detailed reproducibility
protocol together with a collection of software tools and datasets as supplementary material to allow the exact
replication of our results.

1. Introduction

Measuring semantic similarity and relatedness between concepts or
words is an important task in many fields of research, such as knowl-
edge management (Ben Aouicha et al., 2016d; Georgiev and Georgiev,
2018), information retrieval (Ji et al., 2017), artificial intelligence (Liu
et al., 2016), natural language processing (Hadj Taieb et al., 2015;
Wu et al., 2017), biomedical domains (Ben Aouicha and Hadj Taieb,
2016), web service discovery (Chen et al., 2017), building knowledge
graphs (Zhu and Iglesias, 2017), named entity disambiguation (Zhu
and Iglesias, 2018), word sense disambiguation (Ben Aouicha et al.,
2016e) and cross-lingual text similarity (Glavas et al., 2018) among
others. Human beings consider two concepts semantically close if they
share a certain meaning. According to Cruse (1986), a semantic re-
lation is the relation connecting concepts in order to highlight the
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links of shared significance. The notion on semantic similarity focuses
on semantically similar concepts which tend to share a number of
properties. For instance, car and bike are similar because both concepts
are vehicles. On the other hand, semantically related concepts may not
have many properties in common but have at least one classical or non-
classical relationship between them which makes them semantically
close. For example, wheel and car are semantically connected through
the meronymy relationship.

The aim of any semantic similarity measure is to estimate the degree
of resemblance between two concepts, whilst semantic relatedness
measures estimate their degree of relatedness by considering any kind
of relationship linking them. For instance, the concepts car and fuel
have a low degree of similarity but a high degree of relationship.
Semantic similarity measures only consider ‘is-a’ relationships between
concepts, whilst semantic relatedness measures consider a wide range
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of relationships, including classic relations such as hypernymy, hy-
ponymy, meronymy, antonymy, synonymy; as well as other non-classic
or implicit relationships which are manifested by some form of co-
occurrence of words. For this reason, the automatic estimation of the
degree of semantic relatedness between concepts is considered much
more difficult than the estimation of the degree of similarity. Likewise,
the term ‘‘semantic distance’’ has been also used in the literature to
refer the dissimilarity between concepts. On the other hand, Tversky
(1977) points out that sometimes semantic similarity should be con-
sidered asymmetric because the similarity of a concept to any of its
subsumer concepts is usually considered greater than the opposite. For
instance, pear is like a fruit makes more sense that fruit is similar to a
pear. However, the literature mainly deals with notions of symmetrical
semantic similarity and relatedness.

Most semantic similarity measures reported in the literature have
been mainly based on the use of hand-crafted ontologies as WordNet
(WN) which explicitly encode ‘is-a’ relationships between concepts, the
so-called ontology-based semantic similarity measures, whilst semantic
relatedness measures have been mainly based on the distributional simi-
larity of terms Weeds (2003) whose main idea is to use the co-occurrence
of words as a proxy of their semantic relatedness. Distributional sim-
ilarity relies on the well-known distributional hypothesis introduced
by Harris (1954) which sets that words sharing semantic relationships
tend to occur in similar contexts. However, distributional similarity
of terms does not strictly respect the notion of semantic relatedness
because it is based on a statistical analysis of texts without making use
of explicit semantic relations as is the case for well-defined semantic
relatedness.

Common belief in the literature on the methods for the estimation
of the degree of semantic similarity and relatedness between word
or concept pairs is that ontology-based semantic similarity measures
outperform corpus-based semantic measures in word similarity tasks,
whilst the situation is reverted in the case of word relatedness tasks
as pointed-out by Hadj Taieb et al. (2014b, Table 2), Lastra-Díaz
and García-Serrano (2015b, §1.1) and Ben Aouicha et al. (2016a,
Tables 7 and 8). In addition, corpus-based measures provide a broader
lexical coverage than the ontology-based ones without their known
limitations associated to the building of ontologies, such as the de-
mand of domain experts, the difficulties in setting universally accepted
concepts and relationships, their limited lexical coverage, and the
difficulties in their upgrading. On the other hand, the achievements of
the recent family of WE models, whose pioneering work is introduced
by Mikolov et al. (2013a), are changing this former belief by bridging
the gap between both families of methods in word similarity tasks.
Current WE models have significantly improved the performance of
previous distributional measures (Nalisnick et al., 2016), and they are
also challenging ontology-based semantic similarity measures in word
similarity benchmarks as shown by Auguste et al. (2017) and Ban-
jade et al. (2015), despite that ontology-based measures has been the
predominant solution for this later task during the last three decades.

The aim of this paper is to introduce a very large and detailed
experimental survey of ontology-based semantic similarity measures
and WE models based on the evaluation of both families of methods
in most known datasets on a same software platform, with the aim
of elucidating what is the state of the problem. This survey evaluates
most ontology-based semantic measures based on WordNet reported
in the literature during the last three decades, as well as most re-
cent WE models and some recent hybrid methods which combine WE
models with the use of ontologies. In addition, we provide a very
detailed reproducibility protocol together with a collection of software
tools and datasets as supplementary material which allow that all our
experiments and results to be reproduced exactly.

1.1. Motivation and research questions

Our main motivation is to evaluate and compare the two main fami-
lies of methods for the estimation of semantic similarity and relatedness
between words and concepts with the aim of answering the following
Research Questions (RQ):

RQ1 Has been the family of OM measures definitively outperformed
by state-of-the-art WE models in the estimation of the degree of
(a) similarity and (b) relatedness between words?.

RQ2 Has been decisive the use of WordNet into recent WE models to
outperform previous OM and WE methods in the word similarity
task?.

RQ3 What are the current state-of-the-art methods in the semantic
word similarity and relatedness tasks?.

RQ4 Could a linear combination of two methods significantly improve
their individual performance?

A second motivation is the lack of a recent and exhaustive exper-
imental survey comparing the performance of the two main families
of methods on word similarity and relatedness estimation, as well as
the lack of an updated survey comparing the most recent WE models
reported in the literature.

And finally, a third motivation is the lack of a fully automatic,
reproducible and extensible collection of word similarity and relat-
edness benchmarks including most ontology-based semantic similarity
measures and the most recent state-of-the-art WE models which is based
on a same software platform.

1.2. Definition of the problem and contributions

Main research problem tackled by this work is the implementation
of a very large and exhaustive experimental survey on semantic word
similarity between the families of ontology-based semantic similarity
measures and WE models on a same software platform with the aim
of answering our main research questions and setting the new state-
of-the-art of the problem in a very conclusive manner. Likewise, this
work tackles the problem on building a very detailed and self-contained
reproducibility package which allows to reproduce all methods, exper-
iments and results detailed herein exactly. In addition, we explore the
impact of linear combinations of different semantic similarity measures
as a potential method for the enhancement of their performance.

The rest of the paper is structured as follows. Section 2 intro-
duces a comprehensive and updated categorisation of the family of
ontology-based semantic similarity measures, whilst Section 3 reviews
the literature on the family of WE models. Section 4 introduces our
experimental setup and the results obtained in our experiments, whilst
Section 5 introduces our discussion of the results and Section 6 sum-
marises our main conclusions. Finally, Appendix A introduces the
evaluation of the averaged measure pairs together with the statistical
significance analysis comparing WE and ontology-based vector models,
whilst Appendix B introduces a very detailed reproducibility package
which allows that all our experiments and results to be reproduced ex-
actly. Both aforementioned appendices are provided as supplementary
material as detailed in Appendix C.

2. Ontology-based semantic similarity measures

This section reviews the literature on the family of ontology-based
semantic similarity measures and introduces a comprehensive categori-
sation of most known methods. However, the lack of room prevents us
of providing a detailed review of them. For this reason, for an in-depth
review on these methods, we refer the reader to the book by Harispe
et al. (2015b) and the more recent reviews by Hadj Taieb et al. (2014b)
and Lastra-Díaz and García-Serrano (2015b,a, 2016).
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Fig. 1. Categorisation of the main ontology-based semantic similarity measures reported in the literature in the field of NLP, especially those based on WordNet. We exclude most
specific GO-based semantic similarity measures proposed in the field of genomics which are in-depth analysed in a recent survey by Mazandu et al. (2016).
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Fig. 1shows our categorisation of the current ontology-based se-
mantic similarity measures into three large families as follows: (I)
Ontology-based semantic Topological Measures (OTM), whose main
feature is that their computing method only uses features derived
from the structure (topology) of the underlying base ontology; (II)
gloss-based semantic similarity measures, whose main feature is that
they use the glosses accompanying the concepts within an ontology to
build representations of their meaning; and finally, (III) Ontology-based
Vector representation Models (OVM) whose main feature is that they
build vectors to encode the meaning of the concepts within an ontology,
then they use any vector-based similarity metric, such as the cosine
function, to compute the degree of similarity between concepts.

2.1. Ontology-based semantic topological similarity measures

Ontology-based topological measures can be divided into five fam-
ilies depending on the main type of features used in their definition as
shown in Fig. 1. First, path-based measures (I.1), the so-called edge-
counting measures, whose core idea is the use of the length of the
shortest path between concepts as an estimation of their degree of
semantic distance, such as the pioneering work of Rada et al. (1989).
Second, the family of IC-based similarity measures (I.2), whose core
idea is the use of an Information Content (IC) model, such as the
pioneering work of Resnik (1995). Third, the family of feature-based
similarity measures (I.3), whose core idea is the use of set-theory oper-
ators between the feature sets of the concepts, such as Tversky (1977).
Fourth, a pair of similarity measures based on similarity graphs (I.4)
derived from WordNet introduced by Stanchev (2014), or the weighting
of concepts as that introduced by Quintero et al. (2019). And fifth, other
similarity measures (I.5) which are based on novel quantification meth-
ods of the hyponym set as that introduced by Hadj Taieb et al. (2014b),
aggregation or combinations of other measures such as those methods
introduced by Martinez-Gil (2016) and Batet and Sánchez (2016),
another similarity measure for adjectives based on WordNet proposed
by Van Miltenburg (2016), and finally other approach combining fuzzy
logic and WordNet proposed by Manna and Mendis (2010). The main
publicly available software libraries focusing on the implementation
of ontology-based similarity measures based on WordNet are Word-
Net::Similarity (Pedersen et al., 2004) and WS4J (Shima, 2011), whose
development is more stable, and the more recent SML (Harispe et al.,
2014), WNetSS (Ben Aouicha et al., 2016b) and HESML (Lastra-Díaz
et al., 2017) libraries which include most recent methods reported in
the literature.

2.1.1. Path-based similarity measures
Rada et al. (1989) introduces the first ontology-based semantic

distance measure between concepts which is defined as the length of
the shortest path between concepts within an ontology. Similar ideas
of Rada et al. are subsequently followed by other works, as those intro-
duced by Wu and Palmer (1994), Hirst and St-Onge (1998), Al-Mubaid
and Nguyen (2009), Liu et al. (2007), Hao et al. (2011), Pekar and
Staab (2002), and Dong et al. (2010). Likewise, several path-based mea-
sures shown in Fig. 1 can be categorised as monotone transformations
of the Rada et al. (1989) measure, such as shown by Lastra-Díaz and
García-Serrano (2016) in a theoretically and empirically manner and
confirmed herein (see Spearman correlation values in Table 5), among
which we have the measures introduced by Leacock and Chodorow
(1998), Li et al. (2003) and Pedersen et al. (2007).

2.1.2. IC-based semantic similarity measures
Resnik (1995) introduces the first semantic similarity measure based

on an Information Content (IC) model with the aim of solving the
problem on uniform weighting in the family of path-based measures.
However, Resnik measure only considers the IC value of the lowest an-
cestor concept in its computation instead of the overall information on
the path linking both input concepts. This later drawback encourages

the proposal of an IC-based semantic distance by Jiang and Conrath
(J&C) (1997) and an IC-based similarity measure by Lin (1998).

Information content-based approach is inspired from the Shannon
(1948) theory and its core idea is that the similarity between concepts
in a given ontology can be modelled by a function of the information
content that both concepts have in common. The main hypothesis be-
hind all the IC-based similarity measures is that the more abstract con-
cepts should have a lower information content than the more specific
ones. Any IC-based similarity measure is defined by the combination
of one computing method and one specific intrinsic or corpus-based
IC model as those mentioned below. Given a single-root taxonomy of
concepts (𝐶,≤𝐶 , 𝛤 ), where 𝛤 is the root node, the IC value of any
concept 𝑐𝑖 ∈ 𝐶 is defined by 𝐼𝐶(𝑐𝑖) = − log2(𝑝𝑖), being 𝑝𝑖 the occurrence
probability of 𝑐𝑖. Likewise, given a taxonomy of concepts (𝐶,≤𝐶 , 𝜌), an
IC model is a positive real-valued function 𝐼𝐶 ∶ 𝐶 → R+ ∪ {0} which
satisfies the next properties: (1) 𝐼𝐶

(

𝑐𝑖
)

= − log2
(

𝑝𝑖
)

, (2) 𝐼𝐶 (𝛤 ) = 0,
and (3) ∀𝑐𝑖 ≤𝐶 𝑐𝑗 ⇒ 𝐼𝐶

(

𝑐𝑖
)

≥ 𝐼𝐶
(

𝑐𝑗
)

(monotonicity).
We have divided the family of IC-based similarity measures into five

subfamilies as shown in Fig. 1. First group (I.2.1) is made up by the
aforementioned three classic IC-based measures introduced by Resnik
(1995), Jiang and Conrath (1997), and Lin (1998). A second group
(I.2.2), called hybrid IC-based measures in Fig. 1, is made up by those
measures that make up an IC model with any function based on the
length of the shortest path between concepts, such as the pioneering
work by Li et al. (2003) and other subsequent works by Zhou et al.
(2008b), Meng et al. (2014), Hadj Taieb et al. (2014a), Gao et al. (2015,
strategy 3), Cai et al. (2017, strategy 2) and Lastra-Díaz and García-
Serrano (2015b, coswJ&C). A third group of IC-based measures is based
on IC-based reformulations of previous approaches (I.2.3), such as the
IC-based reformulations of the Tversky measure by Pirró (2009), and
the IC-based reformulation of most edge-counting methods introduced
by Sánchez and Batet (2011). A fourth group of IC-based measures
(I.2.4), called monotone mappings in Fig. 1, is characterised by being
monotone transformations of any classic IC-based similarity measure,
such as the exponential-like scaling of the Lin measure introduced
by Meng and Gu (2012), the reciprocal similarity measure of the J&C
distance introduced by Garla and Brandt (2012), another exponential-
like normalisation of the J&C distance introduced by Lastra-Díaz and
García-Serrano (2015b, cosJ&C), and finally the monotone transfor-
mation of the Lin measure called FaITH (Pirró and Euzenat, 2010).
Finally, a fifth group of measures is based on the definition of IC-based
measures and IC models on Linked Open Data (LOD) resources (I.2.5),
such as the work by Meymandpour and Davis (2016). Like the case
of the aforementioned monotone transformations of the Rada et al.
measure, the monotonicity relationship between the classic IC-based
measures and their corresponding monotone mappings is also shown in
a previous work (Lastra-Díaz and García-Serrano, 2016) and confirmed
herein (see Spearman correlation values in Table 5).

Information content models based on WordNet. The first known IC model
is based on corpus statistics and was introduced by Resnik (1995,
1999). The main drawback of the corpus-based IC models is the dif-
ficulty in getting a well-balanced and disambiguated corpus for the
estimation of the concept probabilities. To bridge this gap, Seco et al.
(2004) introduce the first intrinsic IC model in the literature, whose
core hypothesis is that the IC models can be directly computed from
intrinsic taxonomical features. Thus, the development of new intrinsic
IC-based similarity measures is divided into two sub-problems: the
proposal of new intrinsic IC models, and the proposal for new IC-based
similarity measures. Among the main intrinsic and corpus-based IC
models proposed in the literature, we find the proposals by Zhou et al.
(2008a), Sebti and Barfroush (2008), Blanchard et al. (2008), Sánchez
et al. (2011), Sánchez and Batet (2012), Meng et al. (2012), Yuan
et al. (2013), Hadj Taieb et al. (2014a), Lastra-Díaz and García-Serrano
(2015a, 2016), Adhikari et al. (2015), Ben Aouicha and Hadj Taieb
(2016), Ben Aouicha et al. (2016c), Harispe et al. (2015a), Cai et al.
(2017), Zhang et al. (2018) and Batet and Sánchez (2019). Other

648



J.J. Lastra-Díaz, J. Goikoetxea, M.A Hadj Taieb et al. Engineering Applications of Artificial Intelligence 85 (2019) 645–665

researchers have also proposed other IC models based on WordNet fo-
cused on the estimation of the degree of relatedness between concepts,
such as those introduced by Seddiqui and Aono (2010) and Pirró and
Euzenat (2010). Finally, in another recent work, Jiang et al. (2017) in-
troduce a new intrinsic IC model based on the Wikipedia category struc-
ture. Most known IC models are implemented by HESML (Lastra-Díaz
et al., 2017).

2.1.3. Feature-based measures
Main hypothesis of this family of measures is the classic notion

of concepts in formal logic which states that any concept could be
defined by a collection of features or attributes verifiable by a logic
predicate. Thus, the degree of similarity between concepts is defined
by a ratio of common and distinct features. Tversky (1977) introduces
the first feature-based semantic similarity measure, which is defined
by a weighted variant for the complement of the symmetric difference
between the feature set of two concepts. However, one drawback
of classic Tversky measure is the difficulty of getting taxonomies of
concepts which include an explicit definition of the feature set defining
each concept. For this reason, most feature-based measures exploit
multiple sources of information with the aim of inferring these missing
feature sets. For instance, Sánchez et al. (2012) introduces a feature-
based dissimilarity measure which is based on the use of the common
ancestors between concepts as a measure of their degree of similarity.
The core idea behind the Sánchez et al. measure is that the ratio of
overlap between common ancestors could be interpreted as an estima-
tion of the ratio of common features between concepts, according to
the Tversky model.

Feature-based measures attempt to exploit and to aggregate be-
tween the hierarchical and content properties of the ontology to obtain
the similarity or relatedness values. These type of measures are ex-
ploited both for semantic similarity and semantic relatedness. The
hierarchical aspect includes the semantic relations, the typological
parameters of a concept, the neighbourhood, etc. As for the content
aspect, it is based on the assumption that each concept is described by a
set of well-selected words indicating its meaning, such as their ‘‘glosses’’
in WordNet. When two concepts have more common characteristics and
less non-common characteristics, they are more similar. Main features
used are the available information in WordNet such as the set of
synonyms, definitions (i.e., glosses) and different kinds of taxonomical
or semantic relationships. Rodríguez and Egenhofer (2003) propose
a similarity measure which exploits the weighted sum of similarities
between synsets, features (e.g., meronyms, attributes, etc.) and neigh-
bour concepts of evaluated concepts. Petrakis et al. (2006) propose
the X-Similarity measure which is based on the overlapping between
synsets and the concept’s glosses extracted from WordNet (i.e., words
extracted by parsing term definitions). Finally, other subsequent works
introduce novel measures based on different feature extraction meth-
ods, such as those introduced by Stojanovic et al. (2001), Batet et al.
(2011), Sánchez et al. (2012) and Likavec et al. (2019).

2.1.4. Graph-based measures
Among the most recent approaches, we have two different mea-

sures based on the definition of asymmetric similarity weighted graphs
derived from WordNet, such as that introduced by Stanchev (2014)
and Quintero et al. (2019), and another measure based on a symmetri-
cal weighted graph based on WordNet introduced by Cai et al. (2018).
In addition to the taxonomical structure from WordNet, the similarity
graph proposed by Stanchev uses the definition and examples of use
of the WordNet concepts as evidence on the relationships between
concepts. The similarity graph is defined by a collection of oriented
edges with asymmetric weights, in which the weights between parent
and child concepts encode the probability that a user interested in the
source node of an edge is also interested in the concept associated to the
destination node. On the other hand, Quintero et al. (2019) introduce
a semantic distance which is defined as the length of the shortest path

between concepts in an asymmetric weighted graph whose weights
are automatically refined through a relaxation process. Finally, Cai
et al. (2018) introduce a semantic distance defined as the length of the
shortest weighted path between two concepts on WordNet and a non-
linear similarity function whose edge weights are defined by a ratio
of the descendant number of hyponyms and hypernyms between child
and parent concepts.

2.1.5. Other recent approaches
Fig. 1 shows other recent approaches as follows. First, a pair of

measures based on novel taxonomical features (I.5.1), such as those
proposed by Hadj Taieb et al. (2014b) which are based on a novel
weighting of the hyponym set of a concept in WordNet. Second, two
similarity measures based on the aggregation or combination of other
measures (I.5.2), such as an aggregated similarity measure based on a
combination of multiple ontology-based similarity measures proposed
by Martinez-Gil (2016), and a semantic relatedness measure introduced
by Batet and Sánchez (2016) which is based on the combination of
highly-accurate ontology-based semantic similarity measures with a
resemblance measure derived from corpus statistics. Third, a method
to compute the semantic similarity between adjectives (I.5.3) proposed
by Van Miltenburg (2016) which is based on the use of the similarity
between their sets of derivational source names in WordNet. And finally
(I.5.4), a novel semantic similarity measure based on fuzzy logic and
WordNet proposed by Manna and Mendis (2010).

2.2. Gloss-based models

Lesk (1986) introduces the first gloss-based method to estimate
the degree of similarity between words whose main hypothesis is that
related word senses are defined using the same words. So, the semantic
relatedness is quantified as the gloss overlaps. Subsequently, Banerjee
and Pedersen (2003) propose a measure derived from Lesk measure,
called Extended Gloss Overlap, which is based on the number of
shared words, whilst Patwardhan and Pedersen (2006) propose the
representation of concepts by Gloss Vectors derived from term glosses
extracted from WordNet, and Ben Aouicha and Hadj Taieb (2015)
propose a gloss-based semantic similarity measure based on a weighting
mechanism applied on the nouns composing the glosses.

2.3. Ontology-based vector representation models

This section describes the second family of ontology-based methods
for measuring semantic similarity which represent words and concepts
as vectors which are derived from the graph-structure of the ontology.
The family of ontology-based vector representation models (OVMs) can
be divided into two categories shown in Fig. 1 as follows: (III.1) OVM
models based on a single ontology, and (III.2) those based on multiple
ontologies.

OVM models compute the meaning of words and concepts within
the semantic structures of Knowledge Bases (KBs) based on graph-
based methods which exploit the whole relational information from
KBs as if they were graphs. Aforementioned graph-based methods for
representing words are well-known in the NLP community (Mihalcea,
2005; Sinha and Mihalcea, 2007; Agirre and Soroa, 2009; Hassan
and Mihalcea, 2011; Witten and Milne, 2008; Budanitsky and Hirst,
2006), showing to be useful in several NLP tasks such as Word Sense
Disambiguation (WSD) (Budanitsky and Hirst, 2006; Agirre and Soroa,
2009), semantic similarity (Budanitsky and Hirst, 2006; Agirre et al.,
2009) and Information Extraction (Banko et al., 2007). These methods
model senses and words as represented in KBs, taking senses as nodes
and relations between senses as edges, thus exploiting the relational
information from KB structures, without any supervision nor corpus
evidence.

Fig. 1 lists most OVM models reported in the literature. However,
we focus our review here on the three OVM models evaluated in our
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experiments because of space limitations. We selected the UKB (Agirre
and Soroa, 2009), WN-RandomWalks (Goikoetxea et al., 2015) and
NASARI (Camacho-Collados et al., 2016) methods because they pro-
vide publicly available word vector representations. UKB (Agirre and
Soroa, 2009) and WN-RandomWalks (Goikoetxea et al., 2015) build
their vector representations using WordNet as single ontology, whilst
NASARI (Camacho-Collados et al., 2016) uses BabelNet, which com-
bines information from several ontologies. Both UKB and NASARI
construct high-dimensional spaces, one dimension per concept in the
knowledge-base, whilst WN-RandomWalks uses an embedding method
which produces low dimensional vectors.

2.3.1. OVM Models based on single ontologies
UKB Personalised PageRank vectors. UKB (Agirre and Soroa, 2009) is
an OVM model based on the known PageRank (Brin and Page, 1998)
algorithm, which ranks the vertices in a graph based on their structural
relevance. PageRank can be understood as a random walk process
which eventually assigns a rank to every node in the graph whose value
represents the probability of an infinite random walk visiting the node.
In each node, the random walker follows an edge with probability 𝑐,
or, with probability 1 − 𝑐 halts the random walk and jumps at random
uniformly to any other node. The process is repeated for each sense in
the graph, producing Personalised PageRank vectors (Agirre and Soroa,
2009; Agirre et al., 2010), PPV for short. Each dimension of a PPV
corresponds to a node, and it could be understood as the probability
of a random walk to end in that node. In order to obtain word
representations, they do a linear combination of the corresponding
senses, weighted according to the probabilities of each sense. In order
to evaluate UKB herein, PPV vectors for every word in the dictionary of
WordNet 3.0 with glosses were created by using the publicly available
UKB software.1

Graph-based methods such as UKB (Agirre and Soroa, 2009) typi-
cally represent KB words with high-dimensional vectors. More recently,
several authors (Perozzi et al., 2014; Tang et al., 2015; Goikoetxea
et al., 2015; Grover and Leskovec, 2016) proposed to use
low-dimensional vector-spaces, also called embeddings, that compress
the structural information in graphs into a few hundred of dimen-
sions. These approaches make use of several strategies when searching
vicinity in graphs, such as random walks over the nodes (Perozzi
et al., 2014; Goikoetxea et al., 2015), sampling nodes and optimising
the likelihood of shallow-depth neighbours (Tang et al., 2015), or
combining the latter with structural equivalences of nodes (Grover
and Leskovec, 2016). After modelling neighbourhood, the mentioned
methods encode the nodes in a low-dimensional space using methods
like Skip-gram (Mikolov et al., 2013a). From these aforementioned
methods, Perozzi et al. (2014) has not been applied to ontologies,
and Grover and Leskovec (2016) and Tang et al. (2015) do not have
publicly available embeddings. Thus, we discarded these latter methods
from our experiments.

Random walk WordNet embeddings. Goikoetxea et al. (2015) propose
an OVM model based on a two-step method as follows. First they
perform a random walk over the WordNet graph using a Monte Carlo
method (Avrachenkov et al., 2007). At each step of the walk, the
method prints one of the lexicalisations of the current concept at
random with the aim of creating a synthetic corpus reflecting the
structure of the KB. Secondly, they feed the resulting synthetic corpora
into the Skip-gram model (Mikolov et al., 2013a), thus processing it as
if it was a text corpus and producing a low-dimensional vector for each
word.

1 http://ixa2.si.ehu.es/ukb/.

2.3.2. OVM models based on multiple ontologies
NASARI vectors. Unlike most KB-based techniques which exploit ei-
ther WordNet or Wikipedia, NASARI (Camacho-Collados et al., 2016)
vectors are based on BabelNet, a multilingual network (Navigli and
Ponzetto, 2012) which merges knowledge from WordNet and Wikipedia
among other KBs. NASARI represents every BabelNet concept by two
vectors based on words and WordNet synsets respectively which are
computed by using the weighting schema called lexical specificity on
contextual information collected from Wikipedia articles and WordNet
synsets linked to the concept. We use the unified NASARI representa-
tion in our experiments, which represents every BabelNet concept by a
set of language-independent concepts.

3. Word embeddings

This section reviews the literature on the family of WE models
which is divided into two categories as shown in Fig. 2: (1) text-based
models, and (2) the recent hybrid embedding models which combine
text-based models with the use of ontologies.

3.1. Text-based word embedding models

Since the distributional hypothesis was proposed by Harris (1954),
large unlabelled text corpora has been often used to build word rep-
resentations. In recent years, low dimensional representations known
as word embeddings have derived low-dimensional representations by
minimising typically loss function using Stochastic Gradient Descent
(SGD) algorithm, often in the context of a neural network (Bengio
et al., 2003; Collobert and Weston, 2008; Collobert et al., 2011; Turian
et al., 2010; Mikolov et al., 2013a,b; Pennington et al., 2014). These
so-called word embeddings have yielded state-of-the-art results in a
wide variety of NLP tasks such as word similarity, analogy, PoS tagging
or name-entity disambiguation (Collobert et al., 2011; Mikolov et al.,
2013a; Socher et al., 2011). One limitation of previous approaches is
that they work at the word-level, thus they need further processing
to model morphologically rich languages or out-of-vocabulary words.
Recent models (Santos and Zadrozny, 2014; Wieting et al., 2016; Kim
et al., 2016; Bojanowski et al., 2016) based on character-level repre-
sentations overcome this aforementioned limitation by using sub-word
information.

Among the word-level text methods, we have excluded the older
ones (Bengio et al., 2003; Collobert and Weston, 2008; Turian et al.,
2010) because the recent works show that these methods are outper-
formed by newer ones (Mikolov et al., 2013a; Pennington et al., 2014).
In addition, character-level methods (Santos and Zadrozny, 2014; Kim
et al., 2016; Wieting et al., 2016) do not provide pre-trained embedding
models with the only exception of the method introduced by Bo-
janowski et al. (2016). Thus, we focus our review on next text-based
models evaluated herein.

word2vec. Mikolov et al. (2013a) introduce word2vec library which im-
plements two word embedding models, namely Skip-gram and
CBOW. The objective of Skip-gram is to predict each context word
within a window around a target word by using only its representations
in the model being learned, whilst CBOW model implements the
opposite approach. Thus, CBOW aims to predict the current target word
on the basis of the centroid of the representations for its context words.
Loss function of CBOW integrates a negative sampling which has shown
to being very efficient (Mikolov et al., 2013a; Goldberg and Levy, 2014)
and whose aim is to reward the estimate of the probability of observed
word–context pairs as well as penalising the estimate of the probability
of random word–context pairs.
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Fig. 2. Categorisation of the main Word Embedding (WE) models reported in the literature.

GloVe. Pennington et al. (2014) propose a log-bilinear model called
GloVe which is based on a weighted least-squares objective function
combining two approaches for the learning of word vectors as fol-
lows: (1) global matrix factorisation and (2) local context window
methods. Pennington et al. argue that local window methods such
as word2vec (Mikolov et al., 2013a) fail to capture global statistical
information in the corpus. Thus, GloVe loss function minimises the
least-square distance between the local window information and the
global information.

fastText. Methods such as word2vec (Mikolov et al., 2013a,b) and
GloVe (Pennington et al., 2014) ignore the morphology of words, and
thus, they assign a vector to each word in the vocabulary. The latter is
a limitation when it comes to morphologically rich languages as these
kind of languages have larger vocabularies which include more word
forms with lower frequency of occurrence, yielding lower quality rep-
resentations. In addition, the larger vocabulary requirements produce
more out-of-vocabulary words. In order to bridge this gap, Bojanowski
et al. (2016) introduce fastText model which is based on Skip-gram but
it represents each word as a bag of character n-grams. FastText learns

embeddings for full words and character n-grams by representing each
word as the sum of its corresponding n-gram embeddings.

3.2. Combining ontology-based and text-based representations

Several authors have exploited the complementariness of the se-
mantic information in text-based distributional representations and
relational information extracted from KBs (Halawi et al., 2012; Wang
et al., 2014a; Goikoetxea et al., 2015; Faruqui et al., 2015; Goikoetxea
et al., 2016; Mrkšić et al., 2016, 2017) such as WordNet (Miller, 1995),
Freebase (Bollacker et al., 2008), PPDB (Ganitkevitch et al., 2013)
or BabelNet (Navigli and Ponzetto, 2012). There are three main ap-
proaches as follows: (1) the joint approach, in which the loss function of
the text-based model is extended to include relational constraints (Ha-
lawi et al., 2012; Wang et al., 2014a; Yu and Dredze, 2014; Xu et al.,
2014; Bian et al., 2014; Kiela et al., 2015; Aletras and Stevenson, 2015;
Liu et al., 2015; Osborne et al., 2015; Ono et al., 2015; Bollegala et al.,
2016; Goikoetxea et al., 2018); (2) the inject approach, which takes
pre-trained text-based embeddings and transforms them to agree with
the relational information in the KB (Rothe and Schütze, 2015; Faruqui
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et al., 2015; Rastogi et al., 2015; Recski et al., 2016; Nguyen et al.,
2016; Jauhar et al., 2015; Mrkšić et al., 2016, 2017); and finally, (3) the
combination of independently learned word embeddings (Goikoetxea
et al., 2016).

3.2.1. Joint approach
Joint approaches merge the complementary information from text

and KB while they compute the word embeddings and learning them
from scratch. These methods generally include the KB constraints in
one of the WE models, or some other in-house variants (Halawi et al.,
2012; Bollegala et al., 2016; Yu and Dredze, 2014; Xu et al., 2014; Bian
et al., 2014; Liu et al., 2015; Ono et al., 2015; Wang et al., 2014a,b).
However, other joint approaches follow different strategies. For in-
stance, Schwartz et al. (2015) build a full co-occurrence matrix and Os-
borne et al. (2015) use a spectral learning algorithm, whilst Goikoetxea
et al. (2016, 2018) propose an approach which combines synthetic
corpora produced by WordNet random walks (Goikoetxea et al., 2015)
with textual corpora.

Regarding the KB constraints, they are usually included in the
objective function as L2 regularisation terms (Halawi et al., 2012;
Bollegala et al., 2016) or explicit constraints encoding both entities
and relations (Wang et al., 2014a; Xu et al., 2014), but also as linear
combinations (Yu and Dredze, 2014), ranking inequalities (Liu et al.,
2015), Canonical Correlation Analysis (Osborne et al., 2015) or multi-
tasking (Bian et al., 2014). Usually, similarity relations such as syn-
onymy (Halawi et al., 2012; Yu and Dredze, 2014) and antonymy (Ono
et al., 2015; Schwartz et al., 2015) are used, but other authors (Kiela
et al., 2015; Xu et al., 2014) also include relatedness ones.

Most of previous aforementioned methods have been discarded
from our experiments, either because their results are outperformed by
state-of-the art methods (Bian et al., 2014; Osborne et al., 2015) or be-
cause they have no publicly available pre-trained embeddings (Yu and
Dredze, 2014; Liu et al., 2015; Ono et al., 2015; Wang et al., 2014a,b;
Halawi et al., 2012; Goikoetxea et al., 2016), or both reasons (Xu et al.,
2014; Bollegala et al., 2016). We also excluded (Goikoetxea et al.,
2018) from our experiments because it has been only evaluated on
cross-lingual similarity. Next paragraph reviews the only joint approach
evaluated herein.

Symmetric pattern based embeddings. Methods such as word2vec
(Mikolov et al., 2013a,b) consider shallow linguistic information based
on word–context co-occurrences within a window. Schwartz et al.
(2015) argue that these kind of approaches are suitable for relatedness,
but not for similarity. Thus, they extract co-occurrences of words which
occur in so-called Symmetric Patterns, e.g. ‘‘either X or Y’’ (Hearst,
1992; Davidov and Rappoport, 2006), as the latter text patterns tend to
show semantically similar words. Likewise, Schwartz et al. (2015) use
an unsupervised method to build an antonym-sensitive co-occurrence
matrix which is based on the selection of word pairs satisfying antonym
relations in a KB with the aim of dealing with antonym words.

3.2.2. Inject approach
In the inject approach, pre-trained word embeddings are enriched

according to diverse methods. Most of inject-based methods enrich
word embeddings constructed with the aforementioned methods above
(Faruqui et al., 2015; Rothe and Schütze, 2015; Nguyen et al., 2016;
Jauhar et al., 2015; Wieting et al., 2015; Mrkšić et al., 2017). How-
ever, Rastogi et al. (2015) construct an explicit co-occurrence matrix
and Mrkšić et al. (2016) use previously enriched word embeddings.
KB constraints are injected following various strategies such as similar-
ity (Nguyen et al., 2016; Mrkšić et al., 2016, 2017; Wieting et al., 2015),
weighted combinations (Faruqui et al., 2015; Jauhar et al., 2015)
or Generalised Canonical Correlation Analysis (Rastogi et al., 2015).
Most methods build word-based vector representations, but Rothe and
Schütze (2015) extend word embeddings with embeddings of senses
and synsets. As regard semantic relations, several methods only use
synonymy (Faruqui et al., 2015; Rothe and Schütze, 2015), whilst

other methods consider both synonymy and antonymy (Mrkšić et al.,
2016, 2017) or paraphrase relations (Wieting et al., 2015). Again, the
integration of these aforementioned semantic relations seek to enforce
similarity rather than relatedness.

We have discarded several methods in this family from the evalua-
tion introduced herein. For instance, the methods introduced by Faruqui
et al. (2015) and Rothe and Schütze (2015) have been discarded
because their lack of competitiveness, whilst methods introduced by
Nguyen et al. (2016), Jauhar et al. (2015) and Rastogi et al. (2015)
are discarded because their lack of publicly available pre-trained em-
beddings. For these reasons, we focus the rest of our review on the
methods evaluated herein which are introduced by Wieting et al.
(2015) and Mrkšić et al. (2016, 2017).

Paragram. Wieting et al. (2015) propose a word embedding model
called Paragram whose learning method employs pairs of paraphrase
phrases in PPDB (Ganitkevitch et al., 2013) database. More exactly,
Paragram encodes phrases into a vector space by forcing the cosine
similarity in the space to match the scores of pairs of paraphrase
phrases. Wieting et al. model the composition of phrases by using
constituent parse trees with using a RNN similar to those proposed
by Socher et al. (2014). Paragram also includes the training of word
vectors with no composition terms by using words pairs extracted from
PPDB database. Finally, Wieting et al. optimise the hyperparameters of
their model on a similarity dataset. We evaluate herein both versions
of the publicly available Paragram embeddings (see Table 2), called
Paragram-ws and Paragram-sl respectively. Paragram-ws is optimised
with the similarity and relatedness partitions of WordSim353 (Finkel-
stein et al., 2002) dataset by rewarding vectors with high similarity
and relatively low relatedness, whilst Paragram-sl is tuned with Sim-
lex999 (Hill et al., 2014) dataset by rewarding exclusively similarity
relations between word embeddings.

Counter-fitting. Similar to the Symmetric Pattern technique (Schwartz
et al., 2015), this method tries to enforce similarity instead of re-
latedness (Mrkšić et al., 2016), using both antonymy and synonymy
constraints from PPDB database and WordNet. Counter-fitting loss
function is defined as the weighted sum of the three following terms:
(1) a first term which ‘pushes’ away vectors of antonyms; (2) a second
term which ‘pulls’ closer synonyms; and (3) a third term which forces
the updated space to preserve the relationships between words in the
original vector space (pre-trained embedding).

Attract–repel. Mrkšić et al. (2017) introduce the Attract–repel model
which can be viewed as the cross-lingual extension of Counter-fitting.
It also injects synonymy and antonymy constraints and updates pre-
trained embeddings, but unlike Counter-fitting, semantic relations are
drawn from BabelNet and mini-batches include negative samples in
the attract and repel terms. In addition, Attract–repel uses a more
straightforward L2 regularisation term to preserve word relations in the
original pre-trained embeddings.

3.2.3. Embedding combination
Goikoetxea et al. (2016) propose to combine independently learned

KB-based and text-based representations by using WordNet and
Wikipedia graphs, although they mostly focus on the former KB.
Goikoetxea et al. propose several combined representations as follows:
(1) first representation combines separate distributed text-based and
KB-based representations via concatenation, centroid, or building a
complex number; (2) second representations exploits linear corre-
lations, either applying Principal Component Analysis (PCA) to the
concatenated representations or applying Canonical Correlation Anal-
ysis (CCA) to project both spaces into a shared space; and (3) third
representation combines the scores returned by separate text and KB
spaces, either as the arithmetic average or the average of the ranks.
Authors report better values than retrofitting (Faruqui et al., 2014),
with PCA yielding the best results, closely followed by the concatena-
tion and average. Due to the disequilibrium in dimensionality of the
word vectors in this study, we discarded all methods but the average.
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4. Evaluation

The goals of the experiments described in this section are as follows:
(1) a unified, reproducible and broader experimental study onto the
state of the art in the families of ontology-based semantic similarity
measures and WE models than previous works reported in the lit-
erature; (2) a comparison of the performance between both families
of methods with the aim of answering our main research questions
detailed in Section 1.1; (3) a detailed statistical significance analysis
of the results; (4) the replication of previously reported methods and
results; (5) a new confirmation of the achievements in both aforemen-
tioned families of semantic measures, and finally (6) the evaluation
of all methods in combination with the best performing methods in
noun similarity and relatedness datasets based on the average of the
similarity values returned by each one.

4.1. Experimental setup

Table 1 shows the collection of ontology-based Topological simi-
larity measures (OTM) based on WordNet which are evaluated in our
experiments, whilst Table 2 shows the pre-trained word embedding
(WE) and ontology-based vector (OVM) models. Table 3 details all
datasets used to evaluate the methods considered herein. The selection
of state-of-the-art OTM measures is based on the results obtained in
four previous large experimental surveys introduced by Lastra-Díaz and
García-Serrano (2015b,a, 2016) and Hadj Taieb et al. (2014b), whilst
the selection of state-of-the-art WE and OVM models is based on the
best performing models in the SimLex-999 Hill et al. (2015) dataset
as reported in the project homepage2. IC-based similarity measures are
evaluated in combination with their best performing IC models (Lastra-
Díaz and García-Serrano, 2016, table 12), with the only exception
of the Gao et al. (2015) measure which is evaluated herein with its
best performing intrinsic IC model (Lastra-Díaz and García-Serrano,
2016, CondProbRefHypo). Likewise, Wu and Palmer (1994) measure
evaluated herein corresponds to a commonly used approximation on
tree-like taxonomies detailed by Deza and Deza (2009, p.375), instead
of the original path-based measure detailed in Wu and Palmer (1994),
which we call Wu&Palmer𝑓𝑎𝑠𝑡.

Fig. 3 shows a concept map detailing our experimental setup to run
automatically all our experiments. The evaluation of all ontology-based
semantic similarity measures and WE models is based on a com-
mon software implementation provided by the release V1R4 (Lastra-
Díaz and García Serrano, 2018) of the HESML library (Lastra-Díaz
et al., 2017), and the noun database of WordNet 3.0 (Miller, 1995).
HESML V1R4 introduces three new Java classes called EMBWordEm-
beddingModel, UKBppvWordEmbeddingModel and NasariWordEmbed-
dingModel respectively, which implement the evaluation of the
(*.emb), (*.ppv) UKB (Agirre and Soroa, 2009) and Nasari (Camacho-
Collados et al., 2016) word vector file formats, with the aim of provid-
ing a common software platform for the evaluation of both aforemen-
tioned families of methods.

Vocabularies of all pre-trained embedding models shown in Table 2
are provided in lowercase. For this reason, all word pairs of the datasets
detailed in Table 3 are normalised to lowercase. As consequence of the
former decision, Agirre201 (Agirre et al., 2009) dataset used in our
experiments differs in a few word pairs from the Agirre201 dataset
evaluated by Lastra-Díaz and García-Serrano (2015a, 2016). Thus,
results reported herein in the Agirre201 dataset could slightly differ
in the Pearson and Spearman correlation values from those reported
for the same similarity measures in the two aforementioned works.
Likewise, results reported herein for the evaluation of the Leacock
and Chodorow (1998) measure differ from those reported in Lastra-
Díaz and García-Serrano (2016) because HESML V1R4 (Lastra-Díaz and
García Serrano, 2018) fixes a software implementation error of this

2 https://www.cl.cam.ac.uk/~fh295/simlex.html.

aforementioned measure in previous HESML versions. Finally, OTM
measures are only evaluated on datasets based on noun sets contained
by the noun database of WordNet 3.0, because the adjective and verb
databases of WordNet 3.0 are not well-defined taxonomies. For this
reason, OTM measures are only evaluated in 9 of the 19 datasets
detailed in Table 3.

4.2. Reproducing our benchmarks

All our experiments were generated by running the HESMLclient
program distributed with HESML V1R4 (Lastra-Díaz and García Ser-
rano, 2018) with an automatically reproducible benchmark file which
produces a raw output file in (*.csv) file format for each dataset in
Table 3 as detailed in Appendix B and shown in Fig. 3. Raw output files
contain the raw similarity values returned by each semantic measure
for each word pair. All tables of results reported herein are auto-
matically generated by running the ’embeddings_vs_ontomeasures_final
_tables.R’ script file on the collection of raw similarity output files in
the R statistical package. Finally, all our experiments and results can be
exactly reproduced by following the instructions detailed in Appendix B
which are based on our companion reproducibility dataset (Lastra-Díaz
and García Serrano, 2018), HESML V1R4 (Lastra-Díaz and García Ser-
rano, 2018) and Reprozip (Chirigati et al., 2016).

4.3. Evaluation metrics

As evaluation metrics, we use the Pearson correlation factor, de-
noted by 𝑟 in Eq. (1), the Spearman rank correlation factor, denoted by
𝜌 in Eq. (2), and the harmonic score denoted by ℎ as defined in Eq. (3).
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The Pearson correlation was used for the first time to compare
vectors of human similarity judgements in the pioneering study on the
correlation of the degree of synonymy between words by Rubenstein
and Goodenough (1965), which introduces the pioneering and most
significant benchmark on word similarity. Pearson correlation has been
subsequently used to create new word similarity and relatedness bench-
marks, such as those detailed in Table 3, as well as for the evaluation
of any method for the estimation of the degree of similarity between
words and concepts. For this reason, we include the Pearson correlation
values obtained by the methods evaluated herein with the aim of
encouraging their comparison with most results reported in the liter-
ature. The Pearson correlation function returns a value that matches
the normalised dot product between the two vectors representing the
centred-samples of two random variables, which corresponds to the
cosine function of the Euclidean angle between both vectors. Thus,
Pearson correlation is invariant as regard any scaling or translation of
the data, whilst the Spearman rank correlation is rank invariant what
means that it holds the same value for any arbitrary monotone data
transformation. On the other hand, Pearson correlation sets a linear
and very strong form of correlation which makes it difficult their use
as predictor of the impact of any word similarity method into some NLP
and IR applications whose output are based on the ranking of different
types of text-based information units according to their degree of
similarity as regard any text-based query, such as document or sentence
retrieval. Likewise, it is very helpful to be able to compare the intrinsic
capability of any word similarity measure to rank correctly the degree
of similarity between words or concepts regardless any arbitrary non-
linear transformation of their output values. For these later reasons,
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Fig. 3. Concept map detailing our experimental setup to run automatically all experiments reported herein. Input data files are shown in green, whilst output raw and processed
data files are shown in yellow and software components are shown in blue. All experiments are specified into a single experiment file which is executed by HESMLclient program.
For more detailed information, we refer the reader to Section 4.2 and Appendix B. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Table 1
Collection of twenty-one ontology-based measures based on WordNet 3.0 which are evaluated in our experiments using HESML V1R4 (Lastra-Díaz and García Serrano, 2018).

Subfamily Ontology-based similarity measures evaluated herein

Classic IC-based & reformulations (1) Resnik (1995), (2) Lin (1998), (3) Jiang and Conrath (1997), (4) Pirró and Seco (2008)

Hybrid IC-based (5) Cai et al. (2017, strategy 2), (6) (Lastra-Díaz and García-Serrano, 2015a, coswJ&C), (7) Zhou et al. (2008b),
(8) Gao et al. (2015, strategy 3), (9) Meng et al. (2014)

Monotone IC-based
transformations

(10) (Lastra-Díaz and García-Serrano, 2015a, cosJ&C), (11) Meng and Gu (2012), (12) FaITH (Pirró and Euzenat, 2010),
(13) Garla and Brandt (2012)

Path-based (14) Li et al. (2003, strategy 3), (15) Al-Mubaid and Nguyen (2009), (16) Pedersen et al. (2007), (17) (Leacock and Chodorow, 1998),
(18) Rada et al. (1989), (19) Wu and Palmer (1994)

Feature-based (20) Sánchez et al. (2012)
Taxonomy features (21) Hadj Taieb et al. (2014b)

Table 2
Collection of eleven pre-trained Word Embedding (WE and WEC) models and Ontology-based Vector Models (OVM) evaluated in our experiments using the Java classes implementing
their evaluation in HESML V1R4 (Lastra-Díaz and García Serrano, 2018). All pre-trained files are publicly available in a ZIP file within our reproducibility package provided as
supplementary material (Lastra-Díaz et al., 2019). First column details which methods use WordNet.

Use WordNet Family Word Embedding or OVM model Source of pre-trained model files

Yes WEC Attract-repel (Mrkšić et al., 2017) https://github.com/nmrksic/attract-repel
No WE FastText (Bojanowski et al., 2016) https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
No WE GloVe (Pennington et al., 2014) https://nlp.stanford.edu/projects/glove/
No WE CBOW (Mikolov et al., 2013a) https://code.google.com/archive/p/word2vec/
Yes WEC SymPatterns (SP-500d) (Schwartz et al., 2015) https://homes.cs.washington.edu/~roysch/papers/sp_embeddings/sp_embeddings.html
No WEC Paragram-ws (Wieting et al., 2015) https://www.cs.cmu.edu/~jwieting/
No WEC Paragram-sl (Wieting et al., 2015) https://www.cs.cmu.edu/~jwieting/
Yes WEC Counter-fitting (CF) (Mrkšić et al., 2016) https://github.com/nmrksic/counter-fitting
Yes OVM WN-RandomWalks (Goikoetxea et al., 2015) http://ixa2.si.ehu.es/ukb/
Yes OVM WN-UKB (Agirre and Soroa, 2009) http://ixa2.si.ehu.es/ukb/
Yes OVM Nasari (Camacho-Collados et al., 2016) http://lcl.uniroma1.it/nasari/

the Spearman rank correlation has been widely adopted in this line
of research with the hope that it can provide a more unbiased and
intrinsic evaluation method and being a better predictor of the impact
of any word similarity measure into rank-based applications. Finally,
harmonic score allows to compare word similarity methods by using

a unique weighted score based on their performance in Pearson and
Spearman correlation.

In order to compare the performance of the semantic measures
evaluated in our experiments, we use the average values of the three
aforementioned metrics in all datasets. On the other hand, the statistical
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Table 3
Detail of the main features of all datasets evaluated in our benchmarks, including the corresponding file in the companion reproducibility package (Lastra-Díaz et al., 2019) based
on HESML V1R4 (Lastra-Díaz et al., 2017) and Reprozip (Chirigati et al., 2016).

Dataset Content Type # word pairs Filename (*.csv) in HESML distribution

MC28 (Miller and Charles, 1991) Nouns Similarity 28 Miller_Charles_28_dataset
RG65 (Rubenstein and Goodenough, 1965) Nouns Similarity 65 Rubenstein_Goodenough_dataset
PS𝑓𝑢𝑙𝑙 (Pirró, 2009) Nouns Similarity 65 PirroSeco_full_dataset
Agirre201 (Agirre et al., 2009) Nouns Similarity 201 Agirre201_lowercase_dataset
SimLex665 (Hill et al., 2015) Nouns Similarity 665 SimLex665_dataset
MTurk771 (Halawi et al., 2012) Nouns Relatedness 771 Halawi_MTURK771_dataset
MTurk287/235 (Radinsky et al., 2011) Nouns Relatedness 235 Radinsky_MTurk287_filtered235_dataset
WS353Rel (Finkelstein et al., 2002) Nouns Relatedness 245 WordSim353Rel_dataset
Rel122 (Szumlanski et al., 2013) Nouns Relatedness 122 Rel122_dataset
SCWS (Huang et al., 2012) Nouns Relatedness 1994 SCWS1994_dataset

SimLex222 (Hill et al., 2015) Verbs Similarity 222 SimLex222_verbs_dataset
SimVerb3500 (Gerz et al., 2016) Verbs Similarity 3500 Gerz_SimVerb3500_dataset
YP130 (Yang and Powers, 2006) Verbs Relatedness 130 Yang_YP130_dataset

WS353Full (Finkelstein et al., 2002) Nouns, Verbs, Adjectives Relatedness 353 WordSim353Full_dataset
SimLex999 (Hill et al., 2015) Nouns, Verbs, Adjectives Similarity 999 SimLex999_dataset
MEN (Bruni et al., 2014) Nouns, Verbs, Adjectives Relatedness 3000 MEN_dataset
RW2034 (Luong et al., 2013) Nouns, Verbs, Adjectives Relatedness 2034 RareWords2034_dataset
RW1401 (Luong et al., 2013) Nouns, Verbs, Adjectives in WordNet Relatedness 2034 RareWords1401_dataset

SimLex111 (Hill et al., 2015) Adjectives Similarity 111 SimLex111_adjectives_dataset

significance of the results is evaluated by using the p-values resulting
from the t-student test for the difference mean between the values
reported by each pair of semantic measures in all datasets, or a subset
of them relevant in the context of a discussion. The t-student test is
used herein because it is a standard and widely-used hypothesis testing
for small and independent data samples with normal distribution, in
addition to being previously used in other similar studies by Lastra-Díaz
and García-Serrano (2015a, 2016). The p-values are computed by using
a one-sided t-student distribution on two paired random sample sets.
Our null hypothesis, denoted by 𝐻0, is that the difference in the average
performance between each pair of compared semantic measures is 0,
whilst the alternative hypothesis, denoted by 𝐻1, is that their average
performance is different. For a 5% level of significance, it means that
if the 𝑝-value is greater or equal than 0.05, we must accept the null
hypothesis, otherwise we can reject 𝐻0 with an error probability of
less than the 𝑝-value. In this latter case, we will said that a first
semantic measure obtains a statistically significant higher value than
a second one in a specific metric, or that the former one significantly
outperforms the second one. All aforementioned metrics, as well as all
p-values and data tables reported herein are computed by executing
a R script file on the collection of raw similarity files generated by
our experiments as detailed in Appendix B. Finally, in some cases we
also complete our quantitative analysis with two qualitative judgments
whose definition is as follows: (1) we say that a method is a convincing
winner if it obtains the best average results and significantly outper-
forms most methods, with only a few exceptions, whilst (2) we say that
a method is a definitive winner if it significantly outperforms the rest of
methods. All p-values reported in this work are computed by calling
the t.test function provided by the R package as detailed below:

t.test(tested method[], other method[], paired=TRUE, alternative
=‘‘greater’’)

4.4. Results obtained

Tables 4 and 5 show the Pearson and Spearman correlation values
obtained by all semantic measures evaluated in the set of five noun
similarity datasets made up by the MC28, RG65, P&S𝑓𝑢𝑙𝑙, Agirre201
and SimLex665 datasets. Tables 6 and 7 show the performance ob-
tained by all semantic measures in the set of four noun relatedness
datasets made up by the MTurk771, MTurk287235, WS353Rel and
Rel122 datasets. Likewise, Tables 4 to 7 show the p-values testing the
hypothesis that best performing methods in these benchmarks, Attract–
repel and Paragram-ws models, significantly outperform the remaining

methods. On the other hand, Tables 8 and 9 show the performance
of all OVM and WE models in all similarity and relatedness datasets
respectively, whose statistical significance analysis is shown in Tables
A.1 and A.2 of Appendix A. In order to evaluate our hypothesis on the
linear combination of two methods, Appendix A introduces Tables A.3
and A.4 showing the Pearson and Spearman correlation obtained by the
combination of the best performing similarity measure with all remain-
ing methods in the five aforementioned noun similarity datasets, whilst
Tables A.5 and A.6 show the same aforementioned metrics obtained by
the combination of the best performing relatedness measure with all
remaining methods in four aforementioned noun relatedness datasets.

5. Discussion

5.1. WE models versus OM measures in noun similarity datasets

Attract–repel model obtains the highest average Pearson and Spearman
correlation values in all noun similarity datasets. However, this model
is unable to outperform significantly all ontology-based measures in any
metric. This conclusion can be drawn by looking at the average (Avg)
column in Tables 4 and 5 and p-values in last column of Table 4
which show that there is no a statistical significant difference between
the Pearson correlation values obtained by the Attract–repel model
and several ontology-based semantic similarity measures such as Cai
et al. (𝑝-value = 0.32) and coswJ&C (Lastra-Díaz and García-Serrano,
2015b) (𝑝-value = 0.32) among others. Likewise, looking at p-values
in last column of Table 5 we can see that Attract–repel model neither
is able to outperform significantly in Spearman correlation all OTM
measures, such as coswJ&C (𝑝-value = 0.072), nor all OVM measures
such as WN-RandomWalks (𝑝-value = 0.27) and WordNet-UKB (𝑝-
value = 0.23). Thus, this conclusion allows to answer negatively the
part (a) of research question RQ1 as follows: the family of ontology-
based semantic similarity measures has not been definitively outperformed
by current state-of-the-art WE models in the estimation of the degree of
similarity between words.

CoswJ&C measure obtains the highest Pearson correlation values in
MC28 and RG65 datasets, whilst Hadj Taieb et al. measure and GloVe
and Counter-fitting models obtain the highest Pearson correlation values
in P&S𝑓𝑢𝑙𝑙, Agirre201 and SimLex-665 datasets respectively. This later
conclusion can be drawn by looking at bold values in Table 4.

WN-RandomWalks, WordNet-UKB, Attract–repel, Paragram-ws and
Counter-fitting obtain the highest Spearman rank correlation values in
MC28, RG65, P&S𝑓𝑢𝑙𝑙, Agirre201 and SimLex-665 datasets respectively.
This later conclusion can be drawn by looking at bold values in Table 5.
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Table 4
Pearson correlation (r) values for each Ontology-based semantic Topological similarity Measure (OTM), Ontology-based Vector Model (OVM) or Word Embedding (WE/WEC) model
in the five noun similarity datasets. Measures (rows) are ranked according to their average value shown in Avg column. Best value for each dataset is shown in bold.

Pearson correlation (r) in noun similarity datasets

Family Measure IC model MC28 RG65 PS𝑓𝑢𝑙𝑙 Agirre201 SL665 Avg (r) p-valuea

WEC Attract–repel (Mrkšić et al., 2017) 0.837 0.840 0.893 0.720 0.691 0.796 –
OTM Cai𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦2 (Cai et al., 2017) Cai et al. (2017) 0.858 0.872 0.901 0.687 0.608 0.785 0.320
OTM coswJ&C (Lastra-Díaz and García-Serrano, 2015b) Sánchez et al. (2011) 0.871 0.877 0.885 0.695 0.592 0.784 0.320
OTM Zhou et al. (2008b) Seco et al. (2004) 0.854 0.873 0.895 0.672 0.624 0.784 0.270
OTM Hadj Taieb et al. (2014b) 0.825 0.867 0.907 0.708 0.609 0.783 0.260
OTM cosJ&C (Lastra-Díaz and García-Serrano, 2015b) Sánchez et al. (2011) 0.848 0.875 0.900 0.682 0.594 0.780 0.260
WEC Paragram-ws (Wieting et al., 2015) 0.796 0.810 0.849 0.765 0.662 0.776 0.150
OTM (Pirró and Seco, 2008) Seco et al. (2004) 0.846 0.862 0.897 0.679 0.597 0.776 0.200
OTM Gao𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 (Gao et al., 2015) CPRefHypo (Lastra-Díaz and García-Serrano, 2016) 0.835 0.865 0.891 0.674 0.614 0.776 0.160
WEC Counter-fitting (Mrkšić et al., 2016) 0.806 0.806 0.866 0.701 0.697 0.775 0.022
OTM Meng and Gu (2012) Seco et al. (2004) 0.814 0.860 0.903 0.692 0.605 0.775 0.160
OTM FaITH (Pirró and Euzenat, 2010) Seco et al. (2004) 0.809 0.856 0.904 0.692 0.605 0.773 0.140
WEC Paragram-sl (Wieting et al., 2015) 0.781 0.798 0.854 0.748 0.682 0.773 0.098
OTM Lin (1998) Seco et al. (2004) 0.824 0.861 0.894 0.680 0.601 0.772 0.140
OTM Li𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 (Li et al., 2003) 0.836 0.862 0.885 0.664 0.606 0.771 0.130
OTM Jiang and Conrath (1997) Sánchez et al. (2011) 0.859 0.862 0.876 0.652 0.584 0.767 0.160
OTM Leacock and Chodorow (1998) 0.826 0.851 0.871 0.647 0.605 0.760 0.060
OVM WN-RandowWalks (Goikoetxea et al., 2015) 0.835 0.797 0.843 0.773 0.543 0.758 0.160
OTM Sánchez et al. (2012) 0.806 0.848 0.870 0.669 0.594 0.757 0.044
OTM Meng et al. (2014) Seco et al. (2004) 0.811 0.849 0.837 0.613 0.571 0.736 0.033
OTM Al-Mubaid and Nguyen (2009) 0.791 0.807 0.853 0.645 0.576 0.734 0.008
OTM Resnik (1995) CPRefLeSubRat (Lastra-Díaz and García-Serrano, 2016) 0.793 0.823 0.874 0.669 0.512 0.734 0.054
WE FastText (Bojanowski et al., 2016) 0.842 0.793 0.818 0.775 0.411 0.728 0.150
WE GloVe (Pennington et al., 2014) 0.845 0.770 0.759 0.797 0.467 0.728 0.130
OVM Nasari (Camacho-Collados et al., 2016) 0.831 0.791 0.812 0.708 0.489 0.726 0.060
WE CBOW (Mikolov et al., 2013a) 0.796 0.772 0.786 0.763 0.461 0.716 0.073
OTM Pedersen et al. (2007) 0.758 0.781 0.840 0.605 0.551 0.707 0.003
OTM Garla and Brandt (2012) Sánchez et al. (2011) 0.720 0.769 0.847 0.572 0.512 0.684 0.005
OTM Rada et al. (1989) 0.729 0.771 0.751 0.558 0.565 0.675 0.001
OTM Wu&Palmer𝑓𝑎𝑠𝑡(Wu and Palmer, 1994) 0.664 0.720 0.715 0.568 0.473 0.628 0.000
WEC SymPatterns-500d (Schwartz et al., 2015) 0.606 0.690 0.709 0.454 0.435 0.579 0.000
OVM WordNet UKB (Agirre et al., 2009) 0.542 0.548 0.629 0.375 0.361 0.491 0.000

aLast column shows p-values for an one-side t-Student distribution between Attract–repel (Mrkšić et al., 2017) model and the remaining methods using the performance in the five
noun similarity datasets as paired random sample with the aim of testing the hypothesis that Attract–repel significantly outperforms remaining methods in Pearson correlation.

5.2. Comparison of WE models in noun similarity datasets

Attract–repel model obtains the best overall performance in all noun
similarity datasets. However, it is unable to outperform significantly most
WE models in any metric. This later conclusion can be drawn by looking
at Pearson and Spearman correlation values in Tables 4 and 5, as well
as p-values shown in these later tables. Thus, we conclude that there is
no a definitive winner for the noun similarity task in the current family
of WE models.

Attract–repel model significantly outperforms several WE and OVM
models in all noun similarity datasets. First, looking at last column of
Table 4, we can conclude that Attract–repel significantly outperforms in
Pearson correlation the Counter-fitting (𝑝-value = 0.022), SymPatterns-
500d (𝑝-value = 0.000), and WordNet-UKB (𝑝-value = 0.000) models.
And second, looking at last column of Table 5, we can conclude
that Attract–repel significantly outperforms in Spearman correlation
the Nasari (𝑝-value = 0.008) and SymPatterns-500d (𝑝-value = 0.000)
models.

5.3. Comparison of OM measures in noun similarity datasets

WN-RandomWalks obtains the highest average Spearman correlation
among the family of OM measures in all similarity datasets. However, there
is no a statistical significant difference with most of best performing OM
measures. The outperformance of WN-RandomWalks can be confirmed
by looking at Table 5, whilst a t-Student significance analysis shows
that there is no a statistical significance difference between the Spear-
man correlation values obtained by the WN-RandomWalks model and
other OM measures, such as the coswJ&C (𝑝-value = 0.329), Cai et al.
(𝑝-value = 0.203) or WordNet-UKB (𝑝-value = 0.399) measures among
others.

CoswJ&C similarity measure obtains the highest average Spearman cor-
relation among the family of OTM measures in all noun similarity datasets.
However, it is unable to outperform significantly all OTM measures. The
outperformance of the coswJ&C measure can be confirmed by looking
at Table 5, whilst a t-Student significance analysis shows that there
is no a statistically significant difference between the Spearman cor-
relation values obtained by the coswJ&C measure and those obtained
by the Zhou et al. (𝑝-value = 0.215), Cai et al. (𝑝-value = 0.07028)
and Meng et al. (𝑝-value = 0.1733) measures. Thus, there is no a
definitive winner in this aforementioned family of measures.

Cai et al. (2017) similarity measure obtains the highest average Pearson
correlation value in all similarity datasets among the family of OTM mea-
sures. However, it is unable to outperform significantly all OTM measures.
The outperformance of the Cai et al. measure can be confirmed by
looking at Table 4, whilst a t-Student significance analysis shows that
there is no a statistical significant difference with the Pearson corre-
lation values obtained by the coswJ&C measure (𝑝-value = 0.4108),
and other measures such as those introduced by Zhou et al. (𝑝-value =
0.3721), Hadj Taieb et al. (𝑝-value = 0.4132) and cosJ&C (Lastra-Díaz
and García-Serrano, 2015b) (𝑝-value = 0.06963) among others.

5.4. WE models versus OM measures in noun relatedness datasets

GloVe model obtains the highest average Pearson correlation value in all
noun relatedness datasets, whilst Paragram-ws obtains the highest average
Spearman correlation value. Last conclusions can be drawn by looking at
bold values (r = 0.679) and (𝜌 = 0.689) shown in first row of Tables 6
and 7 respectively.

GloVe model obtains the highest Pearson correlation value in MTurk771,
MTurk287235 and Rel122 datasets, whilst Paragram-ws model obtains the
highest value in WS353Rel dataset. This later conclusion can be drawn
by looking at bold values in Table 6.
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Table 5
Spearman rank correlation (𝜌) values for each Ontology-based semantic Topological similarity Measure (OTM), Ontology-based Vector Model (OVM) or Word Embedding (WE/WEC)
model in the five noun similarity datasets. Measures (rows) are ranked according to their average value shown in Avg column. Best value for each dataset is shown in bold.

Spearman correlation (𝜌) in noun similarity datasets

Family Measure IC model MC28 RG65 PS𝑓𝑢𝑙𝑙 Agirre201 SL665 Avg (𝜌) p-valuea

WEC Attract–repel (Mrkšić et al., 2017) 0.884 0.825 0.843 0.738 0.690 0.796 –
WEC Paragram-ws (Wieting et al., 2015) 0.824 0.813 0.821 0.808 0.645 0.782 0.290
WEC Counter-fitting (Mrkšić et al., 2016) 0.857 0.808 0.831 0.695 0.698 0.778 0.050
OVM WN-RandowWalks (Goikoetxea et al., 2015) 0.909 0.823 0.814 0.784 0.529 0.772 0.270
OVM WordNet UKB (Agirre et al., 2009) 0.894 0.858 0.841 0.718 0.524 0.767 0.230
OTM coswJ&C (Lastra-Díaz and García-Serrano, 2015b) Sánchez et al. (2011) 0.877 0.835 0.822 0.666 0.587 0.757 0.072
WEC Paragram-sl (Wieting et al., 2015) 0.761 0.775 0.794 0.778 0.679 0.757 0.110
OTM Zhou et al. (2008b) Seco et al. (2004) 0.846 0.824 0.814 0.655 0.610 0.750 0.022
OTM Cai𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦2 (Cai et al., 2017) Cai et al. (2017) 0.864 0.804 0.794 0.662 0.595 0.744 0.012
OTM Meng et al. (2014) Seco et al. (2004) 0.805 0.820 0.815 0.655 0.610 0.741 0.014
OTM Pirró and Seco (2008) Seco et al. (2004) 0.868 0.801 0.792 0.656 0.586 0.740 0.015
OTM cosJ&C (Lastra-Díaz and García-Serrano, 2015b) Sánchez et al. (2011) 0.849 0.803 0.800 0.650 0.591 0.739 0.010
OTM Jiang and Conrath (1997) Sánchez et al. (2011) 0.849 0.803 0.800 0.650 0.591 0.739 0.010
OTM Garla and Brandt (2012) Sánchez et al. (2011) 0.849 0.803 0.800 0.650 0.591 0.739 0.010
OTM Hadj Taieb et al. (2014b) 0.807 0.797 0.797 0.660 0.596 0.731 0.003
OTM Gao𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 (Gao et al., 2015) CPRefHypo (Lastra-Díaz and García-Serrano, 2016) 0.827 0.801 0.791 0.641 0.595 0.731 0.005
OTM Meng and Gu (2012) Seco et al. (2004) 0.831 0.797 0.791 0.647 0.589 0.731 0.004
OTM FaITH (Pirró and Euzenat, 2010) Seco et al. (2004) 0.831 0.797 0.791 0.647 0.589 0.731 0.004
OTM Lin (1998) Seco et al. (2004) 0.831 0.797 0.791 0.647 0.589 0.731 0.004
OTM Al-Mubaid and Nguyen (2009) 0.805 0.812 0.807 0.645 0.578 0.729 0.011
WE FastText (Bojanowski et al., 2016) 0.845 0.801 0.801 0.777 0.410 0.727 0.140
OTM Li𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 (Li et al., 2003) 0.813 0.810 0.798 0.625 0.588 0.727 0.009
OTM Pedersen et al. (2007) 0.813 0.810 0.798 0.625 0.588 0.727 0.009
OTM Leacock and Chodorow (1998) 0.813 0.810 0.798 0.625 0.588 0.727 0.009
OTM Rada et al. (1989) 0.813 0.810 0.798 0.625 0.588 0.727 0.009
WE GloVe (Pennington et al., 2014) 0.862 0.769 0.755 0.795 0.429 0.722 0.120
OTM Sánchez et al. (2012) 0.790 0.784 0.789 0.643 0.578 0.717 0.002
WE CBOW (Mikolov et al., 2013a) 0.781 0.760 0.767 0.772 0.454 0.707 0.055
OTM Resnik (1995) CPRefLeSubRat Lastra-Díaz and García-Serrano (2016) 0.839 0.763 0.757 0.638 0.511 0.702 0.008
OVM Nasari (Camacho-Collados et al., 2016) 0.796 0.745 0.752 0.684 0.488 0.693 0.008
OTM Wu&Palmer𝑓𝑎𝑠𝑡(Wu and Palmer, 1994) 0.602 0.712 0.716 0.600 0.482 0.623 0.003
WEC SymPatterns-500d (Schwartz et al., 2015) 0.652 0.663 0.674 0.483 0.460 0.587 0.000

aLast column shows p-values for an one-side t-Student distribution between Attract–repel (Mrkšić et al., 2017) model and the remaining methods using the performance in the
five noun similarity datasets as paired random sample with the aim of testing the hypothesis that Attract–repel significantly outperforms remaining methods in Spearman rank
correlation.

Paragram-ws model obtains the highest Spearman correlation value in
MTurk771, WS353Rel and Rel122 datasets, whilst GloVe model obtains
the highest value in MTurk287235 dataset. This later conclusion can be
drawn by looking at bold values in Table 7.

All WE models obtain much higher average Pearson and Spearman
correlation values than all ontology-based semantic similarity measures
in all noun relatedness datasets. Looking at Tables 6 and 7, we can
conclude that all WE models are able to outperform all ontology-
based semantic similarity measures in all aforementioned metrics. This
conclusion confirms a well-known fact in the research community on
the outperformance of corpus-based methods on the ontology-based
measures based on WN in the estimation of the degree of relatedness
between words and concepts. Ontology-based measures based on WN
only use ’is-a’ relationships, thus they are unable to capture semantic
relationships between words and concepts as done by the family of WE
models which identify their co-occurrence in text.

Paragram-ws model significantly outperforms all ontology-based seman-
tic similarity measures based on WN in all metrics and all noun relatedness
datasets. Looking at last columns in Tables 6 and 7, we can see that
all p-values obtained for the statistical significance analysis on the
Pearson and Spearman correlation values obtained by the Paragram-
ws model as regard to the rest of methods in all noun relatedness
datasets are lower than 0.05 for all ontology-based semantic similarity
measures. Thus, this conclusion allows to answer positively the part
(b) of research question RQ1 as follows: the family of ontology-based
semantic similarity measures has been definitively outperformed by current
state-of-the-art WE models in the estimation of the degree of relatedness
between words.

5.5. Comparison of WE models in noun relatedness datasets

Paragram-ws model significantly outperforms all WE models in Pearson
and Spearman correlation in all noun relatedness datasets, with the only
exception of the GloVe, FastText and CBOW models. Looking at average
(Avg) column in Tables 6 and 7, we can see that Paragram-ws model
obtains the second highest average Pearson correlation, just behind
GloVe model, and the highest average Spearman correlation value.
Likewise, looking at p-values in Tables 6 and 7, we can see that all
p-values comparing the performance in Pearson and Spearman correla-
tion between Paragram-ws model and the rest of WE models are lower
than 0.05, with the only exception of those obtained by the GloVe,
FastText and CBOW models. Thus, Paragram-ws model is a convincing
winner for the noun relatedness task among the family of WE models.

5.6. Comparison of OM measures in noun relatedness datasets

Hadj Taieb et al. measure obtains the highest average Pearson corre-
lation value in all noun relatedness datasets among the family of OTM
measures. However, there is no a statistical significant difference among
them. This conclusion can be drawn by looking at average column
in Table 6 and checking the p-values resulting from the t-Student
test comparing the values reported by the Hadj Taieb et al. measure
and other measures such as coswJ&C (𝑝-value = 0.4785), Cai𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦2
(𝑝-value = 0.4758) and FaITH (𝑝-value = 0.3539) measures.

CoswJ&C measure obtains the highest average Spearman correlation
values in all noun relatedness datasets among the family of OTM measures.
However, there is no a statistical significant difference among them. This
conclusion can be drawn by looking at average (Avg) column Table 7
and checking the p-values resulting from the t-Student test comparing
the values reported by the coswJ&C measure and other measures such
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Table 6
Pearson correlation (r) values for each Ontology-based semantic Topological similarity Measure (OTM), Ontology-based Vector Model (OVM) or Word Embedding (WE/WEC) model
in the four noun relatedness datasets. Measures (rows) are ranked according to their average value shown in Avg column. Best value for each dataset is shown in bold.

Pearson correlation (r) in noun relatedness datasets

Family Measure IC model MTurk771 MTurk287235 WS353Rel Rel122 Avg (r) p-valuea

WE GloVe (Pennington et al., 2014) 0.705 0.749 0.665 0.599 0.679 0.900
WEC Paragram-ws (Wieting et al., 2015) 0.701 0.704 0.668 0.573 0.661 –
WE FastText (Bojanowski et al., 2016) 0.641 0.728 0.659 0.540 0.642 0.180
WE CBOW (Mikolov et al., 2013a) 0.650 0.698 0.567 0.576 0.623 0.100
WEC Paragram-sl (Wieting et al., 2015) 0.674 0.660 0.578 0.523 0.609 0.014
OVM WN-RandowWalks (Goikoetxea et al., 2015) 0.642 0.653 0.623 0.513 0.608 0.000
WEC Counter-fitting (Mrkšić et al., 2016) 0.666 0.630 0.590 0.526 0.603 0.006
WEC Attract–repel (Mrkšić et al., 2017) 0.590 0.618 0.541 0.464 0.553 0.000
OVM Nasari (Camacho-Collados et al., 2016) 0.505 0.474 0.400 0.553 0.483 0.024
WEC SymPatterns-500d (Schwartz et al., 2015) 0.506 0.409 0.328 0.436 0.420 0.007
OVM WordNet UKB (Agirre et al., 2009) 0.349 0.320 0.414 0.328 0.353 0.002
OTM Hadj Taieb et al. (2014b) 0.540 0.496 0.091 0.189 0.329 0.019
OTM coswJ&C (Lastra-Díaz and García-Serrano, 2015b) Sánchez et al. (2011) 0.529 0.487 0.079 0.220 0.328 0.019
OTM Cai𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦2 (Cai et al., 2017) Cai et al. (2017) 0.536 0.478 0.081 0.219 0.328 0.019
OTM FaITH (Pirró and Euzenat, 2010) Seco et al. (2004) 0.515 0.490 0.088 0.208 0.325 0.017
OTM Meng and Gu (2012) Seco et al. (2004) 0.520 0.487 0.084 0.204 0.324 0.017
OTM Pirró and Seco (2008) Seco et al. (2004) 0.515 0.482 0.085 0.210 0.323 0.016
OTM Zhou et al. (2008b) Seco et al. (2004) 0.541 0.467 0.069 0.211 0.322 0.019
OTM cosJ&C (Lastra-Díaz and García-Serrano, 2015b) Sánchez et al. (2011) 0.525 0.480 0.079 0.188 0.318 0.017
OTM Lin (1998) Seco et al. (2004) 0.524 0.469 0.069 0.193 0.314 0.017
OTM Gao𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 (Gao et al., 2015) CPRefHypo (Lastra-Díaz and García-Serrano, 2016) 0.533 0.454 0.072 0.184 0.311 0.017
OTM Jiang and Conrath (1997) Sánchez et al. (2011) 0.518 0.442 0.066 0.194 0.305 0.015
OTM Li𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 (Li et al., 2003) 0.518 0.434 0.070 0.190 0.303 0.014
OTM Garla and Brandt (2012) Sánchez et al. (2011) 0.410 0.437 0.117 0.234 0.300 0.006
OTM Pedersen et al. (2007) 0.425 0.423 0.103 0.221 0.293 0.006
OTM Leacock and Chodorow (1998) 0.506 0.410 0.056 0.195 0.292 0.013
OTM Resnik (1995) CPRefLeSubRat (Lastra-Díaz and García-Serrano, 2016) 0.402 0.453 0.077 0.195 0.282 0.007
OTM Al-Mubaid and Nguyen (2009) 0.446 0.415 0.059 0.204 0.281 0.009
OTM Sánchez et al. (2012) 0.506 0.394 0.057 0.160 0.279 0.011
OTM Meng et al. (2014) Seco et al. (2004) 0.471 0.425 0.032 0.161 0.272 0.012
OTM Rada et al. (1989) 0.510 0.338 0.020 0.175 0.261 0.012
OTM Wu&Palmer𝑓𝑎𝑠𝑡 (Wu and Palmer, 1994) 0.466 0.302 0.024 0.159 0.238 0.008

aLast column shows p-values for an one-side t-Student distribution between Paragram-ws (Wieting et al., 2015) model and the remaining methods using the performance in the four
noun relatedness datasets as paired random sample with the aim of testing the hypothesis that Paragram-ws significantly outperforms remaining methods in Pearson correlation.

as Cai𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦2 (𝑝-value = 0.3846) and Zhou et al. (𝑝-value = 0.3555)
measures among others

WN-RandomWalks outperforms the Nasari and WordNet-UKB OVM
models in average Pearson correlation in all noun relatedness datasets.
However, there is no a statistical significant difference with Nasari. This
conclusion can be drawn by looking at average (Avg) column in Table 6
and checking 𝑝-value resulting from a t-Student test comparing the
values reported by WN-RandomWalks and WordNet-UKB (𝑝-value =
0.003) and Nasari (𝑝-value = 0.0596).

WN-RandomWalks outperforms the WordNet-UKB and Nasari OVM
models in average Spearman correlation in all noun relatedness datasets.
However, there is no a statistical significant difference among them. Looking
at average (Avg) column in Table 7, we can see that WN-RandomWalks
outperforms in average Spearman correlation both WordNet-UKB and
Nasari models. However, a t-Student significance analysis shows that
there is no a statistical significant difference in Spearman correlation
between WN-RandomWalks and WordNet-UKB (𝑝-value = 0.065) or
Nasari (𝑝-value = 0.051) models. Thus, WN-RandomWalks is a convinc-
ing but not definitive winner among the family of OVM models in all
noun relatedness datasets.

WN-RandomWalks significantly outperforms in all metrics all OTM mea-
sures in all noun relatedness datasets. Looking at Tables 6 and 7, we can
see that WN-RandomWalks obtains average Pearson and Spearman cor-
relation values of (r=0.608) and (𝜌=0.615) respectively, whilst the best
performing OTM measures obtain values of (r=0.329) and (𝜌=0.280)
respectively. Likewise, a t-Student test shows that this difference is
statistically significant.

5.7. Comparison of WE models in all similarity datasets

Attract–repel model obtains the highest average Pearson, Spearman and
harmonic values in all similarity datasets. This conclusion can be drawn

by looking at average values in Table 8. Likewise, Attract–repel model
obtains the best results for the aforementioned metrics in most of
similarity datasets, with only a few exceptions as shown by bold values
in Table 8.

Attract–repel model significantly outperforms the rest of WE models in
all metrics and all similarity datasets. This conclusion can be drawn by
looking at Tables A.1 and checking that all p-values for WE models in
all metrics are lower than 0.05. Thus, Attract–repel model is a definitive
winner for the estimation of the degree of similarity between words
among the family of WE models.

5.8. Comparison of WE models in all relatedness datasets

Paragram-ws model obtains the highest average Pearson, Spearman and
harmonic values in all relatedness datasets. This conclusion can be drawn
by looking at average values in Table 9. Likewise, Paragram-ws model
obtains the best Spearman correlation and harmonic score in most of
relatedness datasets, with only a few exceptions as shown by bold
values in Table 9.

Paragram-ws model significantly outperforms the rest of WE models in
all metrics and all relatedness datasets, with the only exception of GloVe
model. This conclusion can be drawn by looking at Tables A.2 and
checking that all p-values for WE models in all metrics are lower than
0.05, with the only exception of those p-values shown by GloVe in Pear-
son correlation (0.23) and harmonic score (0.072). Thus, Paragram-ws
model is a convincing winner for the estimation of the degree of
relatedness between words among the family of WE models.

GloVe and Paragram-ws are the two best performing WE models in
Pearson correlation in all relatedness datasets. Looking at Table 9, we can
see that Glove model obtains the highest Pearson correlation value in
MTurk771, MTurk287235, Rel122, WS353Full and MEN datasets, whilst
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Table 7
Spearman rank correlation (𝜌) values for each Ontology-based semantic Topological similarity Measure (OTM), Ontology-based Vector Model (OVM) or Word Embedding (WE/WEC)
model in the four noun relatedness datasets. Measures (rows) are ranked according to the average value shown in Avg column. Best value for each dataset is shown in bold.

Spearman correlation (𝜌) in noun relatedness datasets

Family Measure IC model MTurk771 MTurk287235 WS353Rel Rel122 Avg (𝜌) p-valuea

WEC Paragram-ws (Wieting et al., 2015) 0.745 0.699 0.721 0.589 0.689 –
WE GloVe (Pennington et al., 2014) 0.715 0.724 0.651 0.584 0.669 0.200
WE FastText (Bojanowski et al., 2016) 0.661 0.709 0.681 0.539 0.648 0.062
WEC Paragram-sl (Wieting et al., 2015) 0.712 0.663 0.644 0.560 0.645 0.015
WEC Counter-fitting (Mrkšić et al., 2016) 0.701 0.639 0.645 0.562 0.637 0.008
WE CBOW (Mikolov et al., 2013a) 0.672 0.674 0.603 0.560 0.627 0.034
OVM WN-RandowWalks (Goikoetxea et al., 2015) 0.672 0.640 0.626 0.521 0.615 0.001
WEC Attract–repel (Mrkšić et al., 2017) 0.599 0.606 0.586 0.466 0.564 0.001
OVM WordNet UKB (Agirre et al., 2009) 0.602 0.599 0.488 0.525 0.553 0.017
OVM Nasari (Camacho-Collados et al., 2016) 0.500 0.434 0.442 0.557 0.483 0.019
WEC SymPatterns-500d (Schwartz et al., 2015) 0.513 0.414 0.303 0.405 0.409 0.006
OTM coswJ&C (Lastra-Díaz and García-Serrano, 2015b) Sánchez et al. (2011) 0.481 0.367 0.020 0.252 0.280 0.013
OTM Cai𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦2 (Cai et al., 2017) Cai et al. (2017) 0.491 0.369 0.044 0.193 0.274 0.010
OTM Zhou et al. (2008b) Seco et al. (2004) 0.508 0.369 0.031 0.175 0.271 0.012
OTM Pirró and Seco (2008) Seco et al. (2004) 0.465 0.385 0.049 0.181 0.270 0.009
OTM cosJ&C (Lastra-Díaz and García-Serrano, 2015b) Sánchez et al. (2011) 0.479 0.365 0.037 0.189 0.267 0.010
OTM Jiang and Conrath (1997) Sánchez et al. (2011) 0.479 0.365 0.037 0.189 0.267 0.010
OTM Garla and Brandt (2012) Sánchez et al. (2011) 0.479 0.365 0.037 0.189 0.267 0.010
OTM Hadj Taieb et al. (2014b) 0.501 0.337 0.032 0.174 0.261 0.010
OTM Meng and Gu (2012) Seco et al. (2004) 0.479 0.339 0.033 0.180 0.257 0.009
OTM FaITH (Pirró and Euzenat, 2010) Seco et al. (2004) 0.479 0.339 0.033 0.180 0.257 0.009
OTM Lin (1998) Seco et al. (2004) 0.479 0.339 0.033 0.180 0.257 0.009
OTM Meng et al. (2014) Seco et al. (2004) 0.503 0.331 0.007 0.167 0.252 0.011
OTM Sánchez et al. (2012) 0.483 0.302 0.026 0.171 0.245 0.008
OTM Gao𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 (Gao et al., 2015) CPRefHypo (Lastra-Díaz and García-Serrano, 2016) 0.486 0.303 0.004 0.181 0.244 0.010
OTM Al-Mubaid and Nguyen (2009) 0.492 0.311 0.003 0.167 0.243 0.010
OTM Li𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦3 (Li et al., 2003) 0.490 0.311 −0.002 0.156 0.239 0.010
OTM Pedersen et al. (2007) 0.490 0.311 −0.002 0.156 0.239 0.010
OTM Leacock and Chodorow (1998) 0.490 0.311 −0.002 0.156 0.239 0.010
OTM Rada et al. (1989) 0.490 0.311 −0.002 0.156 0.239 0.010
OTM Resnik (1995) CPRefLeSubRat Lastra-Díaz and García-Serrano (2016) 0.366 0.333 0.041 0.184 0.231 0.004
OTM Wu&Palmer𝑓𝑎𝑠𝑡(Wu and Palmer, 1994) 0.448 0.280 0.030 0.159 0.229 0.006

aLast column shows p-values for an one-side t-Student distribution between Paragram-ws (Wieting et al., 2015) model and the remaining methods using the performance in the
four noun relatedness datasets as paired random sample with the aim of testing the hypothesis that Paragram-ws significantly outperforms remaining methods in Spearman rank
correlation.

Paragram-ws obtains the highest value in WS353Rel, RW2034 and
RW1401, WN-RandomWalks in YP130 and Paragram-sl in SCWS1994
datasets.

5.9. Impact of WordNet in WE models

Most of the embedding models evaluated in this survey which
incorporate KB information use WN, among others. SymPatterns-500d
(Schwartz et al., 2015) is based on antonymy relations of WN and a
thesaurus, Counter-fitting makes use antonymy and synonymy relations
from WN and PPDB, and Attract–repel antonymy and synonymy rela-
tions from BabelNet (Navigli and Ponzetto, 2012), which includes WN.
The only exception is Paragram, which is based on PPDB paraphrases.

WE models that combine distributional representations with relational
information from KBs have shown a robust performance in both similarity
and relatedness measurements. Special mention goes to Attract–repel
and Paragram-ws models, which respectively achieve state-of-the-art
results in similarity (see Table 8) and relatedness (see Table 9) datasets
evaluated herein. Attract–repel method uses synonymy and antonymy
relations from several KBs within BabelNet, so that it is not surprising
its state-of-the-art results in similarity datasets. However, Attract–repel
shows weak results in relatedness datasets (see Table 9) due to its
specialisation in similarity relations. Note that even though Paragram-
ws is based on paraphrase relations, i.e. similarity relations, and despite
the emphasis of the authors on similarity relations (see Section 3.2.2),
it shows a robust performance in both similarity (see Table 8) and very
specially in relatedness (see Table 9) within the WE models. Counter-
fitting method also shows a robust performance in similarity datasets,
so that it is very close to the state-of-the-art Attract–repel (see Table 8).
However, its results in relatedness are well below the state-of-the-art
Paragram-ws and also fall below the text-based word representations

(see Table 9). SymmPatterns-500d shows very poor performance in
both similarity (see Tables 4 and 5) and relatedness datasets by far (see
Tables 6 and 7). Note that all ontology-based (OM) methods are based
on WN taxonomy. As such, the methods that combine distributional
representations with ontology information, share a large part of the
structural information.

State-of-the-art Attract–repel and Paragram-ws outperform ontology-
based measures in similarity and relatedness datasets respectively. Tables 4
and 5 show that the former methods outperform all ontology-based
measures, but the difference is not significant. Paragram-ws slightly
outperforms ontology-based measures in similarity (see Table 5), whilst
it significantly outperforms OM measures in relatedness (see Tables 6
and 7). Counter-fitting’s results are very close to the ontology-based
ones in similarity (see Tables 4 and 5) and slightly outperforms them
in relatedness (see Tables 6 and 7). SymmPatterns-500d results fall far
below OM models.

The combination of WN, among other KBs, with distributional infor-
mation has been key for word embedding methods to outperform OM in
similarity. Distributional WE methods perform below OM methods in
word similarity, while combined methods (WEC) are able to outperform
OM methods in similarity. Although some WEC methods use WN in
conjunction with other KBs like PPDB or as subsets of larger knowledge
bases like BabelNet, the results indicate that WN is key to outperform
OM and WE methods, although the difference is not statistically signifi-
cant. Thus, this conclusion allows to answer positively to the version of
research question RQ2 as follows: The use of WN into recent WE models
has been key to outperform previous OM and WE methods in the word
similarity task, although the difference is not statistically significant.
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Table 8
Pearson (r), Spearman (𝜌) and Harmonic score (h) metrics obtained by each Word Embedding (WE/WEC) or Ontology-based Vector (OVM) model in all similarity datasets. Word
embedding (WE/WEC) and ontology-based vector models (columns) are ranked in descending order from left to right according to their average harmonic score shown in last row.
Best value for each dataset and metric is shown in bold.
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Method and family WEC WEC WEC WEC OVM WE OVM WE WE WEC OVM

Dataset Pearson (r) correlation values in all similarity datasets

MC28 0.837 0.806 0.796 0.781 0.835 0.796 0.831 0.845 0.842 0.606 0.542
RG65 0.840 0.806 0.810 0.798 0.797 0.772 0.791 0.770 0.793 0.690 0.548
PS𝑓𝑢𝑙𝑙 0.893 0.866 0.849 0.854 0.843 0.786 0.812 0.759 0.818 0.709 0.629
Agirre201 0.720 0.701 0.765 0.748 0.773 0.763 0.708 0.797 0.775 0.454 0.375
SimLex665 0.691 0.697 0.662 0.682 0.543 0.461 0.489 0.467 0.411 0.435 0.361
SimLex111 0.877 0.857 0.844 0.815 0.637 0.598 0.498 0.614 0.484 0.700 0.443
SimLex222 0.777 0.713 0.574 0.605 0.464 0.349 0.428 0.220 0.247 0.537 0.338
SimLex999 0.745 0.728 0.676 0.689 0.532 0.454 0.466 0.437 0.385 0.493 0.370
SimVerb3500 0.666 0.613 0.524 0.546 0.549 0.375 0.336 0.294 0.263 0.327 0.387

Avg (r) 0.783 0.754 0.722 0.724 0.664 0.595 0.595 0.578 0.558 0.550 0.444

Dataset Spearman (𝜌) correlation values in all similarity datasets

MC28 0.884 0.857 0.824 0.761 0.909 0.781 0.796 0.862 0.845 0.652 0.894
RG65 0.825 0.808 0.813 0.775 0.823 0.760 0.745 0.769 0.801 0.663 0.858
PS𝑓𝑢𝑙𝑙 0.843 0.831 0.821 0.794 0.814 0.767 0.752 0.755 0.801 0.674 0.841
Agirre201 0.738 0.695 0.808 0.778 0.784 0.772 0.684 0.795 0.777 0.483 0.718
SimLex665 0.690 0.698 0.645 0.679 0.529 0.454 0.488 0.429 0.410 0.460 0.524
SimLex111 0.872 0.847 0.825 0.795 0.643 0.592 0.473 0.622 0.508 0.676 0.555
SimLex222 0.783 0.727 0.562 0.590 0.446 0.322 0.414 0.196 0.231 0.544 0.367
SimLex999 0.751 0.736 0.667 0.685 0.525 0.442 0.450 0.408 0.380 0.513 0.497
SimVerb3500 0.672 0.628 0.514 0.540 0.545 0.364 0.287 0.283 0.258 0.328 0.499

Avg (𝜌) 0.784 0.758 0.720 0.711 0.669 0.584 0.566 0.569 0.557 0.555 0.639

Dataset Harmonic score (h) values in all similarity datasets

MC28 0.860 0.831 0.810 0.771 0.870 0.788 0.813 0.853 0.844 0.628 0.675
RG65 0.833 0.807 0.811 0.786 0.810 0.766 0.767 0.770 0.797 0.676 0.669
PS𝑓𝑢𝑙𝑙 0.867 0.848 0.835 0.823 0.828 0.777 0.781 0.757 0.809 0.691 0.720
Agirre201 0.729 0.698 0.786 0.762 0.779 0.767 0.696 0.796 0.776 0.468 0.493
SimLex665 0.690 0.697 0.653 0.681 0.536 0.457 0.489 0.447 0.411 0.447 0.427
SimLex111 0.874 0.852 0.835 0.805 0.640 0.595 0.485 0.618 0.496 0.688 0.493
SimLex222 0.780 0.720 0.568 0.597 0.455 0.335 0.421 0.207 0.239 0.540 0.352
SimLex999 0.748 0.732 0.671 0.687 0.528 0.448 0.458 0.422 0.383 0.503 0.424
SimVerb3500 0.669 0.620 0.519 0.543 0.547 0.369 0.310 0.288 0.261 0.328 0.436

Avg (h) 0.783 0.756 0.721 0.717 0.666 0.589 0.580 0.573 0.557 0.552 0.521

5.10. Impact of the averaging of WE models

Combinations of Attract–repel model with the measures by Zhou et al.
and Cai et al. significantly outperform all state-of-the-art single methods
in noun similarity datasets. This conclusion can be drawn by looking at
results shown in Tables A.3 and A.4.

A large set of combinations of Attract–repel model with other OTM
measures significantly outperform current state-of-the-art results in all noun
similarity datasets. This conclusion can be drawn by comparing the
results shown in Tables A.3 and A.4 with the best state-the-art results
shown in Tables 4 and 5.

Combinations of Paragram-ws model with GloVe and WN-
RandomWalks models significantly outperform all state-of-the-art single
methods in noun relatedness datasets. This conclusion can be drawn by
looking at results shown in Tables A.5 and A.6.

Combinations of Paragram-ws model with GloVe and WN-
RandomWalks models significantly outperform current state-of-the-art re-
sults in all noun relatedness datasets. This conclusion can be drawn

by comparing the results shown in Tables A.5 and A.6 with best
state-the-art results shown in Tables 6 and 7.

All combinations of Attract–repel model with other measures obtain
statistically significant higher correlation values than their corresponding
base measures in noun similarity datasets with only two exceptions. Looking
at Tables A.3 and A.4, we can see that all p-values are lower than
0.05 with the only exception of FastText model in Pearson correlation
(𝑝-value = 0.055) and WordNet-UKB model in Spearman correlation
(𝑝-value = 0.130) respectively.

All combinations of Paragram-ws model with other measures obtain
statistically significant higher correlation values than their corresponding
base measures in noun relatedness datasets. Looking at Tables A.3 and
A.4, we can see that all p-values are lower than 0.05.

Any linear combination of the best performing similarity and relatedness
measures significantly improves the performance of its base measure with
only two exceptions. This conclusion follows from two previous conclu-
sions above for the combination of the Attract–repel and Paragram-ws
models. Thus, these findings allow to confirm positively RQ4 question.
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Table 9
Pearson (r), Spearman (𝜌) and Harmonic score (h) metrics obtained by each Word Embedding (WE/WEC) or Ontology-based Vector (OVM) model in all relatedness datasets. Word
embedding (WE/WEC) and ontology-based vector models (columns) are ranked in descending order from left to right according to their average harmonic score shown in last row.
Best value for each dataset and metric is shown in bold.
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Method and family WEC WEC WE WE OVM WE WEC WEC OVM OVM WEC

Dataset Pearson (r) correlation values in all relatedness datasets

MTurk771 0.701 0.674 0.705 0.641 0.642 0.650 0.666 0.590 0.505 0.349 0.506
MTurk287235 0.704 0.660 0.749 0.728 0.653 0.698 0.630 0.618 0.474 0.320 0.409
WS353Rel 0.668 0.578 0.665 0.659 0.623 0.567 0.590 0.541 0.400 0.414 0.328
Rel122 0.573 0.523 0.599 0.540 0.513 0.576 0.526 0.464 0.553 0.328 0.436
WS353Full 0.679 0.640 0.713 0.698 0.667 0.642 0.615 0.608 0.539 0.300 0.373
MEN 0.754 0.712 0.800 0.755 0.725 0.723 0.680 0.655 0.626 0.362 0.438
YP130 0.721 0.712 0.509 0.517 0.792 0.557 0.703 0.746 0.648 0.583 0.407
RW2034 0.505 0.498 0.440 0.432 0.253 0.438 0.288 0.319 0.139 0.269 0.229
RW1401 0.518 0.511 0.465 0.451 0.453 0.448 0.295 0.329 0.166 0.335 0.263
SCWS1994 0.115 0.116 0.106 0.106 0.110 0.105 0.114 0.113 0.084 0.085 0.089

Avg (r) 0.594 0.562 0.575 0.553 0.543 0.540 0.511 0.498 0.413 0.335 0.348

Dataset Spearman (𝜌) correlation values in all relatedness datasets

MTurk771 0.745 0.712 0.715 0.661 0.672 0.672 0.701 0.599 0.500 0.602 0.513
MTurk287235 0.699 0.663 0.724 0.709 0.640 0.674 0.639 0.606 0.434 0.599 0.414
WS353Rel 0.721 0.644 0.651 0.681 0.626 0.603 0.645 0.586 0.442 0.488 0.303
Rel122 0.589 0.560 0.584 0.539 0.521 0.560 0.562 0.466 0.557 0.525 0.405
WS353Full 0.764 0.716 0.716 0.738 0.718 0.684 0.680 0.666 0.567 0.606 0.391
MEN 0.799 0.771 0.801 0.762 0.754 0.732 0.741 0.709 0.639 0.669 0.434
YP130 0.669 0.655 0.535 0.509 0.777 0.530 0.621 0.655 0.568 0.686 0.361
RW2034 0.536 0.533 0.451 0.464 0.264 0.453 0.207 0.273 0.134 0.241 0.159
RW1401 0.550 0.547 0.475 0.485 0.443 0.473 0.217 0.281 0.159 0.398 0.203
SCWS1994 0.691 0.680 0.624 0.652 0.625 0.643 0.611 0.587 0.422 0.558 0.469

Avg( 𝜌) 0.676 0.648 0.628 0.620 0.604 0.602 0.563 0.543 0.442 0.537 0.365

Dataset Harmonic score (h) values in all relatedness datasets

MTurk771 0.722 0.692 0.710 0.651 0.657 0.660 0.683 0.594 0.503 0.442 0.510
MTurk287235 0.702 0.662 0.736 0.718 0.646 0.686 0.634 0.612 0.453 0.418 0.411
WS353Rel 0.693 0.609 0.658 0.670 0.625 0.584 0.617 0.563 0.420 0.448 0.315
Rel122 0.581 0.541 0.591 0.539 0.517 0.568 0.544 0.465 0.555 0.404 0.420
WS353Full 0.719 0.676 0.714 0.718 0.691 0.662 0.646 0.636 0.552 0.401 0.382
MEN 0.776 0.740 0.800 0.759 0.739 0.727 0.709 0.681 0.632 0.470 0.436
YP130 0.694 0.682 0.522 0.513 0.784 0.543 0.660 0.698 0.606 0.630 0.383
RW2034 0.520 0.515 0.445 0.447 0.258 0.445 0.241 0.294 0.137 0.254 0.188
RW1401 0.534 0.528 0.470 0.467 0.448 0.460 0.250 0.303 0.162 0.364 0.229
SCWS1994 0.197 0.198 0.181 0.182 0.188 0.181 0.192 0.190 0.140 0.148 0.149

Avg (h) 0.614 0.584 0.583 0.566 0.555 0.552 0.517 0.504 0.416 0.398 0.342

Some linear combinations of Attract–repel and Paragram-ws models with
other methods improve current state-of-the-art results in all datasets by a
large margin. This conclusion can be drawn by comparing state-of-the-
art results shown in Tables 4 to 7 with their corresponding results
shown in Tables A.3 to A.6.

5.11. The new state-of-the-art

We set the new state of the art to answer our RQ3 question as
follows.

Attract–repel model sets the new state of the art for the word
similarity task (see Tables 4, 5 and 8), being the best overall performing
method to tackle this later task. However, Attract–repel model is only
a definitive winner method among the family of WE models because

it is unable to outperform significantly the most recent OTM and OVM
measures (see p-values in Tables 4 and 5).

Paragram-ws model sets the new state of the art in the word
relatedness task among the family of WE models, being the best overall
performing method to tackle this later task (see Tables 7 and 9). In ad-
dition, Paragram-ws model outperforms significantly all OM measures
based on WN and the rest of WE models with the only exception of
the GloVe model (see p-values in Table 7 and A.6). Thus, Paragram-ws
model is a convincing winner among the family of WE models.

WN-RandomWalks is the best performing ontology-based measure
in terms of Spearman correlation (see Table 5) for the word similarity
task, as well as a convincing winner among the family of OVM methods.
WN-RandomWalks outperforms in Spearman correlation all OTM mea-
sures in all similarity datasets, in addition to outperform statistically
them in all noun relatedness datasets. However, WN-RandomWalks is
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unable to outperform significantly all remaining OVM measures and
most of best performing OTM methods in the word similarity task.

CoswJ&C (Lastra-Díaz and García-Serrano, 2015b) similarity mea-
sure is the best performing OTM measure in Spearman correlation
(see Table 5) for the word similarity task, whilst Cai et al. measure
is the best one in Pearson correlation (see Table 4). However, neither
coswJ&C nor Cai et al. measures are a definitive or convincing winner
among the family of OTM methods.

Attract–repel has almost definitively outperformed the family of OM
measures in the word similarity task, whilst Paragram-ws model has
achieved this later goal for the word relatedness task. Both Attract–
repel and Paragram-ws models are able to overcome the strong lexical
coverage limitations associated to the family of ontology-based mea-
sures based on WN. However, it is interesting to highlight that Attract–
repel model partially owes its performance to the use of WN. Thus, WN
still being the most used and best performing knowledge base to tackle
the problem on word similarity.

Other interesting fact is that most methods which are best suited
to estimate the degree of similarity between words perform worst on
word relatedness and vice-versa, such as the Attract–repel. However,
Paragram-ws model is an exception to this later fact because it is the
best performing method for the word relatedness task but it is able to
obtain the third best average performance in the word similarity task
as shown in Table 8.

Finally, our results show that any linear combination of the best
performing similarity and relatedness measures, defined by Attract–
repel and Paragram-ws models respectively, significantly improves the
performance of its base measure with only two exceptions in the word
similarity task. In addition, some linear combinations of Attract–repel
and Paragram-ws models with other methods set new state-of-the-art
results by a wide margin in all datasets.

5.12. Contradictory results

We obtained several contradictory results in our experiments, con-
firming the same findings reported in our aforementioned works
(Lastra-Díaz and García-Serrano, 2015b,a, 2016), as well as other new
ones. For instance, Meng and Gu (2012), Meng et al. (2014) report
Pearson correlation values of 0.8804 and 0.8817 respectively with
the Seco et al. IC model in the RG65 dataset, whilst we obtained
0.8596 and 0.8486 respectively. Likewise, Cai et al. (2017, table 11)
reports Pearson correlation values of 0.91, 0.90. 0.45 and 0.75 in the
MC28, RG65, WS-353 and WS-sim (Agirre201) datasets respectively,
for the evaluation of their strategy 2 measure in combination with
their intrinsic IC model which is also introduced in Cai et al. (2017).
However, we obtained Pearson correlation values of 0.858, 0.872,
0.081 and 0.687 for the evaluation of our software implementations of
the Cai et al. (2017, strategy 2) measure and their IC model in the same
datasets respectively. These findings confirm again the reproducibility
problems in the area. Thus, we invite the research community to
reproduce the methods and experiments reported in the literature in
order to confirm or refute the results reported herein, as well as to
publish their software implementations, such as done in Appendix B.

6. Conclusions and future work

We have introduced the largest, detailed and reproducible exper-
imental survey on semantic word similarity and relatedness reported
in the literature including most of ontology-based semantic similarity
measures and word embedding models.

Attract–repel model sets in a statistically significant manner the
new state of the art in the word similarity task among the family
of WE models, in addition to outperform significantly all ontology-
based measures based on WordNet with the only exception of the
coswJ&C similarity measure. On the other hand, Paragram-ws model
sets in a statistically significant manner the new state of the art in the

word relatedness task among the family of WE models with the only
exception of the GloVe model, in addition to outperform significantly
all ontology-based semantic similarity measures based on WordNet as
expected because they are not conceived for this task.

WN-RandomWalks is the best performing OM measure in terms of
Spearman correlation for the word similarity task; however, it is unable
to outperform significantly all remaining OVM and OTM methods. On
the other hand, coswJ&C similarity measure is the best performing
OTM measure in terms of Spearman correlation for the word similarity
task, whilst Cai et al. (2017) measure is the best one in terms of Pearson
correlation. However, neither coswJ&C nor Cai et al. (2017) is a
definitive or convincing winner because they are unable to outperform
significantly all remaining methods in this aforementioned family.

Attract–repel has almost definitively outperformed the family of
ontology-based semantic similarity measures in the word similarity
task, whilst Paragram-ws model has achieved it for the word related-
ness task. Likewise, both Attract–repel and Paragram-ws models have
outperformed significantly all WE models in the word similarity and
relatedness tasks, with the only exception of GloVe in this later task.
Thus, this work confirms the significant progress achieved by the most
recent WE models and the research on ontology-based WE models
(WEC) as the mainstream for this line of research.

Our results also confirm that the use of ontologies as WordNet
still being the best approach to tackle the word similarity task, as
witnessed by the use of WordNet in the most recent and best performing
WEC models as Attract–repel. On the other hand, the performance of
Paragram-ws model confirms again the distributional approach as the
best approach to tackle the word relatedness task. Likewise, our results
show that any linear combination of the best performing similarity and
relatedness measures, defined by Attract–repel and Paragram-ws mod-
els respectively, significantly improves the performance of its combined
base measures with only two exceptions in the word similarity task.
In addition, some linear combinations of Attract–repel and Paragram-
ws models with other methods set new state-of-the-art results in all
datasets by a large margin.

Finally, the aforementioned achievements of the state-of-the-art
WE models, especially those by Attract–repel, set a breakthrough in
this line of research by showing that hybrid corpus-based similarity
measures are able to outperform most of well-established ontology-
based measures whilst avoid all drawbacks of the last ones, such as their
limited lexical coverage, the need of building ontologies, the demand
of domain experts, the difficulties in setting universally accepted con-
cepts and relationships, and the difficulties in their upgrading. Thus,
we expect that these achievements of the state-of-the-art WE models
impact all semantic-aware NLP-based tasks and applications in most
knowledge domains by providing semantic similarity measures which
would benefit in a complementary way from the availability of curated
ontologies and large corpus of non-annotated documents, such as most
of text mining applications in the biomedical domain.

As forthcoming activities, we plan to evaluate the performance of
state-of-the-art semantic measures in specific semantic-aware applica-
tions.
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Appendix A. Evaluation of averaged models and further p-values

This appendix introduces four tables with the same format that
Tables 4–7 which detail the results of the evaluation of the linear
combination of all measures with best performing methods in all noun
similarity and relatedness datasets. Likewise, this appendix introduces
two tables detailing the statistical significance analysis for the evalua-
tion of WE and OVM models shown in Tables 8 and 9. This appendix
is provided as supplementary material (see Appendix C).

Appendix B. The reproducible experiments on word similarity

This appendix introduces a detailed experimental setup based on
a collection of publicly available software tools (Lastra-Díaz and Gar-
cía Serrano, 2018) and reproducibility resources (Lastra-Díaz et al.,
2019), being provided as supplementary material (see Appendix C)
with the aim of allowing an exact replication of all our experiments
and results, as well as providing our software implementation of all
methods evaluated herein.

Appendix C. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.engappai.2019.07.010.
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