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Abstract

Bacground: This work deals with Natural Language Processing applied to the

clinical domain. Specifically, the work deals with a Medical Entity Recogni-

tion (MER) on Electronic Health Records (EHRs). Developing a MER system

entailed heavy data preprocessing and feature engineering until Deep Neural

Networks (DNNs) emerged. However, the quality of the word representations

in terms of embedded layers is still an important issue for the inference of the

DNNs.

Goal: The main goal of this work is to develop a robust MER system

adapting general-purpose DNNs to cope with the high lexical variability shown

in EHRs. In addition, given that EHRs tend to be scarce when there are out-

domain corpora available, the aim is to assess the impact of the word represen-

tations on the performance of the MER as we move to other domains. In this

line, exhaustive experimentation varying information generation methods and

network parameters are crucial.

Methods: We adapted a general purpose sequential tagger based on Bi-

directional Long-Short Term Memory cells and Conditional Random Fields

(CRFs) in order to make it tolerant to high lexical variability and a limited
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amount of corpora. To this end, we incorporated part of speech (POS) and

semantic-tag embedding layers to the word representations.

Results: One of the strengths of this work is the exhaustive evaluation of

dense word representations obtained varying not only the domain and genre but

also the learning algorithms and their parameter settings. With the proposed

method, we attained an error reduction of 1.71 (5.7%) compared to the state-

of-the-art even that no preprocessing or feature engineering was used.

Conclusions: Our results indicate that dense representations built taking

word order into account leverage the entity extraction system. Besides, we found

that using a medical corpus (not necessarily EHRs) to infer the representations

improves the performance, even if it does not correspond to the same genre.

Keywords: Electronic Health Records, Medical Named Entity Recognition,

Health Information Systems, Neural Network

1. Introduction

This work deals with automatic information extraction from medical health

records by means of Natural Language Processing (NLP). Information extracted

from medical texts has been proven to be helpful in many clinical practices [1]

such as classification of Electronic Health Records (EHRs) [2], automatically5

building patient trajectories [3] [4] [5] [6], or finding Adverse Drug Reactions

[7]. Needless to say, Medical named Entity Recognition (MER), e.g., detecting

instances of diseases or drugs, is a crucial step towards accurate medical text pro-

cessing in downstream applications such as those aforementioned. Specifically,

in the context of this project, one of the goals is to retrieve relations between10

drugs and diseases, with special interest on harmful or potentially harmful reac-

tions, such as adverse drug reactions, but it is also essential to identify diseases

to improve the classification of EHRs according to the pathology.

Extracting information from clinical records is challenging in comparison

to other texts. Note that EHRs are highly noisy with an intensive usage of15

acronyms and abbreviations (3,774 short forms were found in 99 EHRs [8]) as

2
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well as a high variability of terminology [9]. In fact, Leaman et al. [9] identified

high term variation as the primary cause of low performance in EHRs.

Medical NER represents a core-element in downstream information extrac-

tion applications. Extracting critical information about previously prescribed20

treatments (i.e. drugs) and associating them with past episodes (diseases) can

be useful to summarize the health condition of patients and to support decision

making. For example, discovering diagnostic terms is crucial for further classifi-

cation according to the International Classification of Diseases [10], and recog-

nizing drugs and diseases for Adverse Drug Reaction extraction in pharmaco-25

surveillance [11]. At this stage, we work on drugs and diseases, as they are

key elements in medical information extraction applications and, to that end,

we have already developed some resources. Needless to say, the work can be

extended to other kinds of entities in the future (e.g. body parts, dosages, dates

etc.).30

Our main contributions are:

1. We developed a machine learning system for discovering medical entities

from spontaneous clinical narrative1, modeling the problem as a sequential

tagging task.

2. We evaluated neural models using three corpora and five different ap-35

proaches in order to learn from them in an unsupervised manner, and

also compare the performance of the model with respect to a number of

parameter settings.

2. Related Work

General domain Named Entity Recognition (NER) has been addressed using40

different techniques, such as Conditional Random Fields (CRF) [13] or Support

1By spontaneous we refer to the “real-time” notion expressed by the World Health Orga-

nization in [12] for the definition of electronic medical record (EMR) as a real-time patient

health record.

3
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Vector Machines (SVM) [14]. Recently, Deep Neural Networks (DNN) have

been successfully applied in general domain NER [15], [16], [17]. For training,

big quantities of raw data are needed to obtain dense word representations

and a minimal quantity of manually annotated corpus for training. The main45

contribution of DNN in these tasks depends on:

• Simplifying the recognition process by not requiring preprocessing, feature

engineering, or the application of linguistic analysis tools [18].

• Inducing knowledge from big amounts of raw corpora, thus breaking the

knowledge acquisition bottleneck [19]. One extended idea is that bigger50

quantities of data result in better dense word representations (i.e., em-

beddings [20]) and, consequently, many researchers employ off-the-shelf

pretrained word embeddings over huge quantities of unlabeled text. Using

such pretrained embeddings limits the possibilities of exploring the effect

different hyperparameters or corpus domain might have on the results. In55

this work we delve into this question empirically.

Looking at the literature, some works aim to explore the in and out domain

effect. For example, Roberts [21] presented a series of experiments to evaluate

how to combine small-but-representative corpora and large-but-unrepresentative

corpora for building word embeddings for clinical Natural Language Processing60

(NLP) tasks; they concluded that combining multiple corpora is the safest op-

tion.

Lai et al. [22] concluded that it is not clear whether the domain is more

important than the corpus size because the impact depends on the task: a task

involving semantics such as text classification might be more influenced by the65

domain than more syntactically oriented tasks such as part-of-speech (POS)

tagging.

In our case, we delve into this question in a domain with high variability

and very little free available data, namely, EHRs. For general NER, Lample

et al. [16] proposed a neural architecture based on bidirectional Long-Short Term70

Memory (LSTM) and CRFs using no language-specific features for the detection

4
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of entities, with state-of-the-art results. Melamud et al. [23] studied the role of

context and dimension on the effectiveness of different word embeddings for

different language processing tasks, concluding that it is crucial to choose the

optimal context (window) and vector dimensionality to get the best results in75

specific tasks.

Regarding the biomedical domain, Chiu et al. [24] studied how several pa-

rameters might affect the performance of dense word representations in Biomed-

ical NLP, using exclusively the Word2Vec tool, although they tested these pa-

rameters independently. Indeed, they suggested that their combinations should80

be analyzed. They concluded that extending the vector dimensions over 200

brings no improvement on MER, although there are still improvements in some

cases with higher values.

Jagannatha and Yu [25] and Jagannatha and Yu [26] used different Recur-

rent Neural Networks to pursue MER. They obtained their embeddings apply-85

ing Word2Vec’s skip-gram algorithm (SkipG henceforth) over PubMed articles,

English Wikipedia and 100,000 EHRs. They reported an F-score of 0.72 over

diseases and 0.90 over drugs.

In a more recent work, Xu et al. [27] used a model based on a bidirectional

LSTM and Conditional Random Field for Medical NER. Their model contains90

three layers and relies on character-based word representations, managing to

obtain a 0.80 F-score on a NCBI Disease Corpus.

Motivated by the antecedents, several issues require further investigation in

order to gain an insight into the relevant aspects that might be determining:

• The selection of the right corpus becomes crucial, especially in spe-95

cific domains such as health. One open question is to which extent big

quantities of general purpose corpora help to overtake domain limitations

[22], [28].

• Another question is how different methods and parameters for ob-

taining word representations may influence the results.100

5
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3. Materials and Methods

In line with recent work done on general NER [16], we developed a MER

system in two phases (see Figure 1):

1. Obtain unsupervised dense word representations from large unannotated

corpora.105

2. Apply neural networks (Bi-LSTM + CRF) to infer the MER model.

Figure 1: General architecture of the system.

3.1. Large unannotated Corpora

To measure the impact of the corpus type and domain on the quality of the

embeddings we used three different corpora:

• General Corpus (GEN henceforth). This corpus consists of around 1.5110

billion words, compiled from different corpora, treebanks and resources

from the web (http://crscardellino.github.io/SBWCE/).

6
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• Medical Online Corpus (GEN-MED). We compiled around 1.3 million

words from several sources: Spanish documents from the Spanish-English

parallel UFAL Medical Corpus 1.0, documents obtained from crawling the115

Spanish version of MedLine and drug information web pages, as well as a

subset of Wikipedia articles filtered using SNOMED-CT concepts.

• IXAMed Spanish EHR Corpus (EHR). The IXAMed corpus comprises

141,800 EHRs collected over 4 years at Galdakao and Basurto Hospitals.

It contains 52 million tokens.120

In order to preprocess the documents, we have made use of FreeLing-Med

[29], which is a variant of FreeLing [30] focused on medical texts. By enrich-

ing the lexica of the Freeling analyzer with biomedical terms extracted from

dictionaries and ontologies such as SNOMED-CT, FreeLing-Med is able to au-

tomatically detect medical terms in texts.125

3.2. Manually tagged Corpus

A subset of 121 EHRs were manually annotated by experts of the Basque

health network with, among others, two kinds of medical entities: diseases and

drugs. The annotation process was divided into three phases [31]: i) Definition

of the scope of the annotation process and creation of the work team ii) Prelim-130

inary annotation iii) Annotation of the corpus with the help of FreeLing-Med.

Two experts took part in the annotation and 90.53% inter-annotator agreement

was achieved. As pointed out by Pradhan et al. [32], traditional agreement mea-

sures such as Cohen’s κ and Krippendorf’s α are not applicable for measuring

agreement for entity mention annotation, because what both measures do is to135

calculate the inter-annotator agreement discounting the probability of agree-

ment by chance. In our case, given that we focus on drugs and diseases, most

of the tokens do not receive any annotation and, consequently, the probability

of agreeing by chance would be close to zero. Therefore, we have directly mea-

sured the percentage of entities tagged in the same way by both annotators.140

7
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Finally, the annotated corpus was randomly divided into the usual training,

development and testing folds (see Table 1).

Corpus words sentences drug disease

train 37,286 4,076 884 (925) 2,319 (2,895)

dev 16,478 1,745 522 (547) 1,043 (1,319)

test 14,458 1,429 456 (467) 934 (1,209)

Table 1: Manually tagged corpus in terms of words, sentences, number of drug and disease

entity-tokens and words in parenthesis (indicating that tokens tend to be multi-word units).

3.3. Deep Learning (neural network model)

LSTM [33] neural networks are suited for sequential data labeling. Basically,

they take a sequence input (x1, x2, x3, · · · , xn) obtaining the corresponding out-145

put (h1, h2, h3, · · · , hn) at each time step. Through their gate based system

LSTMs are able to automatically regulate how much of the previous context

should persist and how much should be renewed. Bi-LSTMs are a special case

of LSTM where two LSTM nets are employed, treating the input sequence from

left to right and from right to left (forward and backward LSTM). This work150

is based on the implementation by Lample et al. [16]. In order to enrich their

approach, we have incorporated the ability to accept multiple dense word rep-

resentations or embeddings, as well as additional information layers (such as

Brown clusters, POS or semantic tags) at each time step. With these additional

layers and word representations, our approach is able to outperform their setup155

in medical domain. Thus, these results suggest that the abstract structural or

semantic information brought by this third layer synergized with the previously

proposed two surface layers and, apparently, complemented each other leading

to significant improvements.

3.4. Word Representations160

Word dense representations capture the semantic and syntactic information

of words from large unlabeled corpora. There are basically three methods to

8
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obtain them: dimensionality reduction count-based methods such as Singular

Value Decomposition (SVD) [34], predictive methods mostly based on neural

networks (Word2Vec [20]) and clustering methods where a word is represented165

by the cluster it belongs to in a language model (Brown clusters [35]). We em-

ployed GloVe as a count-based method, Word2Vec in its two variants, SkipNG

as prediction method and, finally, Brown clusters.

GloVe [36] (for Global Vectors) captures word meaning by means of the ratio

of co-occurrence probability of the words in the corpus. Word2Vec2 [20] attains170

a dense word representation by using neural nets to predict the next word given

context words within a window (SkipG variant), or predicting context words

within a window size given a word (CBOW variant). As a way to simplify the

system, SkipG selects one word from the window of the target word using its

embedding as a context representative. CBOW, conversely, simplifies obtaining175

the context vector by averaging over the embeddings of context words. SkipNG

[37] can be seen as a variant of CBOW where the context vector is computed

not by averaging over the context word embeddings but as a weighted sum

of the individual word embeddings. Each word embedding weight is assigned

depending on the position of each word.180

On the other hand, the randomly initialized character lookup table contains

an embedding for each character. The character embeddings corresponding to

every character in a word are given in direct and reverse order to a forward and

a backward LSTM. The final representation for a word is obtained from its char-

acter embeddings by concatenating the forward and backward representations185

derived from the bidirectional LSTM.

Brown clustering [35] is an agglomerative clustering algorithm that builds

a class-based language model based on word co-occurrences. It is an iterative

algorithm, where at each iteration two clusters are merged by choosing from all

possible mergeable clusters the pair that produces the smallest decrease in the190

corpus likelihood.

2We have used the default settings for parameters not mentioned in the manuscript.

9
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4. Results

First we measured the effect that different pretrained word representations

have on MER, depending on the corpora type and algorithm employed to obtain

them (see Figure 2). For example, dimension 300 and window size 5 are the195

hyperparameters employed to obtain the following freely available pretrained

embeddings: Spanish Billion Words Corpus3, GloVe4 and Word2Vec5.

One remarkable aspect is the effect of including a character LSTM that

can be helpful in the NER task, as these character networks can be useful to

generalize over strings such as prefixes or suffixes, especially useful for detecting200

entities (such as the -itis or -osis suffixes for diseases). Table 2 gives the results

for each corpus type and dimensions using the best method (SkipNG), with and

without including a character LSTM layer.

Embed. Dim. and Char. layer

source WinSize w/o with

GEN
D50-W1 64.95 69.02 (+4.07)

D300-W5 65.85 69.19 (+3.34)

GEN-MED
D50-W1 66.75 70.58 (+3.83)

D300-W5 65.99 70.46 (+4.47)

EHR
D50-W1 71.90 73.67 (+1.77)

D300-W5 70.99 72.86 (+1.87)

Table 2: Impact of the addition of the character layer on alternative spaces obtained from dif-

ferent corpora measured in terms of F-score on the SkipNG algorithm for different dimensions

(Dim) and window sizes (WinSize).

The system taking as input the SkipNG pretrained embeddings from EHRs

outperformed the rest. This setting was selected for the following round of205

3crscardellino.me/SBWCE
4nlp.stanford.edu/projects/glove/
5code.google.com/archive/p/word2vec

10
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Figure 2: Medical Entity Recognition for different types of corpora, neural network dimensions

and type of unsupervised knowledge employed (development set). The figure reports the

results employing no pretrained embeddings, and pretrained word representations learned from

generic corpora (GEN), generic medical corpora (GEN-MED) and EHRs using Brown clusters,

GloVe, CBOW, SkipG and SkipNG. We set the embedding dimension to 300 with window

size 5 (denoted as 300-5), and embedding dimension of 50 with window size of 1 (denoted as

50-1). The baseline (NoEmb) corresponds to the system without pretrained embeddings, that

is, calculating the embeddings based only on the reduced vocabulary present in the annotated

training set.
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Figure 3: Effect of window size and dimension of embeddings (F-score for EHR embeddings

and SkipNG).
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experiments, where the impact of varying the dimension of the word embeddings

(25, 50, 100, 200 and 300) and window size (taking a window of 1, 3, 5, 7, and 10)

was measured. Figure 3 illustrates the effect of jointly varying the embedding

dimension and window size on the best performing algorithm (SkipNG) trained

with EHRs, as proposed by Chiu et al. [24]. We can see that the smallest window210

of size 1 outperforms the other types. With respect to higher context window

values, the performance of the system varies depending on the size of the word

embedding dimension. Our impression is that in this specific domain lengthy

contexts are not frequently repeated and, hence, the training does not lead to

reliable results. Besides, the lexical variability in this domain requires of models215

with high generalization ability, as provided by W1. Regarding the dimension

of the embeddings, the best result corresponds to a dimension of 200.

Finally, Table 3 gives the results on the test set, presenting them together

with the current state-of-the-art using standard machine learning algorithms

(SVM, Perceptron and CRF [38]). The first line presents the baseline when220

using only wordforms, together with feature engineering (such as capitalization,

prefixes and suffixes), The second line shows how including other types of in-

formation such as lemmas, POS, semantic tags (medical categories from the

SNOMED-CT ontology) and Brown clusters and embeddings, the results im-

proved considerably, reaching 70.30. Lines 3, 4 and 5 present the final results of225

our neural network leading to 72.01. We found that the unsupervised methods

give encouraging improvements over the baseline. We made a final set of exper-

iments trying to decide whether they are complementary or redundant. To that

effect, we experimented with different combinations of pairs of unsupervised in-

formation types. The combinations of different embedding types did not give230

any significant improvement. All in all, the Brown clusters combined with the

SkipNG embeddings gave the best results, presented in the last line of Table 3.

13
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MicroAvg. Drug Disease

F-score Prec. Rec. F-score Prec. Rec. F-score

[38]
ne 53.80 84.80 54.92 66.67 60.23 39.27 47.55

P+Bc+cE 70.30 89.81 84.90 87.29 66.22 57.14 61.69

Our
ne 60.77 78.82 75.71 77.23 57.09 48.13 52.23

work
SkipNG 70.60 87.70 85.78 86.73 66.67 58.48 62.31

SkipNG+Bc 72.01 88.04 88.62 88.33 66.86 60.73 63.65

Table 3: Results of the system on the test set. Notation: ne=no embeddings; P=POS tags;

Bc=Brown clusters; cE= clustered embeddings; SkipNG=Skip N-gram model.

5. Discussion

Results from Figure 2 revealed that using pretrained embeddings boosted

the MER. Under all circumstances SkipNG outperformed the other algorithms235

indicating that word order determines the quality of the pretrained embeddings

in a MER task. The fact that SkipNG uses an attention mechanism to calculate

the embeddings, helps to select relevant words within the context to make more

accurate predictions, which seems substantial for a sequential task such as NER.

These results support work by Lample et al. [16] on generic NER, who mentioned240

this concern while showing no comparative results to sustain this conclusion.

[24] reports that the effect of hyperparameters should not be studied in iso-

lation. Focusing on the application of a single algorithm, Figure 2 shows the

domain and genre influence on the results, together with hyperparameters such

as dimension and window size. Using EHRs (in-domain-genre data) clearly out-245

performed the other corpora in almost all of the embedding types and parameter

settings. It is remarkable that differences between in-domain and out-domain

are not as clear depending on the embeddings. Although from previous works

[24], [26], it is difficult to reach any conclusion about the values of the best

hyperparameters, Figure 2 shows that the best parameters are different for each250

tool, with the exception of SkipNG wich seems to be the most stationary in that

respect.

14
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Regarding the importance of each factor, Figure 2 illustrates how embedding

dimension and window are not as important as the corpus domain and genre.

Therefore, choosing an appropriate algorithm should be the first step, then255

choosing the domain and corpus genre and, finally, the hyperparameters should

be tuned.

On the other hand, the general Spanish corpus covers 56% of the words

compared to 55% with the standard medical corpus, but the latter gives better

results in general, with the exception of the GloVe embeddings (see Figure 2).260

This happens even when its size is much smaller (1.3M words compared to 1.5B),

suggesting that the medical corpus gives better representations for the task at

hand. The unsupervised information from EHRs (52M words) gives the best

coverage on the training set (83%) and also the best results by a considerable

difference. Hence, coverage is a sensitive indicator. Furthermore, when EHRs265

are used, the improvement of the results is motivated mainly by two factors: 1)

the higher coverage on the training set and 2) the use of an in-domain corpus. As

can be seen for GEN and GEN-MED corpora, we have obtained better results

using an in-domain corpus than using a general domain corpus with similar

coverage.270

To illustrate the nature of the embeddings obtained from the General corpus,

Medical corpus and EHRs, respectively, we selected the 150 most frequent words

in the training set. Figures 4a, 4b and 4c show the word representations in a two

dimensional space. We observe that similar entities such as blood substances,

words in light blue Potasio (potassium), Sodio (sodium), or Urea (urea), are275

close to each other. The same occurs with some findings, words surrounded

by a blue circle masas (masses), soplos (murmurs), ruidos (sounds) and some

gradual modifiers, importante (important), leve (minor). Note that, while in

the EHR embeddings these groups are coherent and well formed, in the Medical

Corpus embeddings and General corpus embeddings several elements appear far280

from each other.

15
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(a) General corpus

(b) Medical corpus

(c) EHRs

Figure 4: Bidimensional representation of the most frequent words in the training set obtained

with dense representations from alternative sources.
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From Table 2 we can conclude that character layer is useful in MER to

detect prefixes and suffixes. The biggest improvement occurs when the character

layer is used in association with the embeddings acquired from a corpora other

than EHRs (GEN and GEN-MED). These results suggests that the use of the285

character layer in combination with a general domain corpus provides the system

with the capacity to model the structure of the words in the language, alleviating

the initial coverage problem due to the out-of-vocabulary words. On the other

hand, the use of an in-domain corpus in combination with the character layer can

lead the system to modelate the structure of the words of the language while it290

extends the specific vocabulary of the domain, obtaining the best improvements

of the experimental setups.

The experiments presented in Figures 2 and 3 were performed on the devel-

opment set. Table 3 presents the final results on the test set. Pérez et al. [38]

required a feature engineering process establishing, for each knowledge type, a295

number of parameters such as window size, or combinations of different linguis-

tic types of information (such as lemma, POS, or semantic tag). In row 3 we see

how, using only word forms together with an embedding layer that is fed only

on the training set, there is a boost in the F-score (60.77) compared to the sim-

plest model of Pérez et al. [38]. Row 4 reveals that feeding external knowledge300

in the form of embeddings pretrained on large corpora gives a big improvement

(70.60), outperforming the best result of the costly feature engineering approach

(row 2 of Table 3).

As an example of the applicability of the resulting system, it has been also

tested at the shared task on Disability Annotation on Documents from the305

Biomedical Domain6, with the objective of detecting entities corresponding to

disabilities (e.g., mental retardation, blindness) for English and Spanish. Our

MER tagger obtained the best F-score for both languages: 82.1 and 78.6 for

English and Spanish, respectively, 7.1 and 6.4 absolute points above the next

best systems.310

6http://nlp.uned.es/diann/
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6. Conclusions

In the present work, we have evaluated neural models using three corpora

and five different approaches to obtain word representations in an unsupervised

manner, comparing a number of parameter settings. We have performed a deep

study of their combinations so as to measure joint interactions. The resulting315

deep learning model gives a significant improvement on the state-of-the-art in

Medical Named Entity Recognition of diseases and drugs in Spanish EHRs. We

have shown that the performance of our Bi-LSTM+CRF based MER system

on EHRs improves using pretrained word dense representations and how the

algorithm, the domain and genre of the corpus, and the hyperparameter set-320

ting employed to obtain these representations have a big impact on the results.

It is crucial to choose the right algorithm to learn the dense word represen-

tations. Our study shows that SkipNG, which takes word order into account,

outperforms other typically employed algorithms such as GloVe or Word2Vec.

A relevant conclusion is that certain word representations proved to be com-325

plementary and therefore using them ensembled improved the results as in the

case of Brown clusters and SkipNG word embeddings. Secondly, in the case of

EHRs, training the embeddings on the same corpus domain and genre is very

important as well. However, obtaining freely available EHRs is not an easy en-

terprise and the results revealed that learning from a medical general corpus is330

more convenient than using a 1,000 times larger general out-domain corpus. We

have also shown, when training with EHRs is not possible, how using a character

embedding layer allows us to capture prefix and suffix information improving

the results and how it helps to reduce the gap between the EHR embeddings

and medical or out-domain corpus embeddings.335

Our findings offer a guide to help decide among different possibilities and

strategies for MER, showing that, in several cases, using the default paramete

rvalues or most popular tools without further exploration of alternative set-

tings is far from optimal. We hope that the present work serves as a guide to

other researchers who envisage doing MER, proposing alternatives to using the340

18
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standard settings.
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Summary points

What was already known on the topic?

• Most Medical Entity Recognition (MER) systems use SVM, Perceptron or

CRF based machine learning techniques. These approaches require heavy

feature engineering and preprocessing.480

• Recently, neural network approaches have being proposed, simplifying the

recognition task because no preprocessing is required, but they are highly

dependent on the quality of the word representations they use.

What does this work add?

• We adapted the Bi-LSTM proposed by Lample et al. [16] to make it en-485

compass multiple dense representations as well as POS and semantic tags

in parallel.

• We evaluated neural models using three corpora and five different word

representation approaches in an unsupervised manner, comparing a num-

ber of parameter settings.490

• We have performed a deep study of their combinations, so as to measure

joint interactions.

• Our results offer a guide to help decide among different possibilities and

strategies for MER, showing that in several cases using the standard set-

tings or most popular tools without further exploration of alternative set-495

tings is far from optimal.
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