
Noisy Speech Recognition using Kaldi and
Neural Architectures
Author: Ander González Docasal

Advisors: Vassilis Tsiaras, George P. Kafentzis, Yannis Stylianou

hap/lap
Hizkuntzaren Azterketa eta Prozesamendua

Language Analysis and Processing

Final Thesis

February 2018

Thesis written and presented within the Erasmus+ programme at

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes University Campus

700 13 Heraklion, Crete, Greece

Departments: Computer Systems andLanguages, ComputationalArchitectures andTech-
nologies, Computational Science and Artificial Intelligence, Basque Language and Com-
munication, Communications Engineer.

Noisy Speech Recognition using Kaldi and
Neural Architectures

Ander González Docasal

Hizkuntzaren Azterketa eta Prozesamendua
Language Analysis and Processing

Final Thesis

University of the Basque Country
Computer Science Faculty

Universidad del País Vasco – Euskal Herriko Unibertsitatea
Facultad de Informática – Informatika Fakultatea

Pº Manuel Lardizabal 1
20018 Donostia-San Sebastián, Gipuzkoa, Spain

Thesis written and presented within the Erasmus+ programme at

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes University Campus

700 13 Heraklion, Crete, Greece

This work has been performed at the University of Crete, School of Sciences and Engineering, Computer
Science Department.

Noisy Speech Recognition using Kaldi and Neural
Architectures

Abstract
The goal of anAutomatic SpeechRecognition (ASR) system is to transform a set of acoustic
features into a sequence of words. It mainly consists of various parts: the feature extrac-
tion part which extracts information from a speech signal; the acoustic model, in charge
of the conversion from speech to phonemes; and the language model that transforms the
detected phonemes into the most probable sequence of words.

Throughout their history, these systems were built with statistical methods, mainly Hid-
den Markov Models (HMM) and Gaussian Mixture Models (GMM). However, in recent
years the use of neural architectures such as Deep, Convolutional and Recurrent Neural
Networks (DNN, CNN and RNN), have improved the achieved results significantly. Mo-
reover, freely available tools made ASR research develop quickly. Kaldi is one of the most
knownandwidely usedASR systems. It includes a set of neural network packages—nnet1,
nnet2 and nnet3—which can be used for implementing the acousticmodel. These are fast,
accurate and able to handle huge databases since they distribute the load on clusters of
machines. However, Kaldi’s slow development cycle implies that new neural architectu-
res may be introduced many years after their publications.

Therefore, in this workwe substitute the neural acousticmodel of Kaldi by our own imple-
mentationswritten in TensorFlow. TensorFlow has the largest community of users and the
best support among the available deep learning libraries. By substituting the Acoustic Mo-
del of Kaldi with different architectures and testing their performance on the well-known
database Aurora-4, we managed to reduce Word Error Rate (WER) by 3.17 % (baseline
15.14 %) when using a CNN architecture. Also, focusing on just the clean subset of the
Test part of the database, a further improvement has been achieved once implementing
a CNN + RNN structure, from a 4.54 %WER with the CNNs alone to a 4.13 % with this
architecture.

This work is therefore believed to improve the results on obtained by one of the widely
used ASR tools simply by implementing more advanced deep learning techniques, which
could be executed by more powerful and dedicated external programs.

For future work, a further analysis on more complex convolutional networks could lead
to a better performance in this particular database and, in general, in noisy environments.
Finally, further improvement of convolutional and recurrent architectures is suggested in
clean and noise-free conditions, since they have been shown to obtain the best results in
this specific circumstances.

Hizketa Zaratatsuaren Azterketa Kaldi eta Arkitektura
Neuronalen bidez

Laburpena

HizketaAutomatikoki Ezagutzeko (ASR) sistema baten helburua tasun akustikoenmultzo
bat hitz sekuentzia batean bihurtzea da. Ondorengo atalez osatuta dago: tasunen eraus-
keta, hizkuntza-informazioa audio seinaletik erauzten du tasun akustikoko bektore gisa;
eredu akustikoa, bektore akustikoak fonematan bihurtzearen arduraduna; eta hizkuntza-
eredua, hautemandako fonemekin probabilitate gehien duen hitz sekuentzia itzultzen du.

Haien historia osoan zehar, sistema hauek metodo estatistikoak erabilita eraikitzen ziren,
batez ere Markoven Ezkutuko Ereduak (HMM) eta Gaussen Eredu Mistoak (GMM). Hala
ere, azkenengo urteetean arkitektura neuronalak erabiliz, hala nola Sare Neuronal Sako-
nak, Konboluziokoak eta Errepikariak (DNN, CNN eta RNN), lehendabizi lortutako emai-
tzak modu esanguratsuan hobetzea lortu da. Kaldi gehien ezagutzen eta erabiltzen diren
ASR sistemetako bat da. Sare neuronalak ezartzen dituen zenbait pakete (nnet1, nnet2 eta
nnet3) ditu barne. Hauek eredu akustikoa inplementatzeko erabil daitezke azkarrak, zeha-
tzak eta datu-base handiak erabiltzeko gai direlako, azken hau zama makina multzoetan
banatzen. Hala ere, Kaldik duen garapen ziklo motela dela eta, arkitektura neuronal be-
rriak haien argitalpenetik urte asko igaro arte ez dira ezarriko.

Beraz, lan honetan Kaldiren eredu akustikoa TensorFlow programazio-lengoaian guk ida-
tzitako inplementazioekin ordezkatuko da. TensorFlowk erabiltzaile-elkarte handiena eta
euskarririk hoberena ditu ikaskuntza sakoneko beste liburutegiekin konparatuta, alegia.
Kaldiren eredu akustikoa beste arkitektura ezberdinekin ordezkatzean Aurora-4 deritzon
datubasearekin, lehenengo % 15.14ko hitz-errore-tasako (WER) emaitzak % 3.17 puntu-
tan hobetu ahal izan dira Konboluziozko Sare Neuronalekin entrenatzean. Halaber, Test
datubaseko submultzo garbian bakarrik fokatzean, emaitzak are gehiago hobetzea lortu
da CNN + RNN egitura bat ezartzean; konkretuki, CNN bakarrik erabiltzean lortutako
% 4.54ko WERa % 4.13 arte murriztu da arkitektura hau erabilita.

Beraz, lan honekASR sistema zabalenetako batekin lortzen diren emaitzak soilik ikaskun-
tza sakoneko teknika aurreratuagoak inplementatzen hobe daitezkela frogatzen du. Izan
ere, hauek ardura bakarreko beste programa boteretsuagoren bidez exekuta daitezkeela
ere erakusten du.

Hurrengo lanetarako, CNN konplexuagoetan analisi sakonagoak egiteak ASR sisteman
errendimendu hobea izatea erakar lezake datu-base konkretu honetan eta, orokorrean,
inguru zaratatsuetan. Hala ere, egoera garbietan lan eginez gero CNN-etan eta RNN-etan

fokatu beharko lizateke, hauek izan baitira baldintza hauekin emaitza hoberenak lortu
dituztenak.

Αναγνώριση Θωρυβώδους Ομιλίας με χρήση του Kaldi και
Αρχιτεκτονικές Νευρωνικών Δικτύων

Περίληψη

Ο στόχος ενός Συστήματος Αυτόματης Αναγνώρισης Ομιλίας (ASR) είναι να μετασχηματίσει ένα σύ-
νολο ακουστικών χαρακτηριστικών σε μια ακολουθία λέξεων. Αποτελείται κυρίως από διάφορα μέρη: η
εξαγωγή χαρακτηριστικών που εξάγει τις πληροφορίες από ένα ηχητικό σήμα. το ακουστικό μοντέλο, υ-
πεύθυνο για τη μετατροπή από φωνή σε φωνήματα. και το μοντέλο γλώσσας, το οποίο μετατρέπει τα
ανιχνευθέντα φωνήματα στην πιο πιθανή ακολουθία λέξεων.

Κατά τη διάρκεια της ιστορίας τους, αυτά τα συστήματα κατασκευάστηκαν με στατιστικές μεθόδους,
κυρίως μοντέλα Hidden Markov Models (HMM) και Gaussian Mixture Models (GMM). Ωστόσο,
τα τελευταία χρόνια η χρήση νευρωνικών αρχιτεκτονικών όπως τα Deep, Convolutional και Recurrent
Neural Networks (DNN, CNN και RNN) έχουν βελτιώσει σημαντικά τα αποτελέσματα. Το Kaldi
είναι ένα από τα πιο γνωστά και ευρέως χρησιμοποιούμενα συστήματα ASR. Περιλαμβάνει ένα σύνολο
πακέτων νευρωνικού δικτύου (nnet1, nnet2 και nnet3) τα οποία μπορούν να χρησιμοποιηθούν για την
υλοποίηση του ακουστικού μοντέλου. Αυτά είναι γρήγορα, ακριβή και ικανά να χειρίζονται τεράστιες βά-
σεις δεδομένων αφού κατανέμουν το φορτίο σε συστοιχίες μηχανών. Ωστόσο, ο αργός κύκλος ανάπτυξης
του Kaldi υποδηλώνει ότι νέες νευρωνικές αρχιτεκτονικές μπορούν να υλοποιηθούν πολλά χρόνια μετά τις
δημοσιεύσεις τους.

Επομένως, σε αυτό το έργο το νευρωνικό ακουστικό μοντέλο του Kaldi θα αντικατασταθεί από τις δικές
μας υλοποιήσεις γραμμένες στο TensorFlow. Το TensorFlow έχει τη μεγαλύτερη κοινότητα χρηστών και
την καλύτερη υποστήριξη από τις διαθέσιμες βιβλιοθήκες deep learning. Αντικαθιστώντας το ακουστικό
μοντέλο του Kaldi με διαφορετικές αρχιτεκτονικές με τη βάση δεδομένων του Aurora-4, τα προηγού-
μενα αποτελέσματα του Kaldi 15.14 μέσο Word Error Rate (WER) κατάφερε να βελτιωθεί σε 3.17
ποσοστιαίες μονάδες όταν εκπαιδεύτηκε με Convolutional Νευρωνικά Δίκτυα. Επίσης, εστιάζοντας στο
καθαρό υποσύνολο της βάσης δεδομένων Test, επιτεύχθηκε περαιτέρω βελτίωση από την υλοποίηση μιας
δομής του CNN +RNN, από 4.54 τουWER μόνο στα CNN σε 4.13 με αυτήν την αρχιτεκτονική.

Συνεπώς, πιστεύεται ότι οι εργασίες αυτές βελτιώνουν τα αποτελέσματα σε ένα από τα ευρύτερα χρησι-
μοποιούμενα συστήματαASR, απλώς εφαρμόζοντας πιο προηγμένες τεχνικές deep learning, οι οποίες θα
μπορούσαν να εκτελεστούν με πιο ισχυρά και ειδικά προγράμματα, όπως αποδεικνύεται στην παρούσα
αναφορά.

Για μελλοντικές εργασίες, μια περαιτέρω ανάλυση για πιο περίπλοκα convolutional δίκτυα θα μπορούσε
να οδηγήσει σε καλύτερη απόδοση του συστήματος ASR στη συγκεκριμένη βάση δεδομένων και, γενικά,
σε θορυβώδη περιβάλλοντα. Παρ 'όλα αυτά, σε καθαρές και χωρίς θόρυβο συνθήκες, προτείνεται περαι-
τέρω βελτίωση των συνθετικών και επαναλαμβανόμενων αρχιτεκτονικών, καθώς αυτές θεωρήθηκαν ότι

επιτυγχάνουν τα καλύτερα αποτελέσματα σε αυτές τις συγκεκριμένες περιστάσεις.

Acknowledgements

This thesis would not have been possible without the collaboration of the University of
Crete, where, under the Erasmus+ programme, all the work regarding this thesis has been
done. from all the people that advised me and helped in the process of working in this the-
sis, I would like to specially thank Vassilis Tsiaras, the main supervisor of this project,
since without him all this work would have been impossible to achieve. Also, I would like
to thank Nikos Komodakis for his help in the investigations. To George Kafentzis, who has
been always supportive and helpful in any doubt or problem I had had along thesemonths.
And last, but not least, Yannis Stylianou, whom I thank this exchange.

I would also refer in these acknowledgements to all the professors in the Master of Lan-
guage Analysis and Processing of the University of the Basque Country that have guided
me in order to be able to participate on the Erasmus+ programme. Specially to the profes-
sors on speech technologies InmaHernáez and EvaNavas, and to theMaster’s Coordinator
Olatz Arregi.

I am also grateful to all of those with whom I have worked here in the Speech Processing
laboratory. Also, to all those people that I have met during my stay here in Crete. You all
have made my stay here a wonderful experience that I will never forget.

And finally, the most important part of this experience, those who have still helped me
even though I was kilometers away from them. My family, who offered their help and sup-
port in everything they could during my stay. My friends that have always been accessible
and actively speaking with me. And finally, to my girlfriend, who has been always for me
every single day I was on the island, and even kindly accepted my departure and encour-
aged me to enjoy it as much as I could.

Thank you all.

Contents

1 Introduction 1
1.1 Automatic Speech Recognition Systems . 1
1.2 Neural Networks . 2
1.3 Motivation . 2
1.4 Thesis Contribution . 3
1.5 Structure of the Thesis . 3

2 State-of-the-Art 5
2.1 Automatic Speech Recognition Systems . 5

2.1.1 Acoustic Model . 5
2.1.2 Feature Extraction . 6

2.2 Neural Networks . 8
2.2.1 Neural Networks . 9
2.2.2 Cost Function and Training . 10
2.2.3 Batch Normalisation . 11
2.2.4 Dropout . 11
2.2.5 Convolutional Network . 12
2.2.6 Recurrent Neural Networks . 13

2.3 Deep Learning Architectures for ASR Systems 15

3 Experiments and Results 17
3.1 Tools and Resources . 17

3.1.1 Aurora-4 . 17
3.1.2 Kaldi . 18
3.1.3 TensorFlow . 18

3.2 Experiments . 19
3.2.1 Deep Neural Networks . 19
3.2.2 Convolutional Neural Networks . 21
3.2.3 Recurrent Neural Networks . 24

4 Conclusions and Future Work 31

i

Bibliography 33

ii

List of Tables

3.1 WER of the Kaldi ASR system with a Deep architecture applied to acoustic
features containing MFCCs and Filter Banks. The number on top of each
architecture represents the number of trainable parameters. The best and
worst results are highlighted. The number of hidden layers ascends to 7,
giving a total of 9 layers. The dimensions of theweightmatrix correspond to
2048 neuronswhere the dimension is not constrained by the characteristics
of input and output of the network. 20

3.2 WER of the Kaldi ASR system with a Convolutional Neural Network ap-
plied to Filter Banks. The number on top of each architecture represents
the number of trainable parameters. The best and worst results are high-
lighted. The architecture of the network is previously described. 22

3.3 WER of the Kaldi ASR system with a Convolutional Neural Network ap-
plied to Filter Banks, featuring or not Batch Normalisation. The number
on top of each architecture represents the number of trainable parameters.
The best and worst results are highlighted. The architecture of the network
is previously described. 23

3.4 WER of the Kaldi ASR system with a Convolutional Neural Network ap-
plied to Filter Banks, featuring or not Dropouts. The number on top of each
architecture represents the number of trainable parameters. The best and
worst results are highlighted. The architecture of the network is previously
described. 24

3.5 (I) WER of the Kaldi ASR system with different recurrent architectures.
The number on top of each architecture represents the number of trainable
parameters. The best and worst results are highlighted. The architecture of
the network is previously described. 26

3.6 (II) WER of the Kaldi ASR system with different recurrent architectures.
The number on top of each architecture represents the number of trainable
parameters. The best and worst results are highlighted. The architecture of
the network is previously described. 27

iii

3.7 (III) WER of the Kaldi ASR system with different recurrent architectures.
The number on top of each architecture represents the number of trainable
parameters. The best and worst results are highlighted. The architecture of
the network is previously described. 28

3.8 WER of the Kaldi ASR system when using the best CNN architecture, the
best RNN architecture and both. The number on top of each architecture
represents the number of trainable parameters. The best and worst results
are highlighted. 29

iv

List of Figures

2.1 Hamming Window . 7
2.2 The threshold (above left), sigmoid (above right), ReLU (below left) and

hyperbolic tangent (below right) functions. 8
2.3 Diagram of a perceptron layer. 9
2.4 Diagram of a neural network. 10
2.5 Example of a valid convolution of twomatrices. Notice how the kernel ma-

trix is flipped both vertically and horizontally. 13
2.6 Simplified diagram of a recurrent network where each neuron depends on

the output of the previous sample. 13
2.7 Diagram of a simplified bidirectional recurrent networkwhere each output

depends on the previous and next neurons. 14

v

vi

Chapter 1

Introduction

Nobody doubts that in these years the interests on characterising and studying speech sig-
nals have increased. The number of applications using this technology is rapidly increas-
ing, including commercial products like Alexa from Amazon, Siri from Apple and Google
Assistant. It is also worth mentioning that a huge number of universities have a research
group focused on developing techniques for synthesising or analysing speech. Even inter-
national conferences dedicated to this specific area are held in various parts of the globe,
such as InterSpeech or Odyssey.

In the last few years, synthesised speech has reached a quality almost near real human
voice with the implementation of WaveNet [27]. Also, speech recognition systems, those
that obtain a sequence of words from a raw audio input, have achieved really decent results
in this decade [28]. Anyway, the computational power needed for these two applications to
reach this performance peak is far away from being easily achieved by low budget research
teams.

1.1 Automatic Speech Recognition Systems
The main task of an Automatic Speech Recognition (ASR) system is to map a sequence of ASR

acoustic features into a sequence of words [14]. This problem presents a challenging task
quite far from being solved in every situation such as in noisy conditions, although in some
specific environments important results have been achieved [28] [22].

ASR systems typically consist on different blocks that perform a sequence of tasks. Since
the input of the whole system will be an audio signal, the first steps should deal with the
problems related to them: background noise, different speakers, reverberation or quality of
the microphone just to mention a few. In order to solve these, the first task of the ASR sys-
tem is to transform the audio signal into a sequence of vectors of acoustic features from the

1

2 CHAPTER 1. INTRODUCTION

fed speech signal. These acoustic features are intended to isolate the information relevant
to the actual speech, where the linguistic knowledge relies. Then, the last set of blocks
is needed to compute the most probable outcome of words given a specific sequence of
acoustic vectors, by computing first the most probable phonemes and then, with that in-
formation, the most probable sequence of words.

Kaldi is the name of one of the most known ASR systems nowadays, characterised by its
philosophy of being open-source and easy to use [19]. It includes a large set of programs
dedicated to many different algorithms corresponding to the various tasks inside an ASR.
Itsmajor features include Finite State Transducers (FSTs), signal processing, linear algebraFSTs

and statistic models. Nevertheless, the basis for building neural architectures using this
software is still not as developed as in other dedicated softwares.

1.2 Neural Networks
In this work, one of the building blocks of the Kaldi ASR system will be programmed us-
ing deep learning algorithms, a subset of machine learning algorithms built upon Neural
Networks (NNs). The main idea behind Neural Networks is to model a task by a functionNN

dependant on, obviously, the input, a huge set of parameters to be tuned, and some kind
of non-linearity. By modifying the structure of the network and its parameters with a vast
number of examples, the program results in a function that better fits the desired task.

These machine learning algorithms have been directing the research of many different
fields in data processing and computer sciences —from graphics in areas such as face
recognition [25] and image generation [9] to Natural Language Processing (NLP) in a wideNLP

range of fields such as question answering [16], sentence representation [15] and in the
area this thesis is focused on, speech recognition [21] [11] [8].

Themain reason for the use of NNs in recent literature relies on that they have been seen to
achieve an equal or even better performance than the previous state-of-the-art technolo-
gies [16] [15] [25] and the current trend suggests that in the future they will yield even
better results.

1.3 Motivation
Even though Kaldi includes three codebases that allow the user to work with NNs, these
do not cover the majority of known deep learning architectures. In addition, compared to
the different libraries built for the use of these machine learning technologies, their flexi-
bility is not as extended, though they are supposed to keep growing.

1.4. THESIS CONTRIBUTION 3

A huge variety of deep learning architectures could be applied to the speech recognition
task, since the possibilities are almost endless. Therefore, a previous evaluation of some of
the techniques could enhance the creation of more specific libraries whose performance
has been already tested achieving accurate results. The more range of tested architectures
whose performance approximates to the state-of-the-art, the more options could be con-
sidered when developing new speech recognition tools.

Basically, these are the main reasons why this work is oriented in substituting one of the
core elements of this ASR system with an external deep learning program. This way, the
libraries created for a range variety of machine learning tasks can be used for this specific
duty, which offer a wider range of possibilities to be tested and therefore potentially finer
results.

1.4 Thesis Contribution
With this approach, the work is focused on verifying that the use of different deep archi-
tectures can lead to a significant improvement on the results of the previous works based
on statistical methods, since it has already been proven [16] [15] [25].

Also, it will clear the path for the users of the Kaldi ASR system that would like to improve
their results by using external programs. Since the preprocessing of the audio and feature
extraction made by Kaldi are quite straightforward, a user non experienced on signal pro-
cessing could easily get the material needed for a more specific task on machine learning.
Therefore, this works proves that a symbiosis of different tools, each specialised in differ-
ent areas, can be achieved in order to obtain more fruitful results.

Finally, as stated before, these broad tests on various architectures could lead to the ap-
plication of some of the techniques used on the Kaldi ASR system. Since all of them have
been already analysed and used on it, the contributors could base the new features to add
to Kaldi on the experiments performed during this work.

1.5 Structure of the Thesis
During this thesis the Acoustic Model of Kaldi will be substituted with different neural ar-
chitectures built in TensorFlow. This whole process will be divided as follows: The Chapter
2 explains more deeply the elements of an ASR system that have been used all along this
work, the Acoustic Model and the Feature Extraction modules. In the same chapter the

4 CHAPTER 1. INTRODUCTION

underlying structures of the neural architectures that have been used in this work are ex-
plained.

The Chapter 3 is divided in two sections. The first will introduce the tools that have been
employed for the research: the Aurora-4 database, Kaldi and TensorFlow. The second sec-
tion includes the whole experimental part. It contains three subsections for each of the
architectures that have been tested: DNNs, CNNs and RNNs. The results are displayed in
a series of tables that contain the number of parameters to be trained and the scores for
each of the partitions on the Test dataset, as well as their mean and standard deviation.
Also, some conclusions will be provided after each of the results. Since the best results are
obtained with the use of filter banks instead of MFCCs, from CNNs onwards the networks
will only be fed with these features.

Finally, the Chapter 4 explains the whole conclusions that we found during the research,
as well as some guidelines for future work. The most remarkable note will be that these
architectures actually achieve better results than naïve Kaldi, and therefore it should have
them implemented on the next years.

Chapter 2

State-of-the-Art

In this chapter the basic techniques used all over this work will be presented. This will
include an overview on Automatic Speech Recognition systems, specifically on their most
important parts regarding this thesis: the Acoustic model and Feature extraction.

In addition, an introduction on neural architectures is also provided. It includes an expla-
nation about the different elements that will be used all over the experimental part.

2.1 Automatic Speech Recognition Systems
As stated before, the task of an ASR system is to map a set of acoustic inputs into a se-
quence of words for, among other applications, transcribing speech. Of the different areas
the ASR systems cover, themost difficult tasks happen to be those including a big set of vo-
cabulary —more than 5,000 different words— and continuous speech —where the words
are uttered naturally and not between silences [14].

2.1.1 Acoustic Model
Speech recognition systems tend to characterise the acoustic information of an utterance
as it were produced as the output of a so called noisy channel [14] when fed with the text Noisy channel

version of the signal. This is, the main idea is to consider the opposite problem to the one
being solved: in this case, instead of getting a sequence of words from a given audio signal
(the actual problem to solve), it is considering what sequence of words will produce that
given audio signal. This way, the task will be reduced to find the most probable sequence
of words that will produce the original acoustic signal from all possible sentences.

This may result in a problem, since two different utterances of a single sentence will never
be exactly the same, due to the set of problems previously discussed. Also, the set of all pos-
sible sentences in a language is infinite and computing the probabilities of each particular

5

6 CHAPTER 2. STATE-OF-THE-ART

sentence will therefore be useless. In order to overcome these problems, two new tasks
should be presented: the characterisation of a speech signal into a set of acoustic features,
nowadays resolved by different approaches such as the MFCC, Δ and Δ2 parameters [17];
and the decoding or search between the sentences to obtain the most probable one, using
for example the Viterbi or the 𝐴∗ algorithms [14].

Once supposing the characterisation problem is overcome, the speech signal 𝑠(𝑡) will be
represented by a set of acoustic observations𝑂 = 𝑜1, … , 𝑜𝑡, and its corresponding sentence
will be𝑊 = 𝑤1, … , 𝑤𝑛. Then, the most probable outcome will be computed by:

𝑊̂ = max
𝑊

𝑃(𝑊|𝑂)

Which, by the use of Bayes’ rule, can be reduced to:

𝑊̂ = max
𝑊

𝑃(𝑂|𝑊)𝑃(𝑊)
𝑃(𝑂)

And, since the probability of the observations 𝑃(𝑂) will be the same ∀𝑊, that probability
is not relevant for guessing the maximum, thus:

𝑊̂ = max
𝑊

𝑃(𝑂|𝑊)𝑃(𝑊)

The probability of a single sentence of words of occurring in a language 𝑃(𝑊) is computed
by the linguistic model, whereas the probability of an output sentence given a set of wordsLinguistic model

𝑃(𝑂|𝑊) is computed by the acoustic model, the main objective of this work.Acoustic model

2.1.2 Feature Extraction
In order to use the audio data for speech recognition the raw files should be preprocessed
so they can be converted in a vector of numeric values in what is called feature extraction.Feature

extraction The most extended technique is the extraction of the Mel Frequency Cepstral Coefficients
MFCC

(MFCCs) [17].

The raw audio data is first divided into chunks containing 20 to 40ms of samples, with a
separation between them of around 50 % of the length of the frame. Then, to each frame
𝑥𝑛 of length𝑁 samples (𝑛 ∈ {0, … ,𝑁 −1}) a windowing process is applied, typically using
a Hamming window 𝑤𝑛:Hamming

windowing

2.1. AUTOMATIC SPEECH RECOGNITION SYSTEMS 7

Figure 2.1: Hamming Window

in the following way:

𝑥𝑛 ← 𝑥𝑛 ⋅ 𝑤𝑛

Then the Fourier Transform is applied in order to convert the samples from time domain
to frequency domain.

𝑋(𝜔) = ℱ[𝑥𝑛]
Since the human hearing perception is not linear with the frequency scale, another trans-
formation should be applied, one that transforms 𝑋(𝜔) to theMel scale. Let 𝑓 be such that Mel scale

𝜔 = 2𝜋𝑓, then the Mel scale frequency𝑚 is computed as

𝑚 = 2595 log (1 + 𝑓
700)

= 1127 ln (1 + 𝑓
700)

Then, a filter bank, a series of𝐾 triangular filtersΛ𝑘(𝑚), are applied to the signal𝑋(𝑚) for Filter bank

each of the desired Mel frequencies, with the objective of simulating the response of the
human auditory system [26]. Then result of the integral (discrete sum) along the frequen-
cies inside the filter stored [5]:

fb𝑘 =
∞

∫
0

Λ𝑘(𝑚) ‖𝑋(𝑚)‖ 𝑑𝑚 (=
𝑀
∑
𝜉=1

Λ𝑘(𝜉) ‖𝑋(𝜉)‖)

Lastly, a Discrete Cosine Transform is applied in order to get the MFCCs, computed in the
following way [5]:

MFCC𝑖 =
𝐾
∑
𝑘=1

log(fb𝑘) cos
(2𝑘 − 1)𝑖𝜋

2𝑀
Where 𝑖 ∈ {1, … , 𝐶}, usually 𝐶 < 𝐾 [5].

8 CHAPTER 2. STATE-OF-THE-ART

2.2 Neural Networks
Neural Networks consist in a set of single objects called neurons [10] or perceptronswhichNeuron or

perceptron compute a single function 𝑓 ∶ ℝ𝑛 ⟶ ℝ that depends on a set of elements known as the
weights vector ⃗𝑤 ∈ ℝ𝑛, the bias 𝑏 ∈ ℝ and the activation function 𝜙 ∶ ℝ⟶ [𝑝, 𝑞]where
𝑝, 𝑞 ∈ ℝ in the following way:

𝑓(⃗𝑥) = 𝜙(⃗𝑥 ⋅ ⃗𝑤 + 𝑏) = 𝜙 (
𝑛
∑
𝑖=1

𝑥𝑖𝑤𝑖 + 𝑏)

Themain role of the activation function𝜙(⋅) is to squash the results of the operation ⃗𝑥⋅ ⃗𝑤+𝑏
into a range of natural numbers [𝑝, 𝑞] —usually [0, 1] or [−1, 1]— and to provide non-
linearity. A set of different activation functions include the threshold function, the sigmoidThreshold

function known as𝜎(⋅), theRectified linear unitReLU(𝑥)1 or the hyperbolic tangent function𝜍(𝑥)
ReLU(𝑥)
tanh(𝑥)

tanh(𝑥):

−4 −2 2 4

0.5

1

𝜙(𝑥) = {
1 𝑥 ≥ 0
0 𝑥 < 0

−4 −2 2 4

0.5

1

𝜎(𝑥) = 1
1 + 𝑒−𝑥

−4 −2 2 4

2

4
ReLU(𝑥) = {

𝑥 𝑥 ≥ 0
0 𝑥 < 0

−3 −2 −1 1 2 3

−1

−0.5

0.5

1

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥
𝑒𝑥 + 𝑒−𝑥

Figure 2.2: The threshold (above left), sigmoid (above right), ReLU (below left) and hyperbolic
tangent (below right) functions.

1Note that the ReLU function only has an effect on negative values, since its output lies in the domain
[0,+∞). Nevertheless, its input is usually superiorly bounded due to the attributes of the network, and so
is the output.

2.2. NEURAL NETWORKS 9

2.2.1 Neural Networks
Once defined a perceptron, these are usually structured in what it is called a layer, a set of Layer

𝑚 neurons which all receive the same input ⃗𝑥 ∈ ℝ𝑛 and compute an output ⃗𝑦 ∈ ℝ𝑚 in
such a way that the 𝑗-th element of ⃗𝑦, 𝑦𝑗, is the output of the function of the 𝑗-th neuron
𝑓𝑗(⃗𝑥):

𝑦𝑗 = 𝑓𝑗(⃗𝑥) = 𝜙(⃗𝑥 ⋅ ⃗𝑤𝑗 + 𝑏𝑗) = 𝜙 (
𝑛
∑
𝑖=1

𝑥𝑖𝑤𝑖𝑗 + 𝑏𝑗)

Which, supposing that ⃗𝑥 and ⃗𝑦 are both row vectors, can be expressed in a vectorial way
in the form:

⃗𝑦 = 𝜙 (⃗𝑥𝑊 + ⃗𝑏)

where the element 𝑤𝑖𝑗 of the matrix𝑊 is the 𝑖-th weight of the 𝑗-th neuron, the element
𝑏𝑗 of the vector ⃗𝑏 is its bias and the function 𝜙(⃗𝑥) is applied elementwise.

𝑥1
𝑥2
𝑥3

𝑥𝑛−1
𝑥𝑛−2

𝑥𝑛

⋮ ⋮ ⋮

𝜙(⃗𝑥 ⋅ ⃗𝑤1 + 𝑏1)
𝜙(⃗𝑥 ⋅ ⃗𝑤2 + 𝑏2)
𝜙(⃗𝑥 ⋅ ⃗𝑤3 + 𝑏3)
𝜙(⃗𝑥 ⋅ ⃗𝑤4 + 𝑏4)

𝜙(⃗𝑥 ⋅ ⃗𝑤𝑚−1 + 𝑏𝑚−1)
𝜙(⃗𝑥 ⋅ ⃗𝑤𝑚−2 + 𝑏𝑚−2)
𝜙(⃗𝑥 ⋅ ⃗𝑤𝑚−3 + 𝑏𝑚−3)

𝜙(⃗𝑥 ⋅ ⃗𝑤𝑚 + 𝑏𝑚)

Figure 2.3: Diagram of a perceptron layer.

If a set of ℓ layers is placed consecutively in such a way that the output of the layer 𝑘 is
feed as input to the layer 𝑘 + 1, then it is called a neural network. The overall function of Neural network

the network is highly non-linear and dependant in a great number of parameters, basically
the ℓ matrices𝑊 (𝑘) and biases ⃗𝑏(𝑘).

⃗𝑦 = 𝜙 (⋯𝜙 (𝜙 (⃗𝑥𝑊 (1) + ⃗𝑏(1))𝑊 (2) + ⃗𝑏(2))⋯𝑊 (ℓ) + ⃗𝑏(ℓ))

The first and last layers of the network are called the input and output layers, while any Input/output
layerother layer in between is called a hidden layer. If the number of layers is greater than 2,

Hidden layerthat is, when the network includes hidden layers, then the network is called a deep neural
network (DNN) [4]. DNN

10 CHAPTER 2. STATE-OF-THE-ART

These networks are called feedforward networks since the input is passed through the dif- Feedforward
networkferent layers and not backwards in order to get an output [10], or dense layers since every

neuron in one layer is connected every neuron on the next layer.

𝑥1
𝑥2
𝑥3

𝑥𝑛−1
𝑥𝑛−2

𝑥𝑛

⋮ ⋮ ⋮ ⋮

𝑦1
𝑦2
𝑦3
𝑦4

𝑦𝑚−1

𝑦𝑚−2

𝑦𝑚−3

𝑦𝑚

Figure 2.4: Diagram of a neural network.

2.2.2 Cost Function and Training
The main idea behind building a NN is to make it learn from a series of data. Being ⃗𝑥 the
input of the network and ⃗𝑦 its output, the function that the network computes is

⃗𝑦 = 𝐹(⃗𝑥)

This function 𝐹 is not only dependant on the input ⃗𝑥, but also on the set of parameters in
the network𝑊 (ℓ) and 𝑏(ℓ). LetΘ be a vector that contains all the parameters in a row, then
the function 𝐹 is

⃗𝑦 = 𝐹(⃗𝑥, Θ)

Then, given a set of paired examples (⃗𝑥, ⃗𝑦𝑙) where ⃗𝑦𝑙 is the desired value of 𝐹(⃗𝑥), then the
computed ⃗𝑦 should be similar to ⃗𝑦𝑙.

Any function that can be used to measure the performance of a NN (this is, measuring the
similarity between ⃗𝑦 and ⃗𝑦𝑙) is called the cost function [10] of the NN. This function shouldCost Function

be positive and decrease in value for a better performance.

In order for the cost function to be minimum, different techniques are proposed in bibli-
ography, such as Stochastic Gradient Descent (SGD). This approach uses the value of theSGD

gradient of the cost function forminimisation. Let𝐶(Θ) be the cost function of aNN. Then,
the gradient is computed as

2.2. NEURAL NETWORKS 11

𝜕𝐶(Θ)
𝜕Θ

Then, as stated in [10], the parameter Θ should be updated in the form

Θ ← Θ − 𝛼𝜕𝐶(Θ)𝜕Θ
where 𝛼 > 0 is called the learning rate [10]. Learning rate

Normally, instead of computing the gradient for each sample produced, the dataset is di-
vided in batches of𝑚 samples and the gradient is computed for all of them [13]. This prac- Batch

tice speeds up the whole computation process leading to a more efficient training.

2.2.3 Batch Normalisation
Another technique that may help in the training of NNs is batch normalisation (BN). As Batch

NormalisationS. Ioffe et al. suggest in [13], each dimension 𝑥(𝑘) is normalised first according to its mean
𝜇(𝑘) and standard deviation 𝜎(𝑘):

̂𝑥𝑖(𝑘) =
𝑥(𝑘)𝑖 − 𝜇(𝑘)

𝜎(𝑘)
The parameters 𝜇(𝑘) and 𝜎(𝑘) are calculated for each of the computed batches. Then, two
new learnable parameters are added, 𝛾(𝑘) and 𝛽(𝑘) in such a way that

𝑦(𝑘)𝑖 = 𝛾(𝑘) ̂𝑥𝑖(𝑘) + 𝛽(𝑘)

whenever the relation between 𝑥𝑖 and 𝑦𝑖 does not have any activation functions. In that
case, the function is applied after the BN:

𝑦(𝑘)𝑖 = 𝜙(𝛾(𝑘) ̂𝑥𝑖(𝑘) + 𝛽(𝑘))

As it is stated in [13], this technique helps in a faster training and in achieving a higher
accuracy.

2.2.4 Dropout
One of themajor problems inmachine learning is the so called overfitting, where the learn- Overfitting

ing system performs well in the examples used for training but it fails in others that never
went through the program. With the objective of avoiding such an issue, N. Srivastava et
al. [24] decided to eliminate some of the connections inside a network so not all the data
goes through the parameters.

12 CHAPTER 2. STATE-OF-THE-ART

In a dropout layer, each of the connections on every neuron of the previous layer is sent to
the next with a probability 𝑝, called the droput probability. Dropout

probability

As shown in [24], they could achieve results near to the state-of-the-art performance by
applying dropout on both DNN and CNN.

2.2.5 Convolutional Network
A convolutional layer inside a neural network is a layer that performs a linear operation
called convolution, and a convolutional network (CNN) is a neural network that includesConvolution

CNN at least one convolutional layer inside [7]. This convolution operation requires two tensors
to be executed: the input 𝐼, which has the information about the data; and the kernel 𝐾. IfKernel

𝐼 and 𝐾 are 1-D tensors, then:

(𝐼 ∗ 𝐾)𝑖 =
∞
∑

𝜂=−∞
𝐼𝜂 ⋅ 𝐾𝜂−𝑖 =

∞
∑

𝜂=−∞
𝐼𝜂−𝑖 ⋅ 𝐾𝜂

In the case of 2-D tensors, then:

(𝐼 ∗ 𝐾)𝑖𝑗 =
∞
∑

𝜂=−∞

∞
∑

𝜉=−∞
𝐼𝜂𝜉 ⋅ 𝐾𝜂−𝑖,𝜉−𝑗 =

∞
∑

𝜂=−∞

∞
∑

𝜉=−∞
𝐼𝜂−𝑖,𝜉−𝑗 ⋅ 𝐾𝜂𝜉

And generalising:

(𝐼 ∗ 𝐾)𝑖1,…,𝑖𝑘 =
∞
∑

𝜂1=−∞
…

∞
∑

𝜂𝑘=−∞
𝐼𝜂1,…,𝜂𝑘 ⋅ 𝐾𝜂1−𝑖1,…,𝜂𝑘−𝑖𝑘

=
∞
∑

𝜂1=−∞
…

∞
∑

𝜂𝑘=−∞
𝐼𝜂1−𝑖1,…,𝜂𝑘−𝑖𝑘 ⋅ 𝐾𝜂1,…,𝜂𝑘

In the case the kernel is not flipped but computed in the same direction as the tensor, then
the operation is called cross-correlation. In the case of 2-D tensors:

𝐶𝐶(𝐼, 𝐾)𝑖𝑗 =
∞
∑

𝜂=−∞

∞
∑

𝜉=−∞
𝐼𝜂𝜉 ⋅ 𝐾𝜂+𝑖,𝜉+𝑗 =

∞
∑

𝜂=−∞

∞
∑

𝜉=−∞
𝐼𝜂+𝑖,𝜉+𝑗 ⋅ 𝐾𝜂𝜉

If the output is restricted only to the values where the kernel 𝐾 is completely embedded
inside the input 𝐼, it is called a valid convolution.Valid

convolution

2.2. NEURAL NETWORKS 13

𝐼 ∗ 𝐾 =

𝐼11

𝐼21

𝐼31

𝐼12

𝐼22

𝐼32

𝐼13

𝐼23

𝐼33

𝐼14

𝐼24

𝐼34

∗
𝐾11

𝐾21

𝐾12

𝐾22

=

𝐼11𝐾22+
𝐼12𝐾21+
𝐼21𝐾12+
𝐼22𝐾11

𝐼21𝐾22+
𝐼22𝐾21+
𝐼31𝐾12+
𝐼32𝐾11

𝐼12𝐾22+
𝐼13𝐾21+
𝐼22𝐾12+
𝐼23𝐾11

𝐼22𝐾22+
𝐼23𝐾21+
𝐼32𝐾12+
𝐼33𝐾11

𝐼13𝐾22+
𝐼14𝐾21+
𝐼23𝐾12+
𝐼24𝐾11

𝐼23𝐾22+
𝐼24𝐾21+
𝐼33𝐾12+
𝐼34𝐾11

Figure 2.5: Example of a valid convolution of two matrices. Notice how the kernel matrix is flipped
both vertically and horizontally.

2.2.6 Recurrent Neural Networks
If the input of a neural network depends on time in a discrete way, then the network could
be arranged in away such as the input of any layer in a given time ⃗𝑥𝑡 is influenced somehow
by the 𝑝 previous inputs or already computed outputs { ⃗𝑣𝑡−𝑘}

𝑝
𝑘=1. In this case, the network

is called recurrent (RNN) [10]. RNN

⃗𝑥𝑡−1 ⃗𝑥𝑡 ⃗𝑥𝑡+1

⃗𝑦𝑡−1 ⃗𝑦𝑡 ⃗𝑦𝑡+1

Figure 2.6: Simplified diagram of a recurrent network where each neuron depends on the output
of the previous sample.

If the output of the network depends also, if possible regarding to the data, on 𝑞 future
inputs { ⃗𝑥𝑡+𝑘}

𝑞
𝑘=1, then the network is also called bidirectional [23]. Bidirectional

network

14 CHAPTER 2. STATE-OF-THE-ART

⃗𝑥𝑡−1 ⃗𝑥𝑡 ⃗𝑥𝑡+1

⃗𝑦𝑡−1 ⃗𝑦𝑡 ⃗𝑦𝑡+1

Figure 2.7: Diagram of a simplified bidirectional recurrent network where each output depends on
the previous and next neurons.

A particular case of RNNs is one that uses Long Short-TermMemory (LSTM) cells [12] [6].LSTM

This type of neurons are used for processing inputswhich is context-dependant, this is, that
the input of a particular time is influenced by past or future samples. They are designed
intentionally for retaining relevant information and forgetting what is not important at a
particular moment [12].

The function computed by these cells is more complex than the one from a perceptron.
This depends on some intermediate functions called the input, output and forget gates ⃗𝑖𝑡,
⃗𝑜𝑡 and ⃗𝑓𝑡; the cell activation vector ⃗𝑐𝑡; and the cell output activation vector 𝑚⃗𝑡, in the way
described by the following expressions [21]:

⃗𝑖𝑡 = 𝜎(⃗𝑥𝑡𝑊𝑖𝑥 + 𝑚⃗𝑡−1𝑊𝑖𝑚 + ⃗𝑐𝑡−1𝑊𝑖𝑐 + ⃗𝑏𝑖)
⃗𝑓𝑡 = 𝜎(⃗𝑥𝑡𝑊𝑓𝑥 + 𝑚⃗𝑡−1𝑊𝑓𝑚 + ⃗𝑐𝑡−1𝑊𝑓𝑐 + ⃗𝑏𝑓)
⃗𝑐𝑡 = ⃗𝑓𝑡 ⊙ ⃗𝑐𝑡−1 + ⃗𝑖𝑡 ⊙ 𝜙𝑐(⃗𝑥𝑡𝑊𝑐𝑥 + 𝑚⃗𝑡−1𝑊𝑐𝑚 + ⃗𝑏𝑐)
⃗𝑜𝑡 = 𝜎(⃗𝑥𝑡𝑊𝑜𝑥 + 𝑚⃗𝑡−1𝑊𝑜𝑚 + ⃗𝑐𝑡𝑊𝑜𝑐 + ⃗𝑏𝑜)

𝑚⃗𝑡 = ⃗𝑜𝑡 ⊙ 𝜙𝑚(⃗𝑐𝑡)
⃗𝑦𝑡 = 𝜙𝑦(𝑚⃗𝑡𝑊𝑦𝑚 + ⃗𝑏𝑦)

where the symbol⊙ denotes an element-wise multiplication, the𝑊∗∗ are weight matrices,
the ⃗𝑏∗ are bias vectors, the function 𝜙𝑐 and 𝜙𝑚 are generally the tanh function, and the
function 𝜙𝑦 is the output activation function.

If the architecture of the network includes LSTM cells that read future inputs, if possible,
then it is said that the network contains bidirectional LSTMs or, abbreviating, BiLSTMs.BiLSTM

Another type of recurrent unit was presented in [3] whichwas based on the LSTMbutwith
the aim of being simpler to compute and implement, the Gated Recurrent Unit (GRU). LetGRU

⃗ℎ𝑡 be the hidden state of one of this cells at the instant 𝑡. The next state depends on the

2.3. DEEP LEARNING ARCHITECTURES FOR ASR SYSTEMS 15

intermediate functions ⃗𝑟𝑡 and ⃗𝑧𝑡 called the reset gate and the update gate respectively, which
are computed by the following expressions:

⃗𝑟𝑡 = 𝜎(⃗𝑥𝑡𝑊𝑟𝑥 + ⃗ℎ𝑡−1𝑊𝑟ℎ)
⃗𝑧𝑡 = 𝜎(⃗𝑥𝑡𝑊𝑧𝑥 + ⃗ℎ𝑡−1𝑊𝑧ℎ)
⃗̃ℎ𝑡 = 𝜙(⃗𝑥𝑡𝑊ℎ𝑥 + (⃗𝑟𝑡 ⊙ ⃗ℎ𝑡−1)𝑊ℎℎ)
⃗ℎ𝑡 = ⃗𝑧𝑡 ⊙ ⃗ℎ𝑡−1 + (1 − ⃗𝑧𝑡) ⊙ ⃗̃ℎ𝑡

where, similarly to the LSTMs, the𝑊∗∗ are weight matrices and 𝜙 is the activation function
of the cell.2

Finally, the implementation on Neural Architecture Search (NAS) will also be used on NAS

this work [31]. Its main goal is to find the most suitable architecture for a given problem
by using RNNs. Since the structure of any given neural architecture could be specified by
a string, it is also possible to use another architecture, named the controller, in order to
generate the previously stated string, the child network. As it is stated in [31], it could find
an architecture whose performance was better than most of those created by humans.

2.3 Deep Learning Architectures for ASR Systems
Although the way in which a deep learning algorithm is applied to an ASR system varies
among the literature, two major approaches can be distinguished: the hybrid architecture Hybrid

architecturewhich includes some type of neural network inside a statistical system, such as the use
of networks along with a Hidden Markov Model (HMM) [2] [20]; and the end-to-end ar- End-to-end

architecturechitecture, that relies solely in a deep learning architecture that gets as input the acoustic
features and outputs its transcription [30] [29].

The range of architectures found in the different submitted articles varies in a significant
way, possibly correctly stating that every single paper has a unique set of layers. Though
that might be the case, among the authors a preferred technique can be found, in which
the use of CNNs accompanied by RNNs,mostly (Bi)LSTMs, such as in [29] [22] [28], which
can be seen that get more promising results than when using CNNs alone [30].

2Note that the operation 1 − ⃗𝑣 will yield a vector such that its 𝑗-th element is 1 − 𝑣𝑗

16 CHAPTER 2. STATE-OF-THE-ART

Chapter 3

Experiments and Results

3.1 Tools and Resources

3.1.1 Aurora-4
Aurora-4 [18] is the audio database used throughout thiswork. It is based on afirst instance Aurora-4

on theWall Street Journal (WSJ) database,more specifically the SI-84WSJ0 database, com- WSJ database

posed by a set of very clean utterations in terms of noise. Since the performance of systems
that use a low SNR database decays as background noise level increases, the following
recorded backgrounds are directly added to the database:

• Street traffic

• Train terminals and stations

• Cars

• Babble

• Restaurants

• Airports

The added noise has been recorded by two types of microphones:

• A head-mounted Sennheiser HMD-414 close-talking microphone.

• A microphone selected from a group of other 18 common type microphones, such
as Crown PCC-160, Sony ECM-50PS and Nakamichi CM100.

The Train database includes 7138 utterances composed by:

• For each of the 2 types of microphones (Training Set 1 & 2):

– 893 clean samples (directly taken from the database)

– For each the 6 different types of noise:

* 446 samples with added noise, each with a randomly chosen SNR varying
from 10 to 20 dB in steps of 1 dB.

17

18 CHAPTER 3. EXPERIMENTS AND RESULTS

The Test database contains 4620 utterances: 14 different Test Sets composed by randomly
selecting 330 utterances for each of the 7 conditions (6 with noise + 1 clean) and each of
the 2microphones. The noise in this case has a randomly chosen SNR from 5 to 15 dB in
steps of 1 dB.

The reader is encouraged to check the complete report available online for amore technical
review of the datasend along with different performance tests.

3.1.2 Kaldi
Kaldi [19] is a speech recognition toolkit with aims of having an easy to extend code. ItKaldi

mainly uses a set of Finite State Transducers (FSTs) and linear algebra and it has a large
community of users that test and support it.

It includes a large set of tools and programs needed for speech recognition such as data
preprocessing, feature extraction, HMMs, decision trees and neural networks. For more
information the reader may please to review its main website http://kaldi-asr.org.

Themain architecturemodel is composed by a set of modules named thatmainly compute
the following operations:

• Data preparation

• Feature extraction

• Acoustic modelling

• Language modelling

The purpose of this work is to be able to substitute the acoustic model that Kaldi gener-
ates with a NN architecture. To do so, the program will need the previous steps of Data
preparation and Feature extraction. Then, the NN will take as input the results of those
operations and return as output the input of the next step, the Language model.

3.1.3 TensorFlow
TensorFlow [1] is a multiplatform library for coding a wide variety of machine learningTensorFlow

algorithms, implemented mainly in Python though it includes ports in Java, C and Go.

It is based on a set of computations built in the form of a graph, where its direction repre-
sents the flow of the data and each node is an operation. The data is generally present in
the form of tensors, multidimensional arrays that contain a specific type of data.

The library is implemented so it can be run on GPUs by using the NVIDIA tools CUDA
and cuDNN, which increase notably the speed of computation.

http://kaldi-asr.org

3.2. EXPERIMENTS 19

3.2 Experiments
Once all the data is prepared, the aim is to build a neural architecture that could substi-
tute the Acoustic Model in Kaldi. This programwill receive as input the MFCCs and Filter
Banks computed in previous stages and its output will be used for the following stages. The
programwill train using the 7138 utterances of the Train subset of the database Aurora-4.

In order to measure the performance of the architecture, the Word Error Rate (WER) of WER

the whole ASR system will be calculated, which measures the ratio the ratio of incorrect
to total words. For that, the network should use a set of utterances that has never seen
before, which will be the Test subset of the database. Therefore, the output will consist
in 14 different measures of the WER, along with their mean and standard deviation. For
comparison, the mean of the output when using Kaldi alone is 15.14. The aim of the ex-
periments is getting any improvement in this value.

Since the dataset has been recorded with two different microphones of different qualities,
it is expected that the performance of the network will be noticeably better for the high-
quality microphone. In addition, the most probable result is to have lower error rate in the
clean environments than in their noisy counterparts.

3.2.1 Deep Neural Networks
First, an approach using DeepNeural Networks will be performed. These would be trained
with MFCC features and Filter Banks.

The input of the Network consists on the acoustic features of 11 consecutive frames. Each
frame consists on 39 parameters for theMFCCs (13 parameters, 13 Δ and 13 Δ2) and 41 for
the Filter Banks (40 Filter Banks + Energy). Therefore, each input vector has dimension
11 ⋅ 39 = 429 for the MFCCs and 11 ⋅ 41 = 451 for the Filter Banks.

The output of the Network gives the probability of the triphone uttered in the 11 consecu-
tive frames of the input. There is a total of 2316 clusters of triphone combinations.

Each layer consists in a matrix of weights and a vector of biases. Given the characteristics
of the input of the network, the dimension of the first weight matrix will be 429 × 𝑤 for
the MFCC or 451 × 𝑤 for the Filter Banks, where 𝑤 ∈ ℕ. Similarly, the dimension of the
last weight matrix will be 𝑤 × 2316, and the dimension of the last bias vector will be also
2316. The rest of weight matrices and vector biases will have dimension 𝑤 × 𝑤 and 𝑤 re-
spectively. The activation function will be the sigmoid function 𝜎(⃗𝑥) for each layer.

20 CHAPTER 3. EXPERIMENTS AND RESULTS

The first experiment will consist on 7 hidden layers (with a total of 9 layers) where 𝑤 =
2048. This architecture will be tested with both the Filter Banks and MFCCs. The WER of
the results are shown on the table 3.1.

30 849 292 30 804 236

Test dataset WER
(MFCC)

WER
(FB)

airport-1 10.59 9.10
airport-2 23.84 22.21
babble-1 10.16 9.38
babble-2 25.22 23.50
car-1 6.69 5.77
car-2 15.54 15.08
clean-1 5.62 4.63
clean-2 12.18 9.60
restaurant-1 14.01 12.44
restaurant-2 27.82 25.65
street-1 13.06 11.34
street-2 26.04 25.01
train-1 13.23 11.79
train-2 27.48 26.28
Mean 16.53 15.13
St. dev. 7.88 7.76

Table 3.1: WER of the Kaldi ASR system with a Deep architecture applied to acoustic features con-
taining MFCCs and Filter Banks. The number on top of each architecture represents the number
of trainable parameters. The best and worst results are highlighted. The number of hidden layers
ascends to 7, giving a total of 9 layers. The dimensions of the weight matrix correspond to 2048
neurons where the dimension is not constrained by the characteristics of input and output of the
network.

As expected, the best results are achieved in the clean-1 Test dataset. This is, a clean
signal using a high-quality microphone. Moreover, the results on the datasets in which
the data was recorded with an ordinary microphone show a higher error rate than their
counterparts, also a predictable result.However, themean value of the scores of theMFCCs
is higher than the 15.14 achieved by using the tools provided by Kaldi, and a similar value
on Filter Banks. This implies a further research inmore advanced architectures so that the
score improves.

3.2. EXPERIMENTS 21

3.2.2 Convolutional Neural Networks
After the previous evaluations on Deep Neural Networks, the next approach will cover the
use of Convolutional Neural Networks. Since the previous results of the table 3.1 were bet-
ter for the Filter Banks in the 14 Test databases, the following experiments will only use
this data as input on the network.

From now on, the Neural Network will perform convolution operations, its input will now
be two-dimensional. Therefore, the previous input of 451-dimensional vectorswill be sepa-
rated in a grid formed by the 41 acoustic features and the 11 frames, thus having dimension
41×11. Then, a series of convolution and pooling operationswill be performed. The convo-
lutions, after performing the operation, will encode the information in different channels.
This is, each convolution will have a number of input channels and a number of output
channels.

The first experiment will have this architecture:

• A convolution by a 3 × 3 filter from 1 to 64 channels followed by a ReLU.

• A convolution by a 3 × 3 filter from 64 to 64 channels followed by a ReLU.

• A max pooling operation with dimension 2 × 1.

• A convolution by a 3 × 3 filter from 64 to 128 channels followed by a ReLU.

• A convolution by a 3 × 3 filter from 128 to 128 channels followed by a ReLU.

• A max pooling operation with dimension 2 × 1.

• A convolution by a 3 × 3 filter from 128 to 128 channels followed by a ReLU.

• A convolution by a 3 × 3 filter from 128 to 128 channels followed by a ReLU.

• A max pooling operation with dimension 2 × 2.

• A convolution by a 3 × 3 filter from 128 to 256 channels followed by a ReLU.

• A convolution by a 3 × 3 filter from 256 to 256 channels followed by a ReLU.

• A max pooling operation with dimension 2 × 2.

• The output is flattened into a vector.

• A dense layer with 1024 neurons.

22 CHAPTER 3. EXPERIMENTS AND RESULTS

The results of the network are in the table 3.2.

3 812 172
Test dataset WER

airport-1 7.66
airport-2 18.23
babble-1 7.66
babble-2 19.73
car-1 4.91
car-2 10.67
clean-1 4.18
clean-2 8.13
restaurant-1 9.47
restaurant-2 20.38
street-1 9.38
street-2 20.96
train-1 10.48
train-2 22.04
Mean 12.42
St. dev. 6.38

Table 3.2: WER of the Kaldi ASR system with a Convolutional Neural Network applied to Filter
Banks. The number on top of each architecture represents the number of trainable parameters.
The best and worst results are highlighted. The architecture of the network is previously described.

With this new architecture, we managed to obtain a more reliable ASR system than the
one predefined by Kaldi. The WER score dropped from 15.14 to 12.42, with an improve-
ment on 2.72 points.

After this experiment, a batch normalisation followed by a ReLU activation function will
be applied before each pooling. Thus, the ReLU after each convolution will be removed.
The results are displayed in the table 3.3.

3.2. EXPERIMENTS 23

3 812 172 3 812 172

Test dataset WER
(–BN)

WER
(+BN)

airport-1 7.66 7.73
airport-2 18.23 18.87
babble-1 7.66 7.60
babble-2 19.73 19.78
car-1 4.91 4.76
car-2 10.67 9.99
clean-1 4.18 4.39
clean-2 8.13 6.86
restaurant-1 9.47 9.38
restaurant-2 20.38 21.71
street-1 9.38 9.70
street-2 20.96 22.14
train-1 10.48 9.23
train-2 22.04 22.10
Mean 12.42 12.45
St. dev. 6.38 6.81

Table 3.3: WER of the Kaldi ASR system with a Convolutional Neural Network applied to Filter
Banks, featuring or not Batch Normalisation. The number on top of each architecture represents
the number of trainable parameters. The best and worst results are highlighted. The architecture
of the network is previously described.

It can therefore be stated that applying a Batch Normalisation in this way does not make
a very noticeable change in this particular problem.

Finally, Dropouts will be added after the 2nd and 4th ReLU activation functions. The results
are shown in the table 3.4

24 CHAPTER 3. EXPERIMENTS AND RESULTS

3 812 172 3 812 172

Test dataset WER
(–Dropout)

WER
(+Dropout)

airport-1 7.66 7.19
airport-2 18.23 17.22
babble-1 7.66 7.90
babble-2 19.73 18.98
car-1 4.91 5.36
car-2 10.67 11.25
clean-1 4.18 4.54
clean-2 8.13 7.51
restaurant-1 9.47 8.97
restaurant-2 20.38 19.93
street-1 9.38 8.80
street-2 20.96 20.01
train-1 10.48 9.42
train-2 22.04 20.40
Mean 12.42 11.96
St. dev. 6.38 5.95

Table 3.4: WER of the Kaldi ASR system with a Convolutional Neural Network applied to Filter
Banks, featuring or not Dropouts. The number on top of each architecture represents the number
of trainable parameters. The best andworst results are highlighted. The architecture of the network
is previously described.

As exposed in the results, the use of dropouts decreases the accuracy of the ASR system
for the clean environment but the overall mean taking into account the noisy conditions
is improved.

3.2.3 Recurrent Neural Networks
After experimenting with CNNs, the next step will be introducing a new recurrent archi-
tecture. The first step will cover the use of RNNs alone, and afterwards an architecture
using CNNs followed by RNNs.

As stated before, this phase will be covering the use of different RNN architectures. The
different experiments will include:

• 1 layer of 256 LSTMs + 1 dense layer.

• 1 layer of 512 LSTMs + 1 dense layer.

3.2. EXPERIMENTS 25

• 3 layers of 256 LSTMs + 1 dense layer.

• 3 layers of 256 LSTMs with 0.85 of forget bias + 1 dense layer.

• 3 layers of 512 LSTMs + 1 dense layer.

• 3 layers of 256 LSTMs + 3 layers of 512 LSTMs + 1 dense layer.

• 3 layers of 512 GRUs + 1 dense layer.

• 3 layers of 256 GRUs + 2 dense layer.

• 3 layers of 256 NASes + 1 dense layer.

• 3 layers of 256 layer-normalising LSTMs + 1 dense layer.

• A BiLSTM composed by 2 layers of 256 LSTMs forward and backward + 1 dense
layer.

• A BiLSTM composed by 2 layers of 512 LSTMs forward and backward + 1 dense
layer.

The results can be seen in the tables 3.5, 3.6 and 3.7.

26 CHAPTER 3. EXPERIMENTS AND RESULTS

6 829 324 14 180 620 7 879 948 7 879 948

Test dataset 1 × 256
LSTM

1 × 512
LSTM

3 × 256
LSTM

3 × 256
LSTM
(+FB)

airport-1 17.78 10.63 8.65 10.33
airport-2 34.49 24.64 21.43 23.43
babble-1 16.57 10.24 8.71 9.43
babble-2 36.41 26.06 21.63 24.19
car-1 11.40 6.65 5.01 6.50
car-2 27.52 17.26 13.58 15.36
clean-1 9.49 5.70 4.61 5.29
clean-2 19.75 11.34 8.24 10.48
restaurant-1 21.95 13.30 11.58 12.59
restaurant-2 38.74 26.84 23.86 26.49
street-1 20.01 12.01 10.84 12.07
street-2 38.58 26.51 23.05 25.99
train-1 20.23 12.91 10.13 12.52
train-2 38.30 29.24 24.79 28.58
Mean 25.09 16.67 14.01 15.95
St. dev. 10.41 8.25 7.33 8.04

Table 3.5: (I) WER of the Kaldi ASR system with different recurrent architectures. The number on
top of each architecture represents the number of trainable parameters. The best and worst results
are highlighted. The architecture of the network is previously described.

3.2. EXPERIMENTS 27

18 379 020 20 175 116 1 046 832 2 836 748

Test dataset 3 × 512
LSTM

3 × 256
+ 3 × 512
LSTM

3 × 512
GRU
+ 1 DL

3 × 256
GRU
+ 2 DL

airport-1 10.63 11.66 29.12 22.36
airport-2 24.64 24.96 46.05 37.64
babble-1 10.24 11.26 34.62 22.32
babble-2 26.06 26.25 51.35 39.29
car-1 6.65 7.21 15.92 13.64
car-2 17.26 16.10 36.56 32.45
clean-1 5.70 5.55 12.37 11.56
clean-2 11.34 10.82 26.75 25.07
restaurant-1 13.30 13.36 43.64 28.81
restaurant-2 26.84 27.67 58.58 43.25
street-1 12.01 12.93 42.41 26.99
street-2 26.51 27.42 61.87 45.56
train-1 12.91 14.25 41.79 27.55
train-2 29.24 29.55 59.31 45.15
Mean 16.67 17.07 40.02 30.12
St. dev. 8.25 8.29 15.35 10.97

Table 3.6: (II) WER of the Kaldi ASR systemwith different recurrent architectures. The number on
top of each architecture represents the number of trainable parameters. The best and worst results
are highlighted. The architecture of the network is previously described.

28 CHAPTER 3. EXPERIMENTS AND RESULTS

9 229 580 7 884 556 15 231 244 34 654 476

Test dataset 3 × 256
NAS

3 × 256
LSTM

(+Norm)

2 × 256
BiLSTM

2 × 512
BiLSTM

airport-1 16.63 10.84 10.35 11.47
airport-2 32.08 27.29 23.91 25.56
babble-1 15.97 11.43 9.88 10.57
babble-2 32.19 28.92 25.01 27.52
car-1 9.73 8.14 6.58 7.60
car-2 21.63 19.69 15.73 18.59
clean-1 8.16 7.12 5.38 5.92
clean-2 15.06 12.40 10.31 11.99
restaurant-1 19.07 14.42 12.52 13.36
restaurant-2 33.66 30.82 27.33 29.63
street-1 16.61 13.77 12.59 13.06
street-2 33.55 31.35 26.77 29.48
train-1 17.34 14.20 12.42 14.29
train-2 34.39 32.32 28.92 30.86
Mean 21.86 18.76 16.26 17.85
St. dev. 9.38 9.34 8.29 8.89

Table 3.7: (III)WER of the Kaldi ASR systemwith different recurrent architectures. The number on
top of each architecture represents the number of trainable parameters. The best and worst results
are highlighted. The architecture of the network is previously described.

As shown in the data, the best performance is achieved by using 3 layers of 256 LSTM cells,
both for the clean environment and the rest of noisy signals. The poor results achieved by
the GRUs could be due to the small number of parameters used for their training. Anyway,
instead of investigating further on GRUs, the use of LSTMs will be preferred since a better
result than naïve Kaldi has been achieved with them.

After these experiments, the task will be focused on joining the convolutional and recur-
rent architectures, applying the best CNN architecture followed by the best RNN architec-
ture: this is, the Dropout CNN followed by the 3 layers of 256 LSTMs. The results are in
the following table:

3.2. EXPERIMENTS 29

3 812 172 7 879 948 9 781 071

Test dataset CNN RNN CNN
+RNN

airport-1 7.19 8.65 7.42
airport-2 17.22 21.43 18.49
babble-1 7.90 8.71 7.96
babble-2 18.98 21.63 20.72
car-1 5.36 5.01 4.76
car-2 11.25 13.58 10.48
clean-1 4.54 4.61 4.13
clean-2 7.51 8.24 6.63
restaurant-1 8.97 11.58 9.58
restaurant-2 19.93 23.86 22.32
street-1 8.80 10.84 9.25
street-2 20.01 23.05 21.99
train-1 9.42 10.13 9.36
train-2 20.40 24.79 22.45
Mean 11.96 14.01 12.54
St. dev. 5.95 7.33 6.98

Table 3.8: WER of the Kaldi ASR system when using the best CNN architecture, the best RNN
architecture and both. The number on top of each architecture represents the number of trainable
parameters. The best and worst results are highlighted.

Although applying the RNN after the CNN improves the result of the WER in environ-
ments without external noise, the overall score taking into account the signals with noise
gets worse results after thanwith CNNs alone. This is, in noisy conditions it is preferable to
use only a convolutional architecture instead of complementing it with a recurrent block
afterwards.

30 CHAPTER 3. EXPERIMENTS AND RESULTS

Chapter 4

Conclusions and Future Work

At the very beginning, the first experiments served to test the performance of a deep neu-
ral network on the Acoustic Model of Kaldi. This lead to the conclusion that Filter Banks
behaved in a more efficient way thanMFCC scores, since a lower error was achieved. Nev-
ertheless, the results were practically similar to the ones that can be expected from Kaldi
alone, and therefore a much deeper research should be done in more advanced neural ar-
chitectures.

Afterwards, a much greater improvement could be achieved by using convolutional neu-
ral architectures. Once applied the dropout on various steps on the network, the WER of
11.96 was accomplished. This means that the previous performance of the Kaldi ASR sys-
tem was improved in 3.17 points.

Finally, the use of recurrent networks was studied with a great number of architectures
and models. The results obtained suggested that from every experiment, the best perfor-
mant design was that involving three layers of 256 LSTM cells, though its performance is
not comparable to the one of the CNNs with its 14.01WER, still better than Kaldi alone.
In the last phase of the research, both convolutional and recurrent structures were com-
bined in a single unit. The results worsen when comparing them with the mean achieved
by CNNs alone, but when checking the score on the clean environment they yielded even
finer results than the previous experiments, with a total of 4.13WER compared to the 4.54
on CNNs alone.

Sumarising, and in view of the results achieved with the experiments, it can be stated that
the best architecture for speech signals featuring noisy conditions is the one involving
CNNs. Nevertheless, it should not be forgotten that for the clean environment a better
outcome can be achieved if the architecture is complemented with a recurrent network.
Thus, a further analysis on more complex convolutional architectures could lead to more
improvement of the ASR system, since these have been seen to operate in a better way than

31

32 CHAPTER 4. CONCLUSIONS AND FUTUREWORK

the rest in overall.

It should be made clear that the number of networks that could have been tested is enor-
mous. Therefore, better resultsmight be achieved by implementing any of the architectures
out of this work. Since in these recent years the progress made in the areas of machine
learning and especially on neural networks has escalated notably, it might be the case that
in future times the architectures tested in this work are overcome by new programs whose
performances outpass this investigation.

In any case, in terms of immediate future, the first attempts could lead to the implemen-
tation of these tested neural architectures in Kaldi, in accordance with the flavour of this
toolkit. This means a further implementation in C++ following the guidelines found in
their documentation.

Besides, a further analysis on the features fed to the network could also provide a more in-
teresting outcome. A different set of input parameters, for example increasing the number
of Filter Banks or MFCCs or performing a previous normalisation of the data, may result
on a better performance of the overall network.

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-
berg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. Software available from tensorflow.org.

[2] Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., and Penn, G. Applying convolu-
tional neural networks concepts to hybrid nn-hmmmodel for speech recognition. In
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Confer-
ence on (2012), IEEE, pp. 4277–4280.

[3] Cho, K., vanMerrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., and
Bengio, Y. Learning phrase representations using RNN encoder-decoder for statis-
tical machine translation. CoRR abs/1406.1078 (2014).

[4] Deng, L., andYu, D. Deep learning:Methods and applications. Tech. rep., Microsoft
Research, May 2014.

[5] Ganchev, T., Fakotakis, N., and Kokkinakis, G. Comparative evaluation of var-
ious MFCC implementations on the speaker verification task. In Proceedings of the
SPECOM (2005), vol. 1, pp. 191–194.

[6] Gers, F. A., Schmidhuber, J., and Cummins, F. Learning to forget: Continual
prediction with lstm. Neural Computation 12 (1999), 2451–2471.

[7] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[8] Graves, A., Mohamed, A.-r., and Hinton, G. Speech recognition with deep re-
current neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee
international conference on (2013), IEEE, pp. 6645–6649.

33

http://www.deeplearningbook.org

34 BIBLIOGRAPHY

[9] Gregor, K., Danihelka, I., Graves, A., and Wierstra, D. DRAW: A recurrent
neural network for image generation. CoRR abs/1502.04623 (2015).

[10] Haykin, S. Neural Networks: A Comprehensive Foundation. Tom Robbins, 1999.

[11] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior,
A., Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups.
IEEE Signal Processing Magazine 29, 6 (2012), 82–97.

[12] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural Compu-
tation 9, 8 (1997), 1735–1780.

[13] Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. CoRR abs/1502.03167 (2015).

[14] Jurafsky, D., and Martin, J. H. Speech and Language Processing (2nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009.

[15] Kalchbrenner, N., Grefenstette, E., and Blunsom, P. A convolutional neural
network for modelling sentences. CoRR abs/1404.2188 (2014).

[16] Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I.,
Zhong, V., Paulus, R., and Socher, R. Ask me anything: Dynamic memory net-
works for natural language processing. In Proceedings of The 33rd International Con-
ference onMachine Learning (New York, New York, USA, 20–22 Jun 2016), M. F. Bal-
can and K. Q. Weinberger, Eds., vol. 48 of Proceedings of Machine Learning Research,
PMLR, pp. 1378–1387.

[17] Muda, L., Begam, M., and Elamvazuthi, I. Voice recognition algorithms using
mel frequency cepstral coefficient (MFCC) and dynamic time warping (DTW) tech-
niques. CoRR abs/1003.4083 (2010).

[18] Parijar, N., and Picone, J. Aurora working group: DSR front end LVCSR evalua-
tion AU/384/02. Tech. rep., Institute for Signal and Information Processing, Depart-
ment of Electrical and Computer Engineering, Mississippi State University, Decem-
ber 2002.

[19] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N.,
Hannemann, M., Motlicek, P., Qian, Y., Schwarz, P., Silovsky, J., Stemmer,
G., and Vesely, K. The kaldi speech recognition toolkit. In IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding (Dec. 2011), IEEE Signal Process-
ing Society. IEEE Catalog No.: CFP11SRW-USB.

BIBLIOGRAPHY 35

[20] Sainath, T. N., Mohamed, A.-r., Kingsbury, B., and Ramabhadran, B. Deep
convolutional neural networks for lvcsr. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on (2013), IEEE, pp. 8614–8618.

[21] Sak, H., Senior, A., and Beaufays, F. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In Fifteenth Annual Confer-
ence of the International Speech Communication Association (2014).

[22] Saon, G., Kuo, H. J., Rennie, S. J., and Picheny, M. The IBM 2015 english conver-
sational telephone speech recognition system. CoRR abs/1505.05899 (2015).

[23] Schuster, M., and Paliwal, K. K. Bidirectional recurrent neural networks. IEEE
Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[24] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdi-
nov, R. Dropout: a simple way to prevent neural networks from overfitting. Journal
of machine learning research 15, 1 (2014), 1929–1958.

[25] Sun, Y., Liang, D., Wang, X., and Tang, X. Deepid3: Face recognition with very
deep neural networks. CoRR abs/1502.00873 (2015).

[26] Tiwari, V. Mfcc and its applications in speaker recognition.

[27] vandenOord, A., Dieleman, S., Zen,H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A. W., and Kavukcuoglu, K. Wavenet: A generative
model for raw audio. CoRR abs/1609.03499 (2016).

[28] Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M., Stolcke, A., Yu, D.,
and Zweig, G. The microsoft 2017 conversational speech recognition system. In
Acoustics, SpeechandSignal Processing (ICASSP), 2017 IEEE InternationalConference
on (2017), IEEE, pp. 5255–5259.

[29] Zhang, Y., Chan, W., and Jaitly, N. Very deep convolutional networks for end-to-
end speech recognition. In Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on (2017), IEEE, pp. 4845–4849.

[30] Zhang, Y., Pezeshki, M., Brakel, P., Zhang, S., Laurent, C., Bengio, Y., and
Courville, A. C. Towards end-to-end speech recognition with deep convolutional
neural networks. CoRR abs/1701.02720 (2017).

[31] Zoph, B., and Le, Q. V. Neural architecture search with reinforcement learning.
CoRR abs/1611.01578 (2016).

	Introduction
	Automatic Speech Recognition Systems
	Neural Networks
	Motivation
	Thesis Contribution
	Structure of the Thesis

	State-of-the-Art
	Automatic Speech Recognition Systems
	Acoustic Model
	Feature Extraction

	Neural Networks
	Neural Networks
	Cost Function and Training
	Batch Normalisation
	Dropout
	Convolutional Network
	Recurrent Neural Networks

	Deep Learning Architectures for ASR Systems

	Experiments and Results
	Tools and Resources
	Aurora-4
	Kaldi
	TensorFlow

	Experiments
	Deep Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Conclusions and Future Work
	Bibliography

